Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/20248
標題: 台灣產十字盾鞭蠍 (蛛形綱: 有鞭目: 鞭蠍科) 的生物學
Biology of whip scorpion Typopeltis crucifer (Arachnida: Uropygi: Thelyphonidae) in Taiwan
作者: 郭冠群
Guo, Guan-Cyun
關鍵字: 十字盾鞭蠍
Typopeltis crucifer
分類
生活史
噴酸行為
生殖板
觸肢
蛻皮
頭胸部長
成長率
生殖
taxanomy
life history
spraying behavior
genital plate
pedipalp
molt
cephalothoraox length
growth rate
reproduce
出版社: 生命科學系所
引用: 尹文英等, 1998。中國土壤生物檢索圖鑑。科學出版社, 北京。 陳樟福、徐加生, 1994。斯氏鞭蠍生物學特性研究。河北師範大學學報 (自然科學版) S1: 96-100. 高島春雄, 1941a。日本產全蠍目及腳鬚目知見補遺。Acta Aranchnology 6: 87-98. 高島春雄, 1941b。琉球列島產全蠍目及腳鬚目。Transactions of the Biogeographical Society Japan 3: 273-285. 吉倉真, 1958。サソリモドキの生殖習性。Acta Aranchnology 16: 1-7. 吉倉真, 1961。サソリモドキの発生。Acta Aranchnology 17: 19-24. 吉倉真, 1966。日本產サソリモドキの研究。熊本大學教養部紀要 自然科學編 1: 31-70. Harvey, S. M. 2003. Catalogue of the Smaller Arachnid Orders of the World. CSIRO Publishing, Collingwood. Australia. Latreille, P. A. 1802. Histoire naturelle, generale et particuliere des crustaces et des insects. F Dufart, Paris. Shapiro, L. & Mandel, P. 2010. Pathology and parasitology for veterinary tichnicians. Delmar cengage learning: Clifton Park, New York. Casper, G. S. 1985. Prey capture and sting behavior in the emperor scorpion, Pandinus imperator (Koch) (Scorpiones, Scorpionidae). Journal of Arachnology 13: 277-283. Cohen, A. C. 1995. Extra-oral digestion in predaceous terrestrial arthropoda. Annual Review of Entomology 40: 85-103. Crawford, C. S. & Cloudsley-Thompson, J., L. 1970. Water relations and desiccation-avoiding behavior in the vinegaroon Mastigoproctus giganteus (Arachnida, Uropygi). Entomologia Experimentailis et Applicata 14: 99-106. Carrel, J. E. & Eric, J. B. 2009. The whip scorpion, Mastigoproctus giganteus (Uropygi: Thelyphonidae), preys on the chemically defended florida scrub milipede, Floridobolus Penneri (Spirobolida: Floridobolidae). Florida Entomologist 92: 500-502. Carrera, P. C., Mattoni, C. I. & Peretti, A. V. 2009. Chelicerae as male grasping organs in scorpions: sexual dimorphism and associated behaviour. Zoology 112: 332-350. Dunlop, J. A. & Martill, D. M. 2001. The first whipspider (Arachnida: Amblypygi) and three new whipscorpions (Arachnida: Thelyphonida) from the lower Cretaceous Crato formation of Brazil. Transactions of the Royal Society of Edinburgh: Earth Sciences 92: 325-334. Eisner, T., Meinwald, J., Monro, A. & Ghent, R. 1961. Defence mechanism of arthropods —I the composition and function of the spray of the whipscorpion, Mastigoproctus giganteus (Lucas) (Arachnida, Pedipalpida). Journal of Insect Physiology 6: 272-298. Edmunds, M. C. & Sibly, R. M. 2010. Optimal sting use in feeding behavior of the scorpion Hadrurus spadix. Journal of Arachnology 38: 123-125. Fernandez-Leborans, G. & von Rintelen, K. 2010. Biodiversity and distribution of epibiontic communities on Caridina ensifera (Crustacea, Decapoda, Atyidae) from Lake Poso: comparison with another ancient lake system of Sulawesi (Indonesia). Acta Zoologica 91: 163-175. Harvey, S. M. 2002. The neglected cousins: what do we know about the smaller arachnid orders? Journal of Arachnology 30: 357-372. Harvey, S. M. 2007. The smaller arachnid orders: diversity, descriptions and distributions from Linnaeus to the present (1758 to 2007). Zootaxa 1668: 363-380. Hammer, O., Harper, D. A. T. & Ryan, P. D. 2001. PAST: Palaeontological statiscs software Package for Education and data analysis. Palaeontologia Electronica 4: 1-9. Haupt, J., Hohne, G., Schwarz, H., Chen, B., Zhao, W. & Zhang, Y. 1988. Chinese whip scorpion using 2-ketones in defense secretion (Arachnida: Uropygi). Journal of Comparative Physiology B 157: 883-885. Haupt, J. 1996. Revision of East Asian whip scorpions (Arachnida Uropygi Thelyphonidae). II. Thailand and adjacent area Haupt, J. 1997. A self-made taxonomic character in whip scorpions. Proc. 16TH Europ. Coll. Arachol. Siedlce, 10.03 1997: 107-111. Haupt, J. & Muller, F. 2004. New products of defense secretion in south east asian whip scorpions (Arachnida: Uropygi: Thelyphonida). Zeitschrift fur Narurferschung 59c: 579-581. Haupt, J. & Song, D. 1996. Revision of East Asian whip scorpions (Arachnida Uropygi Thelyphonidae). I. China and Japan. Arthropoda Selecta 5: 43-52. Huff, J.C., Viquez, C. & Prendini, L. 2008. Redescription of Mimoscorpius pugnator (Butler, 1872) (Arachnida: Thelyphonida),with first description of the female. American Museum Novitate 3633: 1-9. Iwakawa, T. 1908. On the specific identity of the scorpion-spider of the Loochoos and Formosa. Annotationes Zoologicae Japonenses 6: 287-291. Itokawa, H., Kano, R., Kaneko, S., Nakajima, T., Yasuhara, T. & Yonabaru, S. 1981. Chemical investigation of the spray of the Asian whipscorpion Typopeltis crucifer Pocock, 1894. The Japan Society of Medical Entomology and Zoology 32: 67-71. Kraepelin, K. 1897. Revision der Uropygi Thor. (Thelyphonidae auct.). Abhandlungen aus dem Gebiete der Naturwissenschaften herausgegeben vom Naturwissenschaftlichen Verein in Hamburg 15: 1-58. Krehenwinkel, H., Curio, E., Tacud, J. & Haupt, J. 2009. On Thelyphonoides panayensis gen. et sp. n. (Arachnida: Uropygi: Thelyphonidae), a new genus and a new species of whip scorpions from Panay Island (Philipines). Arthropoda Selecta 18: 139-143. Kuwada, Takao., Sakai, Kentaro & Sugita, Hiroaki. 2001. Hemocyanin subunits of a whipscorpion, Typopeltis crucifer, and a primitive spider, Geptathela kimurai: orthologous hemocyanin subunits in arachnids. Zoological Sciences 18: 269-275. Makioka, T. 1992. Reproductive biology of the viviparous scorpion, Liocheles australasiae (Fabricius) (Arachnida, Scorpiones , Scorpionidae). II. Repeated pregnancies in virgins. International Journal of Invertebrate Reproduction and Development 21: 161-166. Meyer-Rochow, V. B. 1987. Aspects of the functional anatomy of the eyes of the whip scorpion Thelyphonus caudatus (Chelicerata: Arachnida) and a discussion of their putative performance as photoreceptors. Journal of the Royal Society of New Zealand 17: 325-342. Nisani, Z. & Hayes, W. K. 2011. Defensive stinging by Parabuthus transvaalicus scorpions: risk assessment. Animal Behaviour 81: 627-633. Patten, B. M. 1919. Photoreactions of partially blinded whip-tail scorpions. The Journal of General Physiology. 2: 435-458. Pocock, R. I. 1894. Note on the Thelyphonidae contained in the collection of the British Museum (Natural History). Annals and Magazine of Natural History 14: 120-134. Punzo, F. 2000. Diel activity patterns and diet fo the giant whipscorpion Mastigoproctus giganteus (Lucas)(Arachnida, Uropygi) in Big Bend National Park (Chihuahuab Desert). Bulletin of the British Arachnological Society 11: 385-387. Punzo, F. 2005. Neem seed extract containing azadirachtin affects mortality, growth, and immunological function in the whipscorpion Mastigoproctus giganteus (Lucas) (Arachnida, Uropygi). Bulletin of Environmental Contamination and Toxicology 75: 684-690. Punzo, F. 2006. Type of shelter sites used by the giant whipscorpion Mastgoproctus giganteus (Arachnida, Uropygi) in habitat characterized by hard adobe soils. Journal of Arachnology 34: 266-268. Punzo, F. & Ludwig, L. 2006. Responses of the whipscorpion, Mastigoproctus liochirus (Arachnida, Uropygi) to environmental humidity. Journal of Environmental Biology 27: 619-622. Rowland, J.M. & Cooke, J.A.L. 1973. Systematics of the arachnid order Uropygida (=Thelyphonida). Journal of Arachnology 1: 55-71. Schwangart, F. 1906. Uber zwei Formen der Pedipalpengattung Typopeltis Poc. Von Formosa. Zoologischer Anzeiger 30: 331-337. Schmidt, J. O., Dani, F. R., Jones G. R. & Morgan, E. D. 2000. Chemistry, ontogeny, and role of pygidial gland secretions of the vinegaroon Mastigoproctus giganteus (Arachnida: Uropygi). Journal of Insect Physiology 46: 443-450. Shih, H. T., Hung, H. C., Schubart, C. D., Chen, C. A. & Chang, H. W. 2006 Intraspecific genetic diversity of the endemic freshwater crab Candidiopatamon rathbunae (Decapoda, Brachyura, Potamidae) reflects five million years geological history of Taiwan. Journal of Biogeography 33: 980-989. Shultz, J. W. 1990. Evolutionary morphology and phylogeny of arachnida. Cladistics 6: 1-38. Shultz, J. W. 2007. A phylogenetic analysis of the arachnid orders based on morphological characters. Zoological Journal of the Linnean Society 150: 221-265. Tetlie, O. E. & Dunlop, J. A. 2008. Geralinura carbonaria (Arachnida; Uropygi) from Mazon creek, Illinois, USA, and the origin of subchelate pedipalps in whip scorpions. Journal of Paleontology 82: 299-312. Thorell, T. 1876. On the classification of scorpions. Annals and Magazine of Natural History 17: 1-15. not seen van der Meijden, A., Herrel, A. & Summers, A. 2010. Comparison of chela size and pincer force in scorpions; getting a first grip. Journal of Zoology 280: 319-325. Weygoldt, P. 1970. Courtship behaviour and sperm transfer in the giant whip scorpion, Mastigoproctus Giganteus (Lucas) (Uropygi, Thelyphonidae). Behaviour 36: 1-8. Weygoldt, P. 1971. Notes on the life history and reproductive biology of the Giant whip scorpion, Mastigoproctus giganteus (Uropygi, Thelyphonidae) from Florida. Jourmal of Zoology 164: 137-147. Weygoldt, P. 1978. Paarungsverhalten und Spermatophorenmorphologie bei GeiBelskorpionen: Thelyphonellus amazonicus Butler und Typopeltis crucifer Pocock (Arachnida, Uropygi). Zoomorphologie 89: 145-156. Weygoldt, P. 1988. Sperm transfer and spermatophore morphology in the whip scorpion Thelyphonus linganus (Arachnida: Uropygi: Thelyphonidae). Journal of Zoology 215: 189-196. Wheeler, W. C. & Hayashi, C. Y. 1998. The phylogeny of the extant chelicerate orders. Cladistics 14: 173-192. Wilson, S. T. & Tilman, D. 1991. Components of plant competition along an experimental gradient of nitrogen availability. Ecology 72: 1050-1065. Yoshikura, M. 1973. Whip-scorpions of Japan. Kumamoto Journal of Sciences ( Biology) 11: 81-93. Yoshikura, M. 1975. Comparative embryology and phylogeny of arachnida. Kumamoto Journal of Sciences (Biology) 12: 71-142. Yogi, S. & Haupt, J. 1977. Analyse des wehrsekretes bei dem geibelskorpion Typopeltis crucifer Pocock. Acta Arachnology 27: 53-56. Yamasaki, T. & Shimojana, M. 1974. Two schizomid whip-scorpions (Schizomida, Schizomidae) found in limestone caves of the Ryukyu islands and Taiwan. Annotation Zoologicae Japonenses 47: 175-186.
摘要: 本研究探討台灣所產 Typopeltis crucifer Pocock 1894 (十字盾鞭蠍) 的生物學, 包含分類、生活史以及噴酸行為。比較採自台灣全島、離島 (小琉球、綠島、蘭嶼) 以及琉球西表島的標本, 進行形態的比對和特徵的測量。雖然在 62 個形態測量值的多變量分析中並沒有明顯分群的現象, 然而依據雌性生殖板和雄性觸肢的特徵可以分成北群、西群和東-南群三群, 但仍須進一步分析確認。本種主要捕食小型節肢動物與蝸牛, 棲息在林中的岩縫、石塊、枯木下, 會自行挖洞, 在蛻皮和生產時則會封閉洞口。蛻皮並沒有固定的季節, 大部分個體 (n=40) 一年蛻一次皮, 測量頭胸部長度估算成長率 (n=174), 成長率從 11.35%~57.21%, 北群的頭胸部長比其他群小 (one-way ANOVA), 但是 3 個族群的成長率沒有差異 (two-way ANOVA)。生殖季節集中於六至八月 (n=15), 一次可生產 21~47 隻幼蟲 (n=4), 從產卵到孵化為 29~32 天 (n=5), 幼蟲停留在母體為 29~36 天 (n=4)。鞭蠍在蛻皮和生產時進入洞穴中, 推測是為了避免受到干擾。噴酸行為實驗使用竹筷刺激個體, 並以沾有酚酞的濾紙測試是否噴酸。對接受測試個體施以強度和方向不同的三種刺激 (對腹部做低強度刺激、對腹部做高強度刺激、對觸肢做高強度刺激), 雄性比雌性與若蟲較不容易噴酸。受測個體的腹部受到高強度的刺激時, 會引發噴酸的行為, 同時會出現逃跑反應。在身體正前方受刺激時, 並不會噴酸; 有時會揮舞觸肢防禦, 推測因為鞭蠍的觸肢較為堅硬, 足以抵抗外來的刺激。依據噴酸實驗的結果, 推測鞭蠍會因不同的威脅決定噴酸行為的使用與否。
This study focuses on the biology of Typopeltis crucifer Pocock, 1894, including the taxanomy, life history and spraying behavior. Specimens from main island of Taiwan and the adjacent islands (Siaoliouciou Island (=I.), Lyudao I. and Lanyu I.) and Iriomote I. (in southern Ryukyus) were collected. These samples were compared morphologically and the measured characters were analyzed by multivariate analyses. Although the analyses of PCA (principal component analysis) and clustering for 62 characters do not support further grouping, the female gential plate and the male pedipalp could divide these specimens into northern, western and eastern-southern groups. These individuals were found to molt all the year round and most (n=40) can molt once a year. The cephalothoraox length is used to study the growth rate and it ranges 11.35%-57.21% (n=174). The cephalothoraox length of northern population was smallerer than the other populations (one-way ANOVA). However, no difference between growth rate of the three groups (two-way ANOVA). The reproductive season was mainly from June to August (n=15), the females lay 21-47 larvae (n=4) and spend 29-32 days (n=5) to hatch them. Further 29-36 days (n=4) are necessary to brood the hatchlings. During the period of reproduction or molting, the whip scorpion will dig a burrow and stay inside the shelter, to avoid disturbance from the outside. A bamboo chopstick was applied to stimulate the individual, and a filter paper with phenolphthalein was used to check the acid spray. Three kinds of stimulation with different directions and positions were used for an individual, viz. the low-threat at abdomen, the high-threat at abdomen and the high-threat at pedipalp. The results show that the male sprays less than the female and the nymph. When the abdomen was tested by the high-threat, it would induce both the spraying and escaping behaviors. When the front of body was threated, no spraying behavior was observed, but sometimes such individuals would use the strong pedipalps to defence against the threat. In conclusion, the whip scorpion will decide if the spraying behavior will be used or not, according to different kind of threat.
URI: http://hdl.handle.net/11455/20248
其他識別: U0005-0602201309404000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0602201309404000
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.