Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/20255
標題: 外遺傳分析肌動素調節蛋白在TGF-beta 1誘導分化人乳癌幹細胞與鼻咽癌幹細胞的表現
Epigenetic analysis of gelsolin in TGF-beta 1 induced differentiation of human breast cancer stem cells and nasopharyngeal cancer stem cells.
作者: 陳智源
Chen, Zhi-Yuan
關鍵字: 乳癌幹細胞
breast cancer stem cell
鼻咽癌幹細胞
肌動素調節蛋白
轉化生長因子beta 1
外遺傳分析
nasopharyngeal cancer stem cell
gelsolin
TGF-beta 1
epigenetic
出版社: 生命科學系所
引用: 1 Stockler, M., Wilcken, N. R., Ghersi, D. & Simes, R. J. Systematic reviews of chemotherapy and endocrine therapy in metastatic breast cancer. Cancer treatment reviews 26, 151-168, doi:10.1053/ctrv.1999.0161 (2000). 2 Schultz, L. B. D. & Weber, B. L. M. Recent advances in breast cancer biology. Current Opinion in Oncology (1999). 3 Aubele, M. et al. Intratumoral heterogeneity in breast carcinoma revealed by laser-microdissection and comparative genomic hybridization. Cancer genetics and cytogenetics 110, 94-102 (1999). 4 Golub, T. R. Genomic approaches to the pathogenesis of hematologic malignancy. Current opinion in hematology 8, 252-261 (2001). 5 Heppner, G. H. Tumor heterogeneity. Cancer research 44, 2259-2265 (1984). 6 Kessel, D., Hall, T. C. & Wodinsky, I. Transport and phosphorylation as factors in the antitumor action of cytosine arabinoside. Science 156, 1240-1241 (1967). 7 Babcock, V. I. & Southam, C. M. Transplantable renal tumor of the rat. Cancer research 21, 130-131 (1961). 8 Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature medicine 3, 730-737 (1997). 9 Al-Hajj, M. & Clarke, M. F. Self-renewal and solid tumor stem cells. Oncogene 23, 7274-7282, doi:10.1038/sj.onc.1207947 (2004). 10 Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America 100, 3983-3988, doi:10.1073/pnas.0530291100 (2003). 11 Dontu, G., Al-Hajj, M., Abdallah, W. M., Clarke, M. F. & Wicha, M. S. Stem cells in normal breast development and breast cancer. Cell proliferation 36 Suppl 1, 59-72 (2003). 12 Mani, S. A. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704-715, doi:10.1016/j.cell.2008.03.027 (2008). 13 Radisky, D. C. & LaBarge, M. A. Epithelial-mesenchymal transition and the stem cell phenotype. Cell stem cell 2, 511-512, doi:10.1016/j.stem.2008.05.007 (2008). 14 Shook, D. & Keller, R. Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mechanisms of development 120, 1351-1383 (2003). 15 Keller, R., Davidson, L. A. & Shook, D. R. How we are shaped: the biomechanics of gastrulation. Differentiation; research in biological diversity 71, 171-205, doi:10.1046/j.1432-0436.2003.710301.x (2003). 16 Hugo, H. et al. Epithelial--mesenchymal and mesenchymal--epithelial transitions in carcinoma progression. Journal of cellular physiology 213, 374-383, doi:10.1002/jcp.21223 (2007). 17 Thiery, J. P. & Sleeman, J. P. Complex networks orchestrate epithelial-mesenchymal transitions. Nature reviews. Molecular cell biology 7, 131-142, doi:10.1038/nrm1835 (2006). 18 Zavadil, J. & Bottinger, E. P. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 24, 5764-5774, doi:10.1038/sj.onc.1208927 (2005). 19 Feng, X. H. & Derynck, R. Specificity and versatility in tgf-beta signaling through Smads. Annual review of cell and developmental biology21, 659-693, doi:10.1146/annurev.cellbio.21.022404.142018 (2005). 20 de Caestecker, M. P., Piek, E. & Roberts, A. B. Role of transforming growth factor-beta signaling in cancer. Journal of the National Cancer Institute 92, 1388-1402 (2000). 21 Wakefield, L. M. & Roberts, A. B. TGF-beta signaling: positive and negative effects on tumorigenesis. Current opinion in genetics & development 12, 22-29 (2002). 22 Bierie, B. & Moses, H. L. Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nature reviews. Cancer 6, 506-520, doi:10.1038/nrc1926 (2006). 23 Bierie, B. & Moses, H. L. TGF-beta and cancer. Cytokine & growth factor reviews 17, 29-40, doi:10.1016/j.cytogfr.2005.09.006 (2006). 24 Ikushima, H. & Miyazono, K. TGFbeta signalling: a complex web in cancer progression. Nature reviews. Cancer 10, 415-424, doi:10.1038/nrc2853 (2010). 25 Moustakas, A. & Heldin, C. H. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer science 98, 1512-1520, doi:10.1111/j.1349-7006.2007.00550.x (2007). 26 Verma, M. et al. Early detection and risk assessment: proceedings and recommendations from the Workshop on Epigenetics in Cancer Prevention. Annals of the New York Academy of Sciences 983, 298-319 (2003). 27 Strathdee, G. & Brown, R. Aberrant DNA methylation in cancer: potential clinical interventions. Expert reviews in molecular medicine 4, 1-17, doi:doi:10.1017/S1462399402004222 (2002). 28 Strathdee, G. & Brown, R. Epigenetic cancer therapies: DNA methyltransferase inhibitors. Expert opinion on investigational drugs 11, 747-754, doi:10.1517/13543784.11.6.747 (2002). 29 Goll, M. G. & Bestor, T. H. Eukaryotic cytosine methyltransferases. Annual review of biochemistry 74, 481-514, doi:10.1146/annurev.biochem.74.010904.153721 (2005). 30 Yen, R. W. et al. Isolation and characterization of the cDNA encoding human DNA methyltransferase. Nucleic acids research 20, 2287-2291 (1992). 31 Yang, X., Yan, L. & Davidson, N. E. DNA methylation in breast cancer. Endocrine-related cancer 8, 115-127 (2001). 32 Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247-257 (1999). 33 Hsieh, C. L. In vivo activity of murine de novo methyltransferases, Dnmt3a and Dnmt3b. Molecular and cellular biology 19, 8211-8218 (1999). 34 Rhee, I. et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416, 552-556, doi:10.1038/416552a (2002). 35 Li, G. H., Arora, P. D., Chen, Y., McCulloch, C. A. & Liu, P. Multifunctional roles of gelsolin in health and diseases. Med Res Rev, doi:10.1002/med.20231 (2010). 36 Tanaka, M. et al. Gelsolin: a candidate for suppressor of human bladder cancer. Cancer research 55, 3228-3232 (1995). 37 Yin, H. L. & Stossel, T. P. Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature 281, 583-586 (1979). 38 Kwiatkowski, D. J., Westbrook, C. A., Bruns, G. A. & Morton, C. C. Localization of gelsolin proximal to ABL on chromosome 9. American journal of human genetics 42, 565-572 (1988). 39 Lambrechts, A., Van Troys, M. & Ampe, C. The actin cytoskeleton in normal and pathological cell motility. The international journal of biochemistry & cell biology 36, 1890-1909, doi:10.1016/j.biocel.2004.01.024 (2004). 40 Olson, M. F. & Sahai, E. The actin cytoskeleton in cancer cell motility. Clinical & experimental metastasis 26, 273-287, doi:10.1007/s10585-008-9174-2 (2009). 41 Mannherz, H. G., Mazur, A. J. & Jockusch, B. Repolymerization of actin from actin:thymosin beta4 complex induced by diaphanous related formins and gelsolin. Annals of the New York Academy of Sciences 1194, 36-43, doi:10.1111/j.1749-6632.2010.05467.x (2010). 42 Paddenberg, R. et al. Serum withdrawal induces a redistribution of intracellular gelsolin towards F-actin in NIH 3T3 fibroblasts preceding apoptotic cell death. European journal of cell biology 80, 366-378, doi:10.1078/0171-9335-00166 (2001). 43 Witke, W. et al. Hemostatic, inflammatory, and fibroblast responses are blunted in mice lacking gelsolin. Cell 81, 41-51 (1995). 44 Azuma, T., Witke, W., Stossel, T. P., Hartwig, J. H. & Kwiatkowski, D. J. Gelsolin is a downstream effector of rac for fibroblast motility. The EMBO journal 17, 1362-1370, doi:10.1093/emboj/17.5.1362 (1998). 45 Laine, R. O. et al. Gelsolin, a protein that caps the barbed ends and severs actin filaments, enhances the actin-based motility of Listeria monocytogenes in host cells. Infection and immunity 66, 3775-3782 (1998). 46 Arora, P. D. & McCulloch, C. A. Dependence of fibroblast migration on actin severing activity of gelsolin. The Journal of biological chemistry 271, 20516-20523 (1996). 47 Chen, P., Murphy-Ullrich, J. E. & Wells, A. A role for gelsolin in actuating epidermal growth factor receptor-mediated cell motility. The Journal of cell biology 134, 689-698 (1996). 48 Cunningham, C. C., Stossel, T. P. & Kwiatkowski, D. J. Enhanced motility in NIH 3T3 fibroblasts that overexpress gelsolin. Science 251, 1233-1236 (1991). 49 Mullauer, L., Fujita, H., Ishizaki, A. & Kuzumaki, N. Tumor-suppressive function of mutated gelsolin in ras-transformed cells. Oncogene 8, 2531-2536 (1993). 50 Mullauer, L. [A study on alterations of gene expression in a flat revertant R1 from ras-oncogene transformed NIH/3T3 cells]. [Hokkaido igaku zasshi] The Hokkaido journal of medical science 68, 705-716 (1993). 51 Winston, J. S. et al. Downregulation of gelsolin correlates with the progression to breast carcinoma. Breast cancer research and treatment 65, 11-21 (2001). 52 Gay, F. et al. In colon carcinogenesis, the cytoskeletal protein gelsolin is down-regulated during the transition from adenoma to carcinoma. Human pathology 39, 1420-1430, doi:10.1016/j.humpath.2008.02.020 (2008). 53 Kim, J. H. et al. Downregulation of gelsolin and retinoic acid receptor beta expression in gastric cancer tissues through histone deacetylase 1. Journal of gastroenterology and hepatology 19, 218-224 (2004). 54 Dosaka-Akita, H. et al. Frequent loss of gelsolin expression in non-small cell lung cancers of heavy smokers. Cancer research 58, 322-327 (1998). 55 Lee, H. K., Driscoll, D., Asch, H., Asch, B. & Zhang, P. J. Downregulated gelsolin expression in hyperplastic and neoplastic lesions of the prostate. The Prostate 40, 14-19 (1999). 56 Visapaa, H. et al. Ki67, gelsolin and PTEN expression in sarcomatoid renal tumors. Urological research 30, 387-389, doi:10.1007/s00240-002-0284-z (2003). 57 Noske, A. et al. Loss of Gelsolin expression in human ovarian carcinomas. European journal of cancer 41, 461-469, doi:10.1016/j.ejca.2004.10.025 (2005). 58 Ni, X. G. et al. The ubiquitin-proteasome pathway mediates gelsolin protein downregulation in pancreatic cancer. Molecular medicine 14, 582-589, doi:10.2119/2008-00020.Ni (2008). 59 Shieh, D. B. et al. Tissue expression of gelsolin in oral carcinogenesis progression and its clinicopathological implications. Oral oncology42, 599-606, doi:10.1016/j.oraloncology.2005.10.021 (2006). 60 Sagawa, N. et al. Gelsolin suppresses tumorigenicity through inhibiting PKC activation in a human lung cancer cell line, PC10. British journal of cancer 88, 606-612, doi:10.1038/sj.bjc.6600739 (2003). 61 Tanaka, H. et al. siRNA gelsolin knockdown induces epithelial-mesenchymal transition with a cadherin switch in human mammary epithelial cells. International journal of cancer. Journal international du cancer 118, 1680-1691, doi:10.1002/ijc.21559 (2006). 62 Asch, H. L. et al. Widespread loss of gelsolin in breast cancers of humans, mice, and rats. Cancer research 56, 4841-4845 (1996). 63 Hollier, B. G., Evans, K. & Mani, S. A. The epithelial-to-mesenchymal transition and cancer stem cells: a coalition against cancer therapies. Journal of mammary gland biology and neoplasia 14, 29-43, doi:10.1007/s10911-009-9110-3 (2009). 64 Litwin, M. et al. Gelsolin affects the migratory ability of human colon adenocarcinoma and melanoma cells. Life sciences 90, 851-861, doi:10.1016/j.lfs.2012.03.039 (2012). 65 Dong, Y., Asch, H. L., Ying, A. & Asch, B. B. Molecular mechanism of transcriptional repression of gelsolin in human breast cancer cells. Experimental cell research 276, 328-336, doi:10.1006/excr.2002.5534 (2002). 66 Button, E., Shapland, C. & Lawson, D. Actin, its associated proteins and metastasis. Cell motility and the cytoskeleton 30, 247-251, doi:10.1002/cm.970300402 (1995). 67 Van den Abbeele, A. et al. Downregulation of gelsolin family proteins counteracts cancer cell invasion in vitro. Cancer letters 255, 57-70, doi:10.1016/j.canlet.2007.03.023 (2007). 68 Radwanska, A. et al. Overexpression of lumican affects the migration of human colon cancer cells through up-regulation of gelsolin and filamentous actin reorganization. Experimental cell research 318, 2312-2323, doi:10.1016/j.yexcr.2012.07.005 (2012). 69 Liao, C. J. et al. Overexpression of gelsolin in human cervical carcinoma and its clinicopathological significance. Gynecologic oncology 120, 135-144, doi:10.1016/j.ygyno.2010.10.005 (2011).
摘要: 乳癌是世界上常見的癌症死亡原因之一,約有5%的乳癌患者會有轉移的情形,同時約有30-40%的病人在初步的檢測中未發現轉移,但之後卻出現了癌轉移的情形。因此,腫瘤細胞可能從原發處被釋出到末梢循環中,是透過循環腫瘤細胞,遷移到骨髓等微環境。透過將細胞維持在非增生—類似於幹細胞的形態下,或是被誘導成腫瘤啟動細胞來啟動癌細胞的轉移。肌動素調節蛋白是一種可結合肌動蛋白並進行調控的蛋白質,基因位於人類的第九對染色體。目前已知藉由肌動蛋白的調節,可調控細胞型態、細胞移動、細胞分化及細胞凋亡,許多人類癌症中,肌動素調節蛋白的表現下降,然而肌動素調節蛋白在癌症幹細胞所扮演的角色還不是很清楚。在本研究中我們發現,在CD44+/CD24-乳癌細胞與鼻咽癌細胞亞群中,肌動素調節蛋白的表現會有明顯減少的情形,但透過TGF-beta 1處理後,CD44+/CD24-癌細胞亞群中,肌動素調節蛋白則呈現明顯上升的情形,這個情形發生在乳癌細胞與鼻咽癌細胞中。我們也發現透過TGF-beta 1處理後,肌動素調節蛋白表現增加,會增強乳癌細胞與鼻咽癌細胞,這兩種癌細胞遷移與入侵的能力。此外,在肌動素調節蛋白的表關遺傳學分析方面,我們將經由TGF-beta 1處理後的細胞亞群分別進行分析,結果發現,透過TGF-beta 1處理後,CD44+/CD24-乳癌與鼻咽癌細胞亞群中,肌動素調節蛋白基因的啟動子區域,甲基化的情形會下降,同時去甲基化的情形會增加,說明了肌動素調節蛋白會透過外遺傳調控影響,進而去改變染色質的結構。綜合以上的結果我們發現,TGF-beta 1影響癌細胞中基因啟動子區域甲基化減少,與促進去甲基化的增加,進而去改變肌動素調節蛋白的表現。
Breast cancer is one of most common cause of cancer death in the world. Approximately 5% of patients with breast cancer have clinically detectable metastases at the time of initial diagnosis and 30-40% of patients who appear clinically free of metastases accumulate hidden metastases. Presumably, tumor cells shed from the primary lesions are released into the peripheral circulation as circulating tumor cells (CTCs), and then CTCs migrate to the bone marrow microenvironment where there is a selection to maintain a non-proliferative stem cell like phenotype or to be induced to become cancer-initiating stem cells (CSCs) for metastases. Gelsolin (GSN) is an actin-binding protein encoded by the gene, which is located at human chromosome 9q33. GSN is known to regulate cell morphology, motility, differentiation, and apoptosis. Down-regulation of GSN was found in many types of human malignant cancers. However, the role of GSN in cancer stem cell has not been well evaluated. In this study, we demonstrated that GSN expression was decreased in CD44+/CD24- subpopulation of MDA-MB-231 breast cancer cells and HONE-1 nasopharyngeal carcinoma cells without TGF-beta 1 treatment, while GSN expression was increased with TGF-beta 1 treatment. The increased GSN expression was accompanied by increased cell migration and invasion for TGF-beta 1 treated cells. Epigenetic analysis showed that TGF-beta 1 caused to modify GSN expression in both MDA-MB-231 cells and HONE-1 cells through epigenetic alteration in chromatin structure. In summary, the results found in this study suggest that TGF-beta 1 induction attenuated the methylation but facilitated the unmethylation on GSN DNA promoter region such as that increased GSN expression in cancer cells.
URI: http://hdl.handle.net/11455/20255
其他識別: U0005-0508201314085100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0508201314085100
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.