Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/20270
標題: 探討廣鹽性稻田魚的絨毛蛋白表現對於離子調節細胞頂膜型態變化之影響
Differential expression of villin 1-like protein associated with remodeling of apical morphologies in the ionocytes of euryhaline medaka, Oryzias dancena
作者: 楊淑媛
Yang, Shu-Yuan
關鍵字: 稻田魚
medaka
離子調節細胞
絨毛蛋白
ionocyte
villin 1-like protein
出版社: 生命科學系所
引用: Avella, M., Masoni, A., Bornancin, M., Mayer-Gostan, N., 1987. Gill morphology and sodium influx in the rainbow trout (Salmo gairdneri) acclimated to artificial freshwater environments. J. Exp. Zool. 241, 159-169. Ayson, F.G., Kaneko, T., Hasegawa, S., Hirano, T., 1994. Development of mitochondrion-rich cells in the yolk-sac membrane of embryos and larvae of tilapia, Oreochromis mossambicus, in freshwater and seawater. J. Exp. Zool. 270, 129-135. Bazari, W.L., Matsudaira, P., Wallek, M., Smeal, T., Jakes, R., Ahmed, Y., 1988. Villin sequence and peptide map identify six homologous domains. Proc. Natl. Acad. Sci. USA 85, 4986-4990. Bray, D., Heath, J., Moss, D., 1986. The membrane-associated "''cortex" of animal cells: its structure and mechanical properties. J. Cell Sci. Suppl. 20, 71-88. Breseghelo, L., Cardoso, M.P., Borges-de-Oliveira, R., Costa, M.F.D., Barreto, J.C.B., Sabóia-Morais, S.M.T.D., Yamada, Á.T., 2004. Effects of sodium fluoride in gill epithelium of Guppy fish (Poecilia vivipara). Braz. J. Vet. Res. Anim. Sci. 41, 274-280. Bretscher, A., Osborn, M., Wehland, J., Weber, K., 1981. Villin associates with specific microfilamentous structures as seen by immunofluorescence microscopy on tissue sections and cells microinjected with villin. Exp. Cell Res. 135, 213-219. Bretscher, A., Weber, K., 1979. Villin: The major microfilament‐associated protein of the intestinal microvillus. Proc. Natl. Acad. Sci. USA. 76, 2321-2325. Brown, J.W., McKnight, C.J., 2010. Molecular model of the microvillar cytoskeleton and organization of the brush border. PLoS ONE 5, e9406. Burns, J., Copeland, D.E., 1950. Chloride excretion in the head region of Fundulus heteroclitus. Biol. Bull. 99, 381-385. Chang, I.C., Lee, T.H., Wu, H.C., Hwang, P.P., 2002. Effects of environmental Cl- levels on Cl- uptake and mitochondria-rich cell morphology in gills of the stenohaline goldfish, Carassius auratus. Zool. Stud. 41, 236-243. Chen, X., Li, L., Wong, C.K., Cheng, S.H., 2009. Rapid adaptation of molecular resources from zebrafish and medaka to develop an estuarine/marine model. Comp. Biochem. Physiol. C 149, 647-655. Choi, J.H., Lee, K.M., Inokuchi, M., Kaneko, T., 2010. Acute responses of gill mitochondria-rich cells in Mozambique tilapia Oreochromis mossambicus following transfer from normal freshwater to deionized freshwater. Fish. Sci. 76, 101-109. Choi, J.H., Lee, K.M., Inokuchi, M., Kaneko, T., 2011. Morphofunctional modifications in gill mitochondria-rich cells of Mozambique tilapia transferred from freshwater to 70% seawater, detected by dual observations of whole-mount immunocytochemistry and scanning electron microscopy. Comp. Biochem. Physiol. A 158, 132-142. Cioni, C., De Merich, D., Cataldi, E., Sataudella, S., 1991. Fine structure of chloride cells in freshwater-and seawater-adapted Oreochromis niloticus (Linnaeus) and Oreochromis mossambicus (Peters). J. Fish Biol. 39, 197-209. Costa de Beauregard, M.A., Pringault, E., Robine, S., Louvard, D., 1995. Suppression of villin expression by antisense RNA impairs brush border assembly in polarized epithelial intestinal cells. EMBO J. 14, 409-421. Daborn, K., Cozzi, R.R.F., Marshall, W.S., 2001. Dynamics of pavement cell-chloride cell interactions during abrupt salinity change in Fundulus heteroclitus. J. Exp. Biol. 204, 1889-1899. Degnan, K.J., Karnaky, K.J., Zadunaisky, J.A., 1977. Active chloride transport in the in vitro opercular skin of a teleost (Fundulus heteroclitus), a gill-like epithelium rich in chloride cells. J. Physiol. 271, 155-191. Evans, D.H., 2008. Teleost fish osmoregulation: what have we learned since August Krogh, Homer Smith, and Ancel Keys. Am. J. Physiol. 295, R704-R713. Evans, D.H., Piermarini, P.M., Choe, K.P., 2005. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol. Rev. 85, 97-177. Evans, D.H., Piermarini, P.M., Potts, W.T.W., 1999. Ionic transport in the fish gill epithelium. J. Exp. Zool. 283, 641-652. Fielder, D.S., Allan, G.L., Pepperall, D., Pankhurst, P.M., 2007. The effects of changes in salinity on osmoregulation and chloride cell morphology of juvenile Australian snapper Pagrus auratus. Aquaculture 272, 656-666. Figiel, A., Keller, J.M., Schilt, J., Dauça, M., 1989. Stage-specific polypeptide and villin expression during thyroid hormone-induced substitution of the amphibian intestinal epithelium. Differentiation 40, 166-175. Figiel, A., Schilt, J., Dudouet, B., Robine, S., Dauça, M., 1987. Stage-specific polypeptides and villin expression during the intestinal epithelium substitution of the metamorphosing amphibian. Differentiation 36, 116-124. Flik, G., Fenwick, J.C., Kolar, Z., Mayer-Gostan, N., Wendelaabonga, S.E., 1986. Effects of low ambient calcium levels on whole-body Ca2+ flux rates and internal calcium pools in the freshwater cichlid teleost, Oreochromis mossambicus. J. Exp. Biol. 120, 249-264. Foskett, J.K., Logsdon, C.D., Turner, T., Machen, T.E., Bern, H.A., 1981. Differentiation of the chloride extrusion mechanism during seawater adaptation of a teleost fish, the cichlid Sarotherodon mossambicus. J. Exp. Biol. 93, 209-224. Foskett, J.K., Scheffey, C., 1982. The chloride cell: definitive identification as the salt-secretory cell in teleosts. Science 215, 164-166. Friederich, E., Huet, C., Arpin, M., Louvard, D., 1989. Villin induces microvilli growth and actin redistribution in transfected fibroblasts. Cell 59, 461-475. Friederich, E., Kreis T.E., Louvard, D., 1993. Villin-induced growth of microvilli is reversibly inhibited by cytochalasin D. J. Cell Sci. 105, 765-775. Friederich, E., Pringault, E., Arpin, M., Louvard, D., 1990. From the structure to the function of villin, an actin-binding protein of the brush border. Bioessays 12, 403-408. Furukawa, F., Watanabe, S., Kimura, S., Kaneko, T., 2012. Potassium excretion through ROMK potassium channel expressed in gill mitochondrion-rich cells of Mozambique tilapia. Am. J. Physiol. 302, R568-R576. Garcia-Santos, S., Monteiro, S.M., Carrola, J., Fontainhas-Fernandes, A., 2007. Histological alterations in gills of Nile tilapia Oreochromis niloticus caused by cadmium. Arq. Bras. Med. Vet. Zootec. 59, 376-381. George, S.P., Wang, Y., Mathew, S., Srinivasan, K., Khurana, S., 2007. Dimerization and actin-bundling properties of villin and its role in the assembly of epithelial cell brush borders. J. Biol. Chem. 282, 26528-26541. Girard, J. P., Payan, P., 1980. Ion exchanges through respiratory and chloride cells in freshwater-and seawater-adapted teleosteans. Am. J. Physiol. 238, R260-R268. Greco, A.M., Fenwick, J.C., Perry, S.F., 1996. The effects of soft-water acclimation on gill structure in the rainbow trout Oncorhynchus mykiss. Cell Tissue Res. 285, 75-82. Hampton, C.M., Liu, J., Taylor, D.W., DeRosier, D.J., Taylor, K.A., 2008. The 3D structure of villin as an unusual F-actin crosslinker. Structure 16, 1882-1891. Heintzelman, M.B., Mooseker, M.S., 1990. Assembly of the brush border cytoskeleton: changes in the distribution of microvillar core proteins during enterocyte differentiation in adult chicken intestine. Cell Motil. Cytoskeleton 15, 12-22. Heusser, S., Colin, S., Figiel, A., Huet, C., Keller, J.M., Pornet, P., Robine, S., Vandamme, J., Vandekerckhove, J., Dauça, M., 1992. Amphibian intestinal villin: isolation and expression during embryonic and larval development. J. Cell Sci. 103, 699-708. Hiroi, J., Kaneko, T., Tanaka, M., 1999. In vivo sequential changes in chloride cell morphology in the yolk-sac membrane of Mozambique tilapia (Oreochromis mossambicus) embryos and larvae during seawater adaptation. J. Exp. Biol. 202, 3485-3495. Hiroi, J., McCormick, S.D. 2007. Variation in salinity tolerance, gill Na+/K+-ATPase, Na+/K+/2Cl– cotransporter and mitochondria-rich cell distribution in three salmonids Salvelinus namaycush, Salvelinus fontinalis and Salmo salar. J. Exp. Biol. 210, 1015-1024. Hiroi, J., McCormick, S.D., Ohtani-Kaneko, R., Kaneko, T., 2005. Functional classification of mitochondrion-rich cells in euryhaline Mozambique tilapia (Oreochromis mossambicus) embryos, by means of triple immunofluorescence staining for Na+/ K+-ATPase, Na+/K+/2Cl− cotransporter and CFTR anion channel. J. Exp. Biol. 208, 2023-2036. Hiroi, J., Yasumasu, S., McCormick, S.D., Hwang, P.P., Kaneko, T., 2008. Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish. J. Exp. Biol. 211, 2584-2599. Hirose, S., Kaneko, T., Naito, N., Takei, Y., 2003. Molecular biology of major components of chloride cells. Comp. Biochem. Physiol. B 136, 593-620. Hofer, D., Drenckhahn, D., 1992 Identification of brush cells in the alimentary and respiratory system by antibodies to villin and fimbrin. Histochemistry 98, 237-242. Hootman, S.R., Philpott, C.W., 1979. Ultracytochemical localization of Na+, K+-activated ATPase in chloride cells from the gills of a euryhaline teleost. Anat. Rec. 193, 99-129. Hossler, F.E. 1980. Gill arch of the mullet, Mugil cephalus III. Rate of response to salinity change. Am. J. Physiol. 238, R160-R164. Hossler, F.E., Musil, G., Karnaky K.J., Epstein, F.H., 1985. Surface structure of the gill arch of the killifish, Fundulus heteroclitus, from seawater and freshwater, with special reference to the morphology of apical crypt of chloride cells. J. Morphol. 185, 377-386. Hossler, F.E., Ruby, J.R., Mcilwain, T.D., 1979. Gill Arch of the mullet, Mugil cephalus modification in surface ultrastructure and Na, K-ATPase content during adaptation to various salinities. J. Exp. Zool. 208, 399-405. Hwang, P. P. 1987. Tolerance and ultrastructural responses of branchial chloride cells to salinity changes in the euryhaline teleost Oreochromis mossambicus. Mar. Biol. 94, 643-649. Hwang, P.P., Lee, T.H., 2007. New insights into fish ion regulation and mitochondrionrich cells. Comp. Biochem. Physiol. A 148, 479-497. Hwang, P.P., Lee, T.H., Lin, L.Y., 2011. Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. Am. J. Physiol. 301, R28-R47. Inokuchi, M., Hiroi, J., Watanabe, S., Lee, K.M., Kaneko, T., 2008. Gene expression and morphological localization of NHE3, NCC and NKCC1a in branchial mitochondria-rich cells of Mozambique tilapia (Oreochromis mossambicus) acclimated to a wide range of salinities. Comp. Biochem. Physiol. A 151, 151-158. Inokuchi, M., Kaneko, T., 2012. Recruitment and degeneration of mitochondrion-rich cells in the gills of Mozambique tilapia Oreochromis mossambicus during adaptation to a hyperosmotic environment. Comp. Biochem. Physiol. A 162, 245-51. Inoue, K., Takei, Y., 2002. Diverse adaptability in Oryzias species to high environmental salinity. Zool. Sci. 19, 727-734. Inoue, K., Takei, Y., 2003. Asian medaka fishes offer new models for studying mechanisms of seawater adaptation. Comp. Biochem. Physiol. B 136, 635-645. Kaneko, T., Watanabe, S., Lee, K.M., 2008. Functional morphology of mitochondrion-rich cells in euryhaline and stenohaline teleosts. Aqua-BioSci. Monogr. 1, 1-62. Kang, C.K., Tsai, H.J., Liu, C.C., Lee, T.H., Hwang, P.P., 2010. Salinity-dependent expression of a Na+/K+ 2Cl- cotransporter in gills of the brackish medaka Oryzias dancena: a molecular correlate for hyposmoregulatory endurance. Comp. Biochem. Physiol. A 157, 7-18. Kang, C.K., Tsai, S.C., Lee, T.H., Hwang, P.P., 2008. Differential expression of branchial Na+/K+-ATPase of two medaka species, Oryzias latipes and Oryzias dancena, with different salinitytolerances acclimated to fresh water, brackish water and seawater. Comp. Biochem. Physiol. A 148, 479-497. Kang, C.K., Yang, W.K. Lin, S.T. Liu, C.C., Lin, H.M., Chen, H.H., Cheng, C.W., Lee, T.H., Hwang, P.P., 2013. The acute and regulatory phases of time-course changes in gill mitochondrion-rich cells of seawater-acclimated medaka (Oryzias dancena) when exposed to hypoosmotic environments. Comp. Biochem. Physiol. A 164, 181-91. Karnaky, K.J., Degnan, K.J., Garretson, L.T., Zadunaisky, J.A., 1984. Identification and quantification of mitochondria-rich cells in transporting epithelia. Am. J. Physiol. 246, R770-R775. Karnaky, K.J., Degnan, K.J., Zadunaisky, J.A., 1977. Chloride transport across isolated opercular epithelium of killifish: a membrane rich in chloride cells. Science, 195, 203-205. Karnaky, K.J., Kinter, W.B., 1977. Killifish opercular skin: a flat epithelium with a high density of chloride cells. J. Exp. Zool. 199, 355-364. Katoh, F., Hasegawa, S., Kita, J., Takagi, Y., Kaneko, T., 2001. Distinct seawater and freshwater types of chloride cells in killifish, Fundulus heteroclitus. Can. J. Zool. 79, 822-829. Katoh, F., Kaneko, T., 2003. Short-term transformation and long-term replacement of branchial chloride cells in killifish transferred from seawater to freshwater, revealed by morphofunctional observations and a newly established ''time-differential double fluorescent staining technique. J. Exp. Biol. 206, 4113-4123. Katoh, F., Shimizu, A., Uchida, K., Kaneko, T., 2000. Shift of chloride cell distribution during early life stages in seawater-adapted killifish, Fundulus heteroclitus. Zool. Sci. 17, 11-18. Kelly, S.P., Chow, I.N.K., Woo, N.Y.S. 1999. Haloplasticity of black seabream (Mylio macrocephalus): hypersaline to freshwater acclimation. J. Exp. Zool. 283, 226-241. Kelly, S.P., Woo, N.Y., 1999. Cellular and biochemical characterization of hyposmotic adaptation in a marine teleost, Sparus sarba. Zool. Sci. 16, 505-514. Keys, A., Willmer, E.N., 1932. “Chloride secreting cells” in the gills of fishes, with special reference to the common eel. J. Physiol. 76, 368-378. Khodabandeh, S., Shahriari Moghaddam, M., Abtahi, B., 2009. Changes in chloride cell abundance, Na+, K+-ATPase immunolocalization and activity in the gills of golden grey mullet, Liza aurata, fry during adaptation to different salinities. Yakhteh Med. J. 11, 49-54. Khurana, S., George, S.P., 2008. Regulation of cell structure and function by actin-binding proteins: Villin’s perspective. FEBS Lett. 582, 2128-2139. King, J.A.C., Hossler, F.E., 1991. The gill arch of the striped bass (Morone saxatilis). Alterations in the ultrastructure of chloride cell apical crypts and chloride efflux following exposure to seawater. J. Morphol. 209, 165-176. Kinoshita, M., Murata, K., Naruse, K., Tanaka, M., 2009. Medaka: biology, management, and experimental protocols. Wiley-Blackwell, Ames. pp.254-255. Kültz, D., Jürss, K., Jonas, L., 1995. Cellular and epithelial adjustments to altered salinity in the gill and opercular epithelium of a cichlid fish (Oreochromis mossambicus). Cell Tissue Res. 279, 65-73. Laurent, P., Hebibi, N., 1988. Gill morphology and osmoregulation. Can. J. Zool. 67, 3055-3063. Laurent, P., Goss, G.G., Perry, S.F., 1994. Proton pumps in fish gill pavement cells? Arch. Int. Physiol. Biochim. Biophys. 102, 77-79. Laurent, P., Perry, S.F., 1990. Effects of cortisol on gill chloride cell morphology and ionic uptake in the freshwater trout, Salmo gairdneri. Cell Tissue Res. 259, 429-442. Lee, T.H., Feng, S.H., Lin, C.H., Hwang, Y.H., Huang, C.L., Hwang, P.P., 2003. Ambient salinity modulates the expression of sodium pumps in branchial mitochondria-rich cells of Mozambique tilapia, Oreochromis mossambicus. Zool. Sci. 20, 29-36. Lee, T.H., Hwang, P.P., Lin, H.C., Huang, F.L., 1996. Mitochondria-rich cells in the branchial epithelium of the teleost, Oreochromis mossambicus, acclimated to various hypotonic environment. Fish Physiol. Biochem. 15, 513-523. Lee, T.H., Hwang, P.P., Shieh, Y.E., Lin, C.H., 2000. The relationship betweendeep-hole''mitochondria-rich cells and salinity adaptation in the euryhaline teleost, Oreochromis mossambicus. Fish Physiol. Biochem. 23, 133-140. Li, J., Eygensteyn, J., Lock, R.A., Verbost P.M., Van der Heijden, J.H. Wendelaar Bonga, S.E. Flik, G., 1995. Branchial chloride cells in larvae and juveniles of freshwater tilapia Oreochromis mossambicus. J. Exp. Biol. 198, 2177-2184. Lin, L.Y., Hwang, P.P., 2004. Mitochondria-rich cell activity in the yolk-sac membrane of tilapia (Oreochromis mossambicus) larvae acclimatized to different ambient chloride levels. J. Exp. Biol. 207, 1335-1344. Lin, Y.M., Chen, C.N., Lee, T.H., 2003. The expression of gill Na, K-ATPase in milkfish, Chanos chanos, acclimated to seawater, brackish water and fresh water. Comp. Biochem. Physiol. A 135, 489-497. Maina, J.N. 1990. A study of the morphology of tile gills of an extreme alkalinity and hyperosmotic adapted teleost Oreochromis alcalicus grahami (Boulenger) with particular emphasis on the ultrastructure of the chloride cells and their modifications with water dilution. A SEM and TEM study. Anat. Embryol. 181, 83-98. Marshall, W.S. 1995. Transport processes in isolated teleost epithelia: opercular epithelium and urinary bladder. Fish physiology 14, 1-23. Marshall, W.S. 2002. Na+, Cl−, Ca2+ and Zn2+ transport by fish gills: retrospective review and prospective synthesis. J. Exp. Zool. 293, 264-283. Marshall, W.S., Bryson, S.E., Burghardt, J.S., Verbost, P. M., 1995. Ca2+ transport by opercular epithelium of the fresh water adapted euryhaline teleost, Fundulus heteroclitus. Comp. Biochem. Physiol. B 165, 268-277. Marshall, W.S., Bryson, S.E., Darling, P., Whitten, C., Patrick, M., Wilkie, M., Wood, C.M., Buckland-Nicks, J. 1997. NaCl transport and ultrastructure of opercular epithelium from a freshwater-adapted euryhaline teleost, Fundulus heteroclitus. J. Exp. Zool. 277, 23-37. Marshall, W.S., Bryson, S.E., Luby, T., 2000. Control of epithelial Cl (−) secretion by basolateral osmolality in the euryhaline teleost Fundulus heteroclitus. J. Exp. Biol. 203, 1897-1905. Marshall, W.S., Katoh, F., Main, H.P., Sers, N., Cozzi, R.R., 2008. Focal adhesion kinase and beta1 integrin regulation of Na+, K+, 2Cl– cotransporter in osmosensing ion transporting cells of killifish, Fundulus heteroclitus. Comp. Biochem. Physiol. A 150, 288-300. Marshall, W.S., Lynch, E.M., Cozzi, R.R., 2002. Redistribution of immunofluorescence of CFTR anion channel and NKCC cotransporter in chloride cells during adaptation of killifish Fundulus heteroclitus to seawater. J. Exp. Biol. 205, 1265-1273. Marshall, W.S., Nishioka, R.S., 1980. Relation of mitochondria‐rich chloride cells to active chloride transport in the skin of a marine teleost. J. Exp. Zool. 214, 147-156. Mazon, A.D.F., Nolan, D.T., Lock, R.A., Wendelaar Bonga, S.E., Fernandes, M.N., 2007. Opercular epithelial cells: A simple approach for in vitro studies of cellular responses in fish. Toxicology 230, 53-63. Mazon, A.F., Cerqueira, C.C., Fernandes, M.N., 2002. Gill cellular changes induced by copper exposure in the South American Tropical Freshwater Fish Prochilodus scrofa. Environ. Res. 88, 52-63. McCormick, S.D. 1990. Cortisol directly stimulates differentiation of chloride cells in tilapia opercular membrane. Am. J. Physiol. 259, R857-R863. McCormick, S.D., Hasegawa, S., Hirano, T., 1992. Calcium uptake in the skin of a freshwater teleost. Proc, Natl, Acad, Sci, USA 89, 3635-3638. Motter, M.D.S., Silva, L.D., Borges-de-Oliveira, R., Yamada, Á.T., Santos, S.C., Sabóia-Morais, S.M.T., 2004. Mitotic index of epithelia cells in gills of Guppy (Poecilia vivipara) exposed to fractions of the leaf and bark of pequi (Caryocar brasiliensis). Braz. J. Vet. Res. Anim. Sci. 41, 221-227. Naruse, K. 1996. Classification and phylogeny of fishes of the genus Oryzias and its relatives. Fish Biol. J. Medaka 8, 1-9. Panebra, A., Ma, S.X., Zhai, L.W., Wang, X.T., Rhee, S.G., Khurana, S., 2001. Regulation of phospholipase C-γ1 by the actin-regulatory protein villin. Am. J. Physiol. 281, C1046-C1058. Perry, S.F. 1998. Relationship between branchial chloride cells and gas transfer in fresh water fish. Comp. Biochem. Physiol. A 119, 9-16. Perry, S.F., 1997. The chloride cell: structure and function in the gills of freshwater fishes. Annu. Rev. Physiol. 59, 325-347. Perry, S.F., Goss, G.G., Laurent, P., 1992. The interrelationships between gill chloride cell morphology and ionic uptake in four freshwater teleosts. Can. J. Zool. 70, 1775-1786. Perry, S.F., Goss, G.G., Fenwick, J.C., 1992. Interrelationships between gill chloride cell morphology and calcium uptake in freshwater teleosts. Fish Physiol. Biochem. 10, 327-337. Perry, S.F., Laurent, P., 1989. Adaptational responses of rainbow trout to lowered external NaCl concentration: contribution of the branchial chloride cell. J. Exp. Biol. 147, 147-168. Perry, S.F., Laurent, P., 1993. Environmental effects on fish gill structure and function. Fish ecophysiology pp.231-264. Pisam, M., Lemoal, C., Auperm, B., Prunet, P., Rambourg, A., 1995. Apical structures of "mitochondria-rich''" α and β cells in euryhaline fish gill: their behaviour in various living conditions. Anat. Rec. 241, 13-24. Roberts, T.R. 1998. Systematic observations on tropical Asian medakas or ricefishes of the genus Oryzias with descriptions of four new species. Ichthyol. Res. 45, 213-224. Robine, S., Huet, C., Moll, R., Sahuquillo‐Merino, C., Coudrier, E., Zweibaum, A., Louvard, D., 1985. Can villin be used to identify malignant and undifferentiated normal digestive epithelial cells? Proc. Natl. Acad. Sci. USA 82, 8488-8492. Sakamoto, T., Yokota, S. Ando, M., 2000. Rapid morphological oscillation of mitochondria-rich cell in estuarine mudskipper following salinity changes. J. Exp. Zool. 286, 666-669. Sardet, C., Pisam, M., Maetz, J., 1979. The surface epithelium of teleostean fish gills. J. Cell Biol. 80, 96-117. Scott, G.R., Baker, D.W., Schulte, P.M., Wood, C.M., 2008. Physiological and molecular mechanisms of osmoregulatory plasticity in killifish after seawater transfer. J. Exp. Biol. 211, 2450-2459. Scott, G.R., Claiborne, J.B., Edwards, S.L., Schulte, P.M., Wood, C.M., 2005. Gene expression after freshwater transfer in gills and opercular epithelia of killifish: insight into divergent mechanisms of ion transport. J. Exp. Biol. 208, 2719-2729. Seo, M. Y., Lee, K. M., Kaneko, T., 2009. Morphological changes in gill mitochondria-rich cells in cultured Japanese eel Anguilla japonica acclimated to a wide range of environmental salinity. Fisheries Science 75, 1147-1156. Shawn, D.B., Fenwick, J.C., Perry, S.F., 1993. Branchial chloride cell proliferation in the rainbow trout, Oncorhynchus mykiss: implications for gas transfer. Can. J. Zool. 72, 1395-1402. Shieh, Y.E., Tsai, R.S., Hwang, P.P., 2003. Morphological modification of mitochondria-rich cells of the opercular epithelium of freshwater tilapia, Oreochromis mossambicus, acclimated to low chloride levels. Zool. Stud. 42, 522-528. Shikano, T., Fujio, Y., 1998. Immunolocalization of Na+/K+-ATPase in branchial epithelium of chum salmon fry during seawater and freshwater acclimation. J. Exp. Biol. 201, 3031-3040. Shiraishi, K., Kaneko, T., Hasegawa, S., Hirano, T., 1997. Development of multicellular complexes of chloride cells in the yolk-sac membrane of tilapia (Oreochromis mossambicus) embryos and larvae in seawater. Cell Tissue Res. 288, 583-590. Silva, P., Solomon, R., Spokes, K., Epstein, F.H., 1977. Ouabain inhibition of gill Na-K-ATPase: Relationship to active chloride transport. J. Exp. Zool. 199, 419-426. Tang, C.H., Chang, I.C., Chen, C.H., Lee, T.H., Hwang, P.P., 2008 Phenotypic changes in mitochondrion-rich cells and responses of Na+/K+-ATPase in gills of tilapia exposed to deionized water. Zool. Sci. 25, 205-211. Tang, C.H., Hwang, L.Y., Lee, T.H., 2010. Chloride channel ClC-3 in gills of the euryhaline teleost, Tetraodon nigroviridis: expression, localization, and the possible role of chloride absorption. J. Exp. Biol. 213, 683-693. Tomy, S., Chang, Y.M., Chen, Y.H., Cao, J.C., Wang, T.P., Chang, C.F., 2009. Salinity effects on the expression of osmoregulatory genes in the euryhaline black porgy Acanthopagrus schlegeli. Gen. Comp. Endocrinol. 161, 123-132. Uchida, K., Kaneko, T., 1996. Enhanced chloride cell turnover in the gills of chum salmon fry in seawater. Zool. Sci. 13, 655-660. Uchida, K., Kaneko, T., Miyazaki, H., Hasegawa, S., Hirano, T., 2000. Excellent salinity tolerance of Mozambique tilapia (Oreochromis mossambicus): elevated chloride cell activity in the branchial and opercular epithelia of the fish adapted to concentrated seawater. Zool. Sci.17, 149-160. Varsamos, S., Diaz, J.P., Charmantier, G., Flik, G., Blasco, C., Connes, R. 2002. Branchial chloride cells in sea bass (Dicentrarchus labrax) adapted to fresh water, seawater, and doubly concentrated seawater. J. Exp. Zool. 293, 12-26. Walsh, T.P., Weber, A., Davis, K., Bonder, E., Mooseker, M., 1984. Calcium dependence of villin-induced actin depolymerization. Biochemistry 23, 6099-6102. Wang, P.J., Lin, C.H., Hwang, L.Y., Huang, C.L., Lee, T.H., Hwang, P.P., 2009a. Differential responses in gills of euryhaline tilapia, Oreochromis mossambicus, to various hyperosmotic shocks. Comp. Biochem. Physiol. A 152, 544-551. Wang, Y.F., Tseng, Y.C., Yan, J.J., Hiroi, J., Hwang, P.P., 2009. Role of SLC12A10.2, a Na-Cl cotransporter-like protein, in a Cl uptake mechanism in zebrafish (Danio rerio). Am. J. Physiol. 296, R1650-R1660. Wang, Z., Du, J., Lam, S., Mathavan, S., Matsudaira, P., Gong, Z., 2010. Morphological and molecular evidence for functional organization along the rostrocaudal axis of the adult zebrafish intestine. BMC Genomics 11, 392-405. Wilson, J.M., Laurent, P., 2002. Fish gill morphology: inside out. J. Exp. Zool. 293, 192-213. Wittbrodt, J., Shima, A., Schartl, M., 2002. Medaka-a model organism from the far East. Nat. Rev. Genet. 3, 53-64. Wong, C.K., Chan, D.K., 1999. Isolation of viable cell types from the gill epithelium of Japanese eel Anguilla japonica. Am. J. Physiol. 276, R363-R372. Wood, C.M., Marshall, W.S., 1994. Ion balance, acid-base regulation, and chloride cell function in the common killifish, Fundulus heteroclitus-a euryhaline estuarine teleosts. Estuaries 17, 34-52. Yan, J.J., Chou, M.Y., Kaneko, T., Hwang, P.P., 2007. Gene expression of Na+/H+ exchanger in zebrafish H+-ATPase-rich cells during acclimation to low-Na+ and acidic environments. Am. J. Physiol. 293, C1814-C1823. Yang, W.K., Hseu, J.R., Tang, C.H., Chung, M.J., Wu,S. M., Lee, T.H., 2009. Na+/K+-ATPase expression in gills of the euryhaline sailfin molly, Poecilia latipinna, is altered in response to salinity challenge. J. Exp. Mar. Bio. Ecol. 375, 41-50. Yang, W.K., Kang, C.K., Chang, C.H., Hsu, A.D., Lee, T.H., Hwang, P.P., 2013. Expression profiles of branchial FXYD proteins in the brackish medaka Oryzias dancena: a potential saltwater fish model for studies of osmoregulation. PLoS One. 8, e55470. Yoshie, S., Kumakura, M., Toyoshima, K., 2003. Villin is a possible marker of receptor cells in frog taste organs. Histochem. Cell Biol. 119, 447-450. Zadunaisky, J.A. 1984. The chloride cell: the active transport of chloride and the paracellular pathways. Fish physiology 10, 129-176.
摘要: 在海水與淡水環境中硬骨魚類鰓上離子調節細胞的主要型態與功能截然不同。海水型離子調節細胞頂膜型態表面狹小內凹成洞,主要作用為排除離子;而淡水型離子調節細胞的作用是吸收離子,其頂膜平坦,表面積較大且具有微絨毛。不同滲透壓環境會刺激魚類鰓表皮離子調節細胞的頂膜表面型態呈現縮放與微絨毛消長的變化。廣鹽性恆河稻田魚 (Oryzias dancena) 是非常適合用於研究離子調節機制的魚種;先前的研究發現稻田魚鰓上離子調節細胞會表現絨毛蛋白 (villin 1-like, VILL),也證實適應於淡水的稻田魚鰓上離子調節細胞會調高 VILL 基因與蛋白質表現量以參與頂膜微絨毛的形成。延續此離子調節細胞表現 VILL 與調節細胞型態的研究,本論文分成兩個主要部分:第一部分鑑定恆河稻田魚海水型與淡水型離子調節細胞型態與特性。利用穿透式電子顯微鏡觀察長期馴養在海水或淡水環境中的恆河稻田魚鰓表皮離子調節細胞的超微結構,其頂膜型態在海水組為凹洞型;而淡水組則由微絲組成微絨毛結構的平坦型。進一步研究使用恆河稻田魚的鰓蓋內膜,具平坦易觀察的特性,取代鰓組織進行結合免疫螢光染色與掃描式電子顯微鏡的原位雙重觀察技術,證實鰓蓋膜上離子調節細胞頂膜型態符合典型的海水或淡水型離子調節細胞特性,並且也有 VILL 專一表現於淡水型離子調節細胞上具有微絨毛的頂膜區域。第二部分探討經高滲透壓 (hyperosmotic) 與低滲透壓 (hypoosmotic) 環境刺激,離子調節細胞其 VILL 的表現對於頂膜型態變化過程之影響。首先,將淡水恆河稻田魚轉移至高滲透壓環境,其鰓蓋膜上離子調節細胞型態隨著轉移時間由平坦型轉變成凹洞型,以免疫螢光染色發現 VILL 蛋白質表現量有逐漸消失的趨勢;同時,以西方墨點法偵測鰓的 VILL 蛋白質表現量有相似的下降趨勢。最後,設計兩種低滲透壓刺激的轉移實驗,比較二種不同 VILL 表現的離子調節細胞,從海水直接轉入淡水一天後,其頂膜型態皆由凹洞型轉變成大表面的平坦型,結果顯示 VILL- 細胞的頂膜表面大且凸出,其上不具微絨毛的結構;相對的 VILL+ 細胞為具有微絨毛結構的平坦表面。藉由 VILL 蛋白質的表現與否,驗證此細胞骨架調節蛋白在離子調節細胞頂膜的型態變化中所參與的角色。總合上述成果,VILL 可做為專一標定淡水型離子調節細胞頂膜的標的蛋白,而此細胞的頂膜表面型態轉變會伴隨著調整 VILL 的表現以參與微絨毛的消長以及表面積的縮放。
Different morphologies and functions of gill ionocytes are illustrated in seawater (SW) and fresh water (FW) teleosts. In SW-type ionocytes, the apical membrane invaginates to form a pit exhibited ion secretion. In FW-type ionocytes exhibited ion absorption, the apical membrane is flat with microvilli. Brackish medaka, Oryzias dancena, used as a good species for studies of ionoregulatory mechanisms. In previous studies, the higher gene and protein expressions of VILL determined in the FW-acclimated medaka than in the SW fish. The VILL protein was localized to the apical region of FW-type ionocytes in the brackish medaka. The present study demonstrated that the expression of VILL associated with remodeling of morphologies in the ionocytes response to osmotic challenges. There were two chapters: The first chapter compared morphologies and characteristics between SW-type and FW-type ionocytes. Ultrastructures of ionocytes in the gill of SW- and FW-acclimated medaka were observed by transmission electron microscope. Apical surface morphologies of SW-type and FW-type ionocytes were hole-type and flat-type with microvilli, respectively. In addition, this study demonstrates that a good experimental tissue, inner opercular membrane, was easily observed ionocytes compared to the gill by the combined techniques of fluorescent staining and scanning electron microscopy. It was a reliable image showed that typical morphologies of apical surfaces of SW-type and FW-type ionocytes were investigated in the opercular membranes of the brackish medaka. The VILL was specifically localized to the apical region along with microvilli in the FW-type ionocytes of medaka. In the secondary chapter, differential expression of VILL associated with remodeling of apical morphologies in the ionocytes when fish response to hyperosmotic and hypoosmotic challenges. When the medaka transfer from FW to brackish water (BW) or SW, flat-type ionocytes were transformed into hole-type ionocytes in the inner opercular membrane. The changes in the apical morphologies correlated with the disappeared expression of the apical VILL by immunofluorescent staining. Meanwhile, immunoblots of gill VILL protein had a downward trend. On the other hand, two hypoosmotic transfer experiments were performed. Transformed types of ionocytes in the opercular membrane of VILL- group and VILL+ group from hole-type cell were compared when the fish exposed to FW for 1 day. The apical surfaces of medaka ionocytes in the VILL- group were bigger and more convex than VILL+ group. In addition, obvious microvilli were found in the apical openings of the VILL+ ionocytes rather than those of VILL- ionocytes. Taken together, the present study illustrated a new molecular marker, VILL antibody, to distinguish the FW-type ionocytes. The VILL was involved in the formation of apical microvilli and size of apical surface in the transformation of ionocytes when the medaka responsed to osmotic challenges.
URI: http://hdl.handle.net/11455/20270
其他識別: U0005-1608201315575500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1608201315575500
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.