Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/20278
標題: 探討鹹水模式魚種-恆河青鱂魚(Oryzias dancena)FXYD蛋白質的表現及可能角色
Expression and potential role of FXYD proteins in the saltwater model brackish medaka, Oryzias dancena
作者: 楊文凱
Yang, Wen-Kai
關鍵字: 恆河青鱂魚
brackish medaka
FXYD
滲透壓調節作用
FXYD
osmoregulation
出版社: 生命科學系所
引用: Aperia A, 2007. New roles for an old enzyme: Na,K-ATPase emerges as an interesting drug target. J Intern Med 261, 44-52. Arystarkhova E, Wetzel RK, Asinovski NK, Sweadner KJ, 1999. The γ subunit modulates Na+ and K+ affinity of the renal Na,K-ATPase. J Biol Chem 274, 33183-33185. Beguin P, Crambert G, Guennoun S, Garty H, Horisberger JD, Geering K, 2001. CHIF, a member of the FXYD protein family, is a regulator of Na,K-ATPase distinct from the γ-subunit. EMBO J 20, 3993-4002. Beguin P, Crambert G, Monnet-Tschudi F, Uldry M, Horisberger JD, Garty H, Geering K, 2002. FXYD7 is a brain-specific regulator of Na,K-ATPase α1-β isozymes. EMBO J 21: 3264-3273. Beyenbach KW, 2004. Kidneys sans glomeruli. Am J Physiol Renal Physiol 286, F811-F827. Bibert S, Roy S, Schaer D, Felley-Bosco E, Geering K, 2006. Structural and functional properties of two human FXYD3 (Mat-8) isoforms. J Biol Chem 281, 39142-39151. Blanco G, Mercer RW, 1998. Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 275, F633-F650. Blom N, Gammeltoft S, Brunak S, 1999. Sequence- and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294, 1351-1362. Bo J, Cai L, Xu JH, Wang KJ, Au DW, 2011. The marine medaka Oryzias melastigma--a potential marine fish model for innate immune study. Mar Pollut Bull 63, 267-276. Bo J, Giesy JP, Ye R, Wang KJ, Lee JS, Au DW, 2012. Identification of differentially expressed genes and quantitative expression of complement genes in the liver of marine medaka Oryzias melastigma challenged with Vibrio parahaemolyticus. Comp Biochem Physiol D Genomics Proteomics 7, 191-200. Brauer PR, Sanmann JN, Petzel DH, 2005. Effects of warm acclimation on Na+,K+-ATPase α-subunit expression in chloride cells of Antarctic fish. Anat Rec A Discov Mol Cell Evol Biol 285, 600-609. Bystriansky JS, Schulte PM, 2011. Changes in gill H+-ATPase and Na+/K+-ATPase expression and activity during freshwater acclimation of Atlantic salmon (Salmo salar). J Exp Biol 214, 2435-2442. Chang JT, Lowery LA, Sive H, 2012. Multiple roles for the Na,K-ATPase subunits, Atp1a1 and Fxyd1, during brain ventricle development. Dev Biol 368, 312-322. Chen X, Li L, Cheng J, Chan LL, Wang DZ, Wang KJ, Baker ME, Hardiman G, Schlenk D, Cheng SH, 2011. Molecular staging of marine medaka: a model organism for marine ecotoxicity study. Mar Pollut Bull 63, 309-317. Chen X, Li L, Wong CK, Cheng SH, 2009. Rapid adaptation of molecular resources from zebrafish and medaka to develop an estuarine/marine model. Comp Biochem Physiol C Toxicol Pharmacol 149, 647-655. Chen X, Li VW, Yu RM, Cheng SH, 2008. Choriogenin mRNA as a sensitive molecular biomarker for estrogenic chemicals in developing brackish medaka (Oryzias melastigma). Ecotoxicol Environ Saf 71, 200-208 Cho YS, Kim DS, Nam YK, 2013. Characterization of estrogen-responsive transgenic marine medaka Oryzias dancena germlines harboring red fluorescent protein gene under the control by endogenous choriogenin H promoter. Transgenic Res. (doi: 10.1007/s11248-012-9650-y) Cho YS, Lee SY, Kim YK, Kim DS, Nam YK, 2011. Functional ability of cytoskeletal β-actin regulator to drive constitutive and ubiquitous expression of a fluorescent reporter throughout the life cycle of transgenic marine medaka Oryzias dancena. Transgenic Res 20, 1333-1355. Chou MY, Hung JC, Wu LC, Hwang SP, Hwang PP, 2011. Isotocin controls ion regulation through regulating ionocyte progenitor differentiation and proliferation. Cell Mol Life Sci 68, 2797-2809. Cornelius F, Mahmmoud YA, 2003. Functional modulation of the sodium pump: the regulatory proteins "Fixit". News Physiol Sci 18, 119-124. Cornelius F, Mahmmoud YA, 2007. Modulation of FXYD interaction with Na,K-ATPase by anionic phospholipids and protein kinase phosphorylation. Biochemistry 46, 2371-2379. Cossins AR, Crawford DL, 2005. Fish as models for environmental genomics. Nat Rev Genet 6, 324-333. Crambert G, Fuzesi M, Garty H, Karlish S, Geering K, 2002. Phospholemman (FXYD1) associates with Na,K-ATPase and regulates its transport properties. Proc Natl Acad Sci USA 99, 11476-11481. Crambert G, Geering K, 2003. FXYD Proteins: new tissue-specific regulators of the ubiquitous Na,K-ATPase. Sci STKE 166, re1. Crambert G, Hasler U, Beggah AT, Yu C, Modyanov NN, Horisberger JD, Lelievre L, Geering K, 2000. Transport and pharmacological properties of nine different human Na, K-ATPase isozymes. J Biol Chem 275, 1976-1986. Crambert G, Li C, Claeys D, Geering K, 2005. FXYD3 (Mat-8), a new regulator of Na,K-ATPase. Mol Biol Cell 16, :2363-2371. Crambert G, Li C, Swee LK, Geering K, 2004. FXYD7, mapping of functional sites involved in endoplasmic reticulum export, association with and regulation of Na,K-ATPase. J Biol Chem 279, 30888-30895. Cutler CP, Brezillon S, Bekir S, Sanders IL, Hazon N, Cramb G, 2000. Expression of a duplicate Na,K-ATPase β1-isoform in the European eel (Anguilla anguilla). Am J Physiol Regul Integr Comp Physiol 279: R222-R229. Dang Z, Balm PH, Flik G, Wendelaar Bonga SE, Lock RA, 2000. Cortisol increases Na+/K+-ATPase density in plasma membranes of gill chloride cells in the freshwater tilapia Oreochromis mossambicus. J Exp Biol 203, 2349-2355. Delprat B, Schaer D, Roy S, Wang J, Puel JL, Geering K, 2007. FXYD6 is a novel regulator of Na,K-ATPase expressed in the inner ear. J Biol Chem 282, 7450-7456. Evans DH, 2008. Teleost fish osmoregulation: what have we learned since August Krogh, Homer Smith, and Ancel Keys. Am J Physiol Regul Integr Comp Physiol 295, R704-R713. Evans DH, 2010. A brief history of the study of fish osmoregulation: the central role of the Mt. Desert Island Biological Laboratory. Front Physiol 1, 13. Evans DH, Piermarini PM, Choe KP, 2005. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85, 97-177. Evans DH, Piermarini PM, Potts WTW, 1999. Ionic transport in the fish gill epithelium. J Exp Zool 283, 641-652. Farman N, Fay M, Cluzeaud F, 2003. Cell-specific expression of three members of the FXYD family along the renal tubule. Ann N Y Acad Sci 986, 428-436. Feschenko MS, Donnet C, Wetzel RK, Asinovski NK, Jones LR, Sweadner KJ, 2003. Phospholemman, a single-span membrane protein, is an accessory protein of Na,K-ATPase in cerebellum and choroid plexus. J Neurosci 23, 2161-2169. Fiol DF, Kultz D, 2007. Osmotic stress sensing and signaling in fishes. FEBS J 274, 5790-5798. Franzin CM, Yu J, Thai K, Choi J, Marassi FM 2005. Correlation of gene and protein structures in the FXYD family proteins. J Mol Biol 354, 743-750. Freire CA, Amado EM, Souza LR, Veiga MP, Vitule JR, Souza MM, Prodocimo V, 2008. Muscle water control in crustaceans and fishes as a function of habitat, osmoregulatory capacity, and degree of euryhalinity. Comp Biochem Physiol A Mol Integr Physiol 149, 435-446. Garty H, Karlish SJD, 2006. Role of FXYD proteins in ion transport. Annu Rev Physiol 68, 431-459. Garty H, Lindzen M, Scanzano R, Aizman R, Fuzesi M, Goldshleger R, Farman N, Blostein R, Karlish SJ, 2002. A functional interaction between CHIF and Na-K-ATPase: implication for regulation by FXYD proteins. Am J Physiol Renal Physiol 283, F607-F615. Geering K, 2005. Function of FXYD proteins, regulators of Na,K-ATPase. J Bioenerg Biomembranes 37, 387-392. Geering K, 2006. FXYD proteins: new regulators of Na-K-ATPase. Am J Physiol Renal Physiol 290, F241-F250. Gonzalez RJ, 2012. The physiology of hyper-salinity tolerance in teleost fish: a review. J Comp Physiol B 182, 321-329. Gonzalez‐Doncel M, Okihiro MS, Villalobos SA, Hinton DE, Tarazona JV, 2005. A quick reference guide to the normal development of Oryzias latipes. J Appl Ichthyol 21, 39-52. Grosell M, 2006. Intestinal anion exchange in marine fish osmoregulation. J Exp Biol 209, 2813-2827. Hall TA, 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41, 95-98. Hickman CP, Trump BF, 1969. The kidney. In: Hoar WS, Randall DJ (Ed) Fish physiology. Academic Press, New York, pp 91-239. Hirokawa T, Boon-Chieng S, Mitaku S, 1998. SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14, 378-379. Hirose S, Kaneko T, Naito N, Takei Y, 2003. Molecular biology of major components of chloride cells. Comp Biochem Physiol B Biochem Mol Biol 136, 593-620. Ho NY, Li VW, Poon WL, Cheng SH, 2008. Cloning and developmental expression of kinesin superfamily7 (kif7) in the brackish medaka (Oryzias melastigma), a close relative of the Japanese medaka (Oryzias latipes). Mar Pollut Bull 57, 425-432. Hsu AD, 2012. Comparisons of the expression and mechanisms of Na+/K+-ATPase and FXYD12 in the kidneys and intestines of two closely related euryhaline medakas acclimated to environments of different salinities. National Chung Hsing University. Master thesis. Huang Q, Fang C, Wu X, Fan J, Dong S, 2011. Perfluorooctane sulfonate impairs the cardiac development of a marine medaka (Oryzias melastigma) Aquat Toxicol 105, 71-77. Hwang PP, Lee TH, 2007. New insights into fish ion regulation and mitochondrion-rich cells. Comp Biochem Physiol A Mol Integr Physiol 148, 479-497. Hwang PP, Lee TH, Lin LY, 2011. Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. Am J Physiol Regul Integr Comp Physiol 301, R28-R47. Ino Y, Gotoh M, Sakamoto M, Tsukagoshi K, Hirohashi S, 2002. Dysadherin, a cancer-associated cell membrane glycoprotein, down-regulates E-cadherin and promotes metastasis. Proc Natl Acad Sci U S A 99, 365-370. Inokuchi M, Hiroi J, Watanabe S, Hwang PP, Kaneko T, 2009. Morphological and functional classification of ion-absorbing mitochondria-rich cells in the gills of Mozambique tilapia. J Exp Biol 212, 1003-1010. Inoue K, Miyanishi H, Nobata S, Takei Y, 2012. Evolutionary implication of the absence of atrial natriuretic peptide (ANP) in euryhaline Oryzias fishes. Environ Biol Fish 94, 559-566. Inoue K, Takei Y, 2002. Diverse adaptability in Oryzias species to high environmental salinity. Zool Sci 19, 727-734. Inoue K, Takei Y, 2003. Asian medaka fishes offer new models for studying mechanisms of seawater adaptation. Comp Biochem Physiol B Biochem Mol Biol 136, 635-645. Ishikawa Y, 2000. Medakafish as a model system for vertebrate developmental genetics. Bioessays 22, 487-495. Iwama GK, 1998. Stress in fish. Ann NY Acad Sci 851, 304-310. Iwama GK, Vijayan MM, Forsyth RB, Ackerman PA, 1999. Heat shock proteins and physiological stress in fish. Amer Zool 39, 901-909. Iwamatsu T, 1994. Stages of normal development in the medaka Oryzias latipes. Zool Sci 11, 825-839. Iwamatsu T, 2004. Stages of normal development in the medaka Oryzias latipes. Mech Dev 121, 605-618. Jensen MK, Madsen SS, Kristiansen K, 1998. Osmoregulation and salinity effects on the expression and activity of Na+,K+-ATPase in the gills of European sea bass, Dicentrarchus labrax (L.). J Exp Zool 282, 290-300. Jia LG, Donnet C, Bogaev RC, Blatt RJ, McKinney CE, Day KH, Berr SS, Jones LR, Moorman JR, Sweadner KJ, Tucker AL, 2005. Hypertrophy, increased ejection fraction, and reduced Na-K-ATPase activity in phospholemman-deficient mice. Am J Physiol Heart Circ Physiol 288, H1982-H1988. Johansen MB, Kiemer L, Brunak S, 2006. Analysis and prediction of mammalian protein glycation. Glycobiology 16, 844-853. Jorgensen PL, 1986. Structure, function and regulation of Na,K-ATPase in the kidney. Kidney Int 29, 10-20. Julenius K, Molgaard A, Gupta R, Brunak S, 2005. Prediction, conservation analysis and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 15, 153-164. Kaneko T, Watanabe S, Lee KM, 2008. Functional morphology of mitochondrion-rich cells in euryhaline and stenohaline teleosts. Aqua BioSci Monogr 1, 1-62. Kang CK, 2011. Establishing brackish medaka Oryzias dancena, a Taiwanese ornamental fish, as a new experimental animal for studies on fish physiology. National Chung Hsing University. Doctoral dissertation. Kang CK, Tsai HJ, Liu CC, Lee TH, Hwang PP, 2010. Salinity-dependent expression of a Na+, K+, 2Cl- cotransporter in gills of the brackish medaka Oryzias dancena: a molecular correlate for hyposmoregulatory endurance. Comp Biochem Physiol A Mol Integr Physiol 157, 7-18. Kang CK, Tsai SC, Lee TH, Hwang PP, 2008. Differential expression of branchial Na+/K+-ATPase of two medaka species, Oryzias latipes and Oryzias dancena, with different salinity tolerances acclimated to fresh water, brackish water and seawater. Comp Biochem Physiol A Mol Integr Physiol 151, 566-575. Kang CK, Tsai SC, Lin ST, Lee TH, Hwang PP, 2013b. Cystic fibrosis transmembrane conductance regulator (CFTR): an apical marker protein of ionocytes for identifying hypoosmoregulation in gills of the euryhaline medaka, Oryzias dancena. Zool Stud. (Accepted) Kang CK, Yang WK, Lin ST, Liu CC, Lin HM, Chen HH, Cheng CW, Lee TH, Hwang PP, 2013a. The acute and regulatory phases of time-course changes in gill mitochondrion-rich cells of seawater-acclimated medaka (Oryzias dancena) when exposed to hypoosmotic environments. Comp Biochem Physiol A Mol Integr Physiol 164, 181-191. Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, Yamada T, Nagayasu Y, Doi K, Kasai Y, Jindo T, Kobayashi D, Shimada A, Toyoda A, Kuroki Y, Fujiyama A, Sasaki T, Shimizu A, Asakawa S, Shimizu N, Hashimoto S, Yang J, Lee Y, Matsushima K, Sugano S, Sakaizumi M, Narita T, Ohishi K, Haga S, Ohta F, Nomoto H, Nogata K, Morishita T, Endo T, Shin-I T, Takeda H, Morishita S, Kohara Y, 2007. The medaka draft genome and insights into vertebrate genome evolution. Nature 447, 714-719. Kim MA, Kim DS, Sohn YC, 2011. Characterization of two functional glucocorticoid receptors in the marine medaka Oryzias dancena. Gen Comp Endocrinol 171, 341-349. Kinoshita M, Murata K, Naruse K, Tanaka M, 2009. Medaka: biology, management, and experimental protocols. Wiley-Blackwell Press, Ames. Kong RY, Giesy JP, Wu RS, Chen EX, Chiang MW, Lim PL, Yuen BB, Yip BW, Mok HO, Au DW, 2008. Development of a marine fish model for studying in vivo molecular responses in ecotoxicology. Aquat Toxicol 86, 131-141. Laverty G, Skadhauge E, 2012. Adaptation of teleosts to very high salinity. Comp Biochem Physiol A Mol Integr Physiol 163, 1-6. Lee SY, Kim DS, Nam YK, 2012. Gene structure and estrogen-responsive mRNA expression of a novel choriogenin H isoform from a marine Medaka Oryzias dancena. Fish Aquat Sci 15, 221-231. Lee TH, Hwang PP, Shieh YE, Lin CH, 2000. The relationship between ''deep-hole'' mitochondria-rich cells and salinity adaptation in the euryhaline teleost, Oreochromis mossambicus. Fish Physiol Biochem 23, 133-140. Li C, Grosdidier A, Crambert G, Horisberger JD, Michielin O, Geering K, 2004. Structural and functional interaction sites between Na,K-ATPase and FXYD proteins. J Biol Chem 279, 38895-38902. Lin CC, Lin LY, Hsu HH, Thermes V, Prunet P, Horng JL, Hwang PP, 2012. Acid secretion by mitochondrion-rich cells of medaka (Oryzias latipes) acclimated to acidic freshwater. Am J Physiol Regul Integr Comp Physiol 302, R283-R291. Lin CH, Lee TH, 2005. Sodium or potassium ions activate different kinetics of gill Na, K-ATPase in three seawater- and freshwater-acclimated euryhaline teleosts. J Exp Zool A Comp Exp Biol 303, 57-65. Lin CH, Tsai RS, Lee TH, 2004. Expression and distribution of Na, K-ATPase in gills and kidneys of the green spotted pufferfish, Tetraodon nigroviridis, in response to salinity challenge. Comp Biochem Physiol A Mol Integr Physiol 138, 287-295. Lin YM, Chen CN, Lee TH, 2003. The expression of gill Na, K-ATPase in milkfish, Chanos chanos, acclimated to seawater, brackish water and fresh water. Comp Biochem Physiol A Mol Integr Physiol 135, 489-497. Loftas P, Onnesjo S, Widegren E, Adell G, Kayed H, Kleeff J, Zentgraf H, Sun XF, 2009. Expression of FXYD-3 is an independent prognostic factor in rectal cancer patients with preoperative radiotherapy. Int J Radiat Oncol Biol Phys 75, 137-142. Lubarski I, Karlish SJ, Garty H, 2007. Structural and functional interactions between FXYD5 and the Na+-K+-ATPase. Am J Physiol Renal Physiol 293, F1818-F1826. Lubarski I, Pihakaski-Maunsbach K, Karlish SJ, Maunsbach AB, Garty H, 2005. Interaction with the Na,K-ATPase and tissue distribution of FXYD5 (related to ion channel). J Biol Chem 280, 37717-37724. Mahmmoud YA, Cramb G, Maunsbach AB, Cutler CP, Meischke L, Cornelius F, 2003. Regulation of Na,K-ATPase by PLMS, the phospholemman-like protein from shark: molecular cloning, sequence, expression, cellular distribution, and functional effects of PLMS. J Biol Chem 278, 37427-37438. Mahmmoud YA, Vorum H, Cornelius F, 2000. Identification of a phospholemman-like protein from shark rectal glands. Evidence for indirect regulation of Na, K-ATPase by protein kinase C via a novel member of the FXYD family. J Biol Chem 275, 35969-35977. Mahmmoud YA, Vorum H, Cornelius F, 2005. Interaction of FXYD10 (PLMS) with Na, K-ATPase from shark rectal glands: close proximity of Cys74 of FXYD10 to Cys254 in the a domain of the α-subunit revealed by intermolecular thiol cross-linking. J Biol Chem 280, 27776-27782. Marshall WS, 1995. Transport processes in isolated teleost epithelia: opercular epithetlium and urinary bladder. In: Evans DH (Ed) The physiology of fishes. 2nd edition. Academic Press, San Diego, pp. 1-23. Marshall WS, 2002. Na+, Cl-, Ca2+ and Zn2+ transport by fish gills: retrospective review prospective synthesis. J Exp Zool 293, 264-283. Mehta RB, Nonaka MI, Nonaka M, 2009. Comparative genomic analysis of the major histocompatibility complex class I region in the teleost genus Oryzias. Immunogenetics 61, 385-399. Nakada T, Hoshijima K, Esaki M, Nagayoshi S, Kawakami K, Hirose S, 2007. Localization of ammonia transporter Rhcg1 in mitochondrion-rich cells of yolk sac, gill, and kidney of zebrafish and its ionic strength-dependent expression. Am J Physiol Regul Integr Comp Physiol 293, R1743-R1753. Nasevicius A, Ekker SC, 2000. Effective targeted gene ''knockdown'' in zebrafish. Nat Genet 26, 216-220. Nordlie FG, Haney DC, Walsh SJ, 1992. Comparisons of salinity tolerance and osmotic regulatory capabilities in populations of sailfin molly (Poecilia latipinna) from brackish and fresh waters. Copeia 1992, 741-746. Ogoshi M, Kato K, Takahashi H, Ikeuchi T, Abe T, Sakamoto T, 2012. Growth, energetics and the cortisol-hepatic glucocorticoid receptor axis of medaka (Oryzias latipes) in various salinities. Gen Comp Endocrinol 178, 175-179. Parenti LR, 2008. A phylogenetic analysis and taxonomic revision of ricefishes, Oryzias and relatives (Beloniformes, Adrianichthyidae). Zool J Linn Soc 154, 494-610. Park IS, Park SJ, Gil HW, Nam YK, Kim DS, 2011. Anesthetic effects of clove oil and lidocaine-HCl on marine medaka (Oryzias dancena). Lab Anim (NY) 40, 45-51. Perry SF, Shahsavarani A, Georgalis T, Bayaa M, Furimsky M, Thomas SLY, 2003. Channels, pumps, and exchangers in gill and kidney of freshwater fishes: their role in ionic and acid-base regulation. J Exp Zool A Comp Exp Biol 300, 53-62. Petersen TN, Brunak S, von Heijne G, Nielsen H, 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8, 785-786. Pierre SV, Duran MJ, Carr DL, Pressley TA, 2002. Structure/function analysis of Na+-K+-ATPase central isoform-specific region: involvement in PKC regulation. Am J Physiol Renal Physiol 283, F1066-F1074. Reimschuessel R, 2001. A fish model of renal regeneration and development. ILAR J 42, 285-291. Rembold M, Lahiri K, Foulkes NS, Wittbrodt J, 2006. Transgenesis in fish: efficient selection of transgenic fish by co-injection with a fluorescent reporter construct. Nat Protoc 1, 1133-1139. Roberts TR, 1998. Systematic observations on tropical Asian medakas or ricefishes of the genus Oryzias with descriptions of four new species. Ichthyol Res 45, 213-224. Saito K, Nakamura N, Ito Y, Hoshijima K, Esaki M, Zhao B, Hirose S, 2010. Identification of zebrafish Fxyd11a protein that is highly expressed in ion-transporting epithelium of the gill and skin and its possible role in ion homeostasis. Front Physio 1, 129. Sakamoto T, Kozaka T, Takahashi A, Kawauchi H, Ando M, 2001a. Medaka (Oryzias latipes) as a model for hypoosmoregulation of euryhaline fishes. Aquaculture 193, 347-354. Sakamoto T, Uchida K, Yokota S, 2001b. Regulation of the ion-transporting mitochondrion-rich cell during adaptation of teleost fishes to different salinities. Zoolog Sci 18, 1163-1174. Sasado T, Tanaka M, Kobayashi K, Sato T, Sakaizumi M, Naruse K, 2010. The National BioResource Project Medaka (NBRP Medaka): an integrated bioresource for biological and biomedical sciences. Exp Anim 59, 13-23. Scheiner-Bobis G, 2002. The sodium pump. Its molecular properties and mechanics of ion transport. Eur J Biochem 269, 2424-2433. Schettino T, Lionetto MG, 2003. Cl- absorption in European eel intestine and its regulation. J Exp Zool A Comp Exp Biol 300, 63-68. Shen M, Xu J, Tsang TY, Au DWT, 2010. Toxicity comparison between Chattonella marina and Karenia brevis using marine medaka (Oryzias melastigma): evidence against the suspected ichthyotoxins of Chattonella marina. Chemosphere 80, 585-591. Shi H, Levy-Holzman R, Cluzeaud F, Farman N, Garty H, 2001. Membrane topology and immunolocalization of CHIF in kidney and intestine. Am J Physiol Renal Physiol 280, F505-F512. Shimamura T, Sakamoto M, Ino Y, Sato Y, Shimada K, Kosuge T, Sekihara H, Hirohashi S, 2003. Dysadherin overexpression in pancreatic ductal adenocarcinoma reflects tumor aggressiveness: relationship to E-cadherin expression. J Clin Oncol 21, 659-667. So LK, Cheung SK, Ma HL, Chen XP, Cheng SH, Lam YW, 2010. In situ labeling of transcription sites in marine medaka. J Histochem Cytochem 58, 173-181. Sweadner KJ, Rael E, 2000. The FXYD gene family of small ion transport regulators or channels: cDNA sequence, protein signature sequence, and expression. Genomics 68, 41-56. Takeda H, 2008. Draft genome of the medaka fish: a comprehensive resource for medaka developmental genetics and vertebrate evolutionary biology. Dev Growth Differ 50 (Suppl 1), S157-166. Takehana Y, Demiyah D, Naruse K, Hamaguchi S, Sakaizumi M, 2007a. Evolution of different Y chromosomes in two medaka species, Oryzias dancena and O. latipes. Genetics 175, 1335-1340. Takehana Y, Naruse K, Asada Y, Matsuda Y, Shin-I T, Kohara Y, Fujiyama A, Hamaguchi S, Sakaizumi M, 2012. Molecular cloning and characterization of the repetitive DNA sequences that comprise the constitutive heterochromatin of the W chromosomes of medaka fishes. Chromosome Res 20, 71-81. Takehana Y, Naruse K, Hamaguchi S, Sakaizumi M, 2007b. Evolution of ZZ/ZW and XX/XY sex-determination systems in the closely related medaka species, Oryzias hubbsi and O. dancena. Chromosoma 116, 463-470. Takehana Y, Naruse K, Sakaizumi M, 2005. Molecular phylogeny of the medaka fishes genus Oryzias (Beloniformes: Adrianichthyidae) based on nuclear and mitochondrial DNA sequences. Mol Phylogenet Evol 36, 417-428. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S, 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28, 2731-2739. Tang CH, Lai DY, Lee TH, 2012. Effects of salinity acclimation on Na+/K+-ATPase responses and FXYD11 expression in the gills and kidneys of the Japanese eel (Anguilla japonica). Comp Biochem Physiol A Mol Integr Physiol 163, 302-310. Tang CH, Lee TH, 2011. Ion-deficient environment induces the expression of basolateral chloride channel, ClC-3-like protein, in gill mitochondrion-rich cells for chloride uptake of the tilapia Oreochromis mossambicus. Physiol Biochem Zool 84, 54-67. Tang CH, Wu WY, Tsai SC, Yoshinaga T, Lee TH, 2010. Elevated Na+/K+-ATPase responses and its potential role in triggering ion reabsorption in kidneys for homeostasis of marine euryhaline milkfish (Chanos chanos) when acclimated to hypotonic fresh water. J Comp Physiol B Biochem Syst Environ Physiol 180, 813-824. Therien AG, Blostein R, 2000. Mechanisms of sodium pump regulation. Am J Physiol Cell Physiol 279, C541-C566. Therien AG, Pu HX, Karlish SJ, Blostein R, 2001. Molecular and functional studies of the gamma subunit of the sodium pump. J Bioenerg Biomembr 33, 407-414. Thermes V, Lin CC, Hwang PP, 2010. Expression of Ol-foxi3 and Na+/K+-ATPase in ionocytes during the development of euryhaline medaka (Oryzias latipes) embryos. Gene Expr Patterns 10, 185-192. Tian L, Wang M, Li X, Lam PK, Wang M, Wang D, Chou HN, Li Y, Chan LL, 2011. Proteomic modification in gills and brains of medaka fish (Oryzias melastigma) after exposure to a sodium channel activator neurotoxin, brevetoxin-1. Aquat Toxicol 104, 211-217. Tipsmark CK, 2008. Identification of FXYD protein genes in a teleost: tissue-specific expression and response to salinity change. Am J Physiol Regul Integr Comp Physiol 294, R1367-R1378. Tipsmark CK, Breves JP, Seale AP, Lerner DT, Hirano T, Grau EG, 2011. Switching of Na+, K+-ATPase isoforms by salinity and prolactin in the gill of a cichlid fish. J Endocrinol 209, 237-244. Tipsmark CK, Madsen SS, 2001. Rapid modulation of Na+/K+-ATPase activity in osmoregulatory tissues of a salmonid fish. J Exp Biol 204, 701-709. Tipsmark CK, Mahmmoud YA, Borski RJ, Madsen SS, 2010. FXYD-11 associates with Na+,K+-ATPase in the gill of Atlantic salmon: regulation and localization in relation to changed ion-regulatory status. Am J Physiol Regul Integr Comp Physiol 299, R1212-R1223. Toyoshima C, Kanai R, Cornelius F, 2011. First crystal structures of Na+,K+-ATPase: new light on the oldest ion pump. Structure 19, 1732-1738. Tresguerres M, Parks SK, Katoh F, Goss GG, 2006. Microtubule-dependent relocation of branchial V-H+-ATPase to the basolateral membrane in the Pacific spiny dogfish (Squalus acanthias): a role in base secretion. J Exp Biol 209, 599-609. Tresguerres M, Parks SK, Wood CM, Goss GG, 2007. V-H+-ATPase translocation during blood alkalosis in dogfish gills: interaction with carbonic anhydrase and involvement in the postfeeding alkaline tide. Am J Physiol Regul Integr Comp Physiol 292, R2012-R2019. Ura K, Soyano K, Omoto N, Adachi S, Yamauchi K, 1996. Localization of Na+, K+-ATPase in tissues of rabbit and teleosts using an antiserum directed against a partial sequence of the α-subunit. Zoolog Sci 13, 219-227. Volff JN, 2005. Genome evolution and biodiversity in teleost fish. Heredity 94, 280-294. Wang PJ, 2010. FXYD proteins, the regulator of Na+, K+-ATPase of the euryhaline teleost, Tetraodon nigroviridis. National Chung Hsing University. Doctoral dissertation. Wang PJ, Lin CH, Hwang HH, Lee TH, 2008. Branchial FXYD protein expression to salinity change and its interaction with Na+/K+-ATPase of the euryhaline teleost, Tetraodon nigroviridis. J Exp Biol 211, 3750-3758. Werner I, Clark SL, Hinton DE, 2003. Biomarkers aid understanding of aquatic organism responses to environmental stressors. Calif Agric 57, 110-115. Wetzel RK, Sweadner KJ, 2003. Phospholemman expression in extraglomerular mesangium and afferent arteriole of the juxtaglomerular apparatus. Am J Physiol Renal Physiol 285, F121-F129. Whittamore JM, 2012. Osmoregulation and epithelial water transport: lessons from the intestine of marine teleost fish. J Comp Physiol B Biochem Syst Environ Physiol 182, 1-39. Wittbrodt J, Shima A, Schartl M, 2002. Medaka--a model organism from the far East. Nat Rev Genet 3, 53-64. Wu SC, Horng JL, Liu ST, Hwang PP, Wen ZH, Lin CS, Lin LY, 2010. Ammonium-dependent sodium uptake in mitochondrion-rich cells of medaka (Oryzias latipes) larvae. Am J Physiol Cell Physiol 298, C237-C250. Wu X, Huang Q, Fang C, Ye T, Qiu L, Dong S, 2012. PFOS induced precocious hatching of Oryzias melastigma--from molecular level to individual level. Chemosphere 87, 703-708. Yang WK, Hseu JR, Tang CH, Chung MJ, Wu SM, Lee TH, 2009. Na+/K+-ATPase expression in gills of the euryhaline sailfin molly, Poecilia latipinna, is altered in response to salinity challenge. J Exp Mar Biol Ecol 375, 41-50. Yang WK, Kang CK, Chen TY, Lee TH, 2011. Salinity-dependent expression of the branchial Na+/K+/2Cl- cotransporter and Na+/K+-ATPase in the sailfin molly correlates with hypoosmoregulatory endurance. J Comp Physiol B Biochem Syst Environ Physiol 181, 953-964. Ye RR, Lei EN, Lam MH, Chan AK, Bo J, van de Merwe JP, Fong AC, Yang MM, Lee JS, Segner HE, Wong CK, Wu RS, Au DW, 2012. Gender-specific modulation of immune system complement gene expression in marine medaka Oryzias melastigma following dietary exposure of BDE-47. Environ Sci Pollut Res Int 19, 2477-2487. Yu RM, Chen EX, Kong RY, Ng PK, Mok HO, Au DW, 2006. Hypoxia induces telomerase reverse transcriptase (TERT) gene expression in non-tumor fish tissues in vivo: the marine medaka (Oryzias melastigma) model. BMC Mol Biol 7, 27. Yusof S, Ismail A, Koito T, Kinoshita M, Inoue K, 2012. Occurrence of two closely related ricefishes, Javanese medaka (Oryzias javanicus) and Indian medaka (O. dancena) at sites with different salinity in Peninsular Malaysia. Environ Biol Fish 93, 43-49. Zhang XQ, Qureshi A, Song J, Carl LL, Tian Q, Stahl RC, Carey DJ, Rothblum LI, Cheung JY, 2003. Phospholemman modulates Na+/Ca2+ exchange in adult rat cardiac myocytes. Am J Physiol Heart Circul Physiol 284, H225-H233. Zhang Z, Hu J, 2007. Development and validation of endogenous reference genes for expression profiling of medaka (Oryzias latipes) exposed to endocrine disrupting chemicals by quantitative real-time RT-PCR. Toxicol Sci 95, 356-368.
摘要: FXYD蛋白是新發現的鈉鉀幫浦(Na+-K+-ATPase;NKA)調節者。當魚類面臨鹽度挑戰時,滲透壓調節器官(鰓、腎及腸)中的鈉鉀幫浦會提供初級驅動力供給多數的離子運輸系統以運作而維持體內環境的恒定。雖然硬骨魚類的FXYD蛋白已經有做過鑑別及相關探討,但先前的研究只注重在有限的物種上。基於密切的親緣關係及多樣化的特性,青鱂魚屬(Oryzias)的物種為比較生理及滲透壓研究提供了獨特的模式。其中,恆河青鱂魚(O. dancena)及日本青鱂魚(O. latipes)是經常使用在不同研究領域的模式魚種。本篇研究的目的在於藉由鹹水模式魚種-恆河青鱂魚,來闡述FXYD蛋白的可能的角色,以及研究這兩種近緣種廣鹽性青鱂魚面臨環境鹽度變化時其硬骨魚FXYD蛋白表現趨勢之多樣性。在兩種青鱂魚上,各鑑別出七個FXYD蛋白家族的成員(OdFXYD及OlFXYD)。多數的fxyd基因會表現在滲透壓調節器官中,且其中某些fxyd基因表現有鹽度依賴性。在這些基因中,fxyd11及fxyd12分別主要且大量表現在鰓、腎及腸。在恆河青鱂魚的鰓上,OdFXYD11蛋白會與鈉鉀幫浦α次單元有交互作用;並且與其他鹽度環境相比,淡水馴養的個體其鰓上OdFXYD11蛋白有較多的表現量。鹽度變化對恆河青鱂魚鰓上的OdFXYD11蛋白及鈉鉀幫浦α次單元的表現有不同的影響。這個硬骨魚FXYD蛋白之非相關性表現趨勢的發現是首次被發表在長期(馴養)而非急性(短期轉移)的鹽度挑戰實驗中。另一方面,OdFXYD12的功能被證實能夠維持鈉鉀幫浦表現較高的活性。就我們所知,這是第一篇闡述硬骨魚FXYD12蛋白功能的研究。綜合上述,目前的研究推論FXYD11可能藉由增加鈉鉀幫浦之活性而在反應鹽度變化時於鰓上扮演一個關鍵的角色;並且闡述FXYD12蛋白透過提升鈉鉀幫浦之活性而參與體內滲透壓調節器官(腎及腸)的滲透壓及離子調節作用。
FXYD proteins are novel regulators of Na+-K+-ATPase (NKA). In fish subjected to salinity challenges, NKA in osmoregulatory organs (i.e., gills, kidneys, and intestines) is a primary driving force for many ion transport systems that act in concert to maintain a stable internal environment. Although teleostean FXYD proteins have been identified and investigated, previous studies focused on limited species. Based on their close phylogenetic relationships and diverse characteristics, the Oryzias species offer unique models for comparative and osmoregulatory studies. Among them, the brackish medaka (O. dancena) and the Japanese medaka (O. latipes) were model fish commonly used in experiments of different fields. The purposes of the present study were to use the brackish medaka, a saltwater fish model, for illustrating the potential roles of FXYD proteins and to investigate the diversity of teleostean FXYD expression profiles in these two closely related euryhaline medaka upon exposure to salinity changes. Seven members of the FXYD protein family were identified in each medaka species (OdFXYD and OlFXYD). In the osmoregulayory organs, most fxyd genes expressed, and certain fxyd expression was salinity-dependent. Among the cloned genes, fxyd11 and fxyd12 was expressed mainly and abundantly in the gills, kidneys, and intestines, respectively. In gills of the brackish medaka, the OdFXYD11 protein interacted with the NKA α-subunit which was expressed at a higher level in freshwater-acclimated individuals relative to fish in the other salinity groups. Salinity changes led to different effects on the OdFXYD11 and NKA α-subunit expression patterns in the gills of the brackish medaka. This finding (non-correlated expression patterns) is the first report of teleost FXYD proteins in a chronic (i.e., acclimated) rather than an acute (i.e., time-course) salinity challenge experiment. On the other hand, the function of OdFXYD12 was demonstrated to be able to maintain a high-level NKA activity. To our knowledge, this is the first study to illustrate the functions of teleost FXYD12 protein. Taken together, the present study inferred that the FXYD11 might play a crucial role in gills via increasing NKA activity in response to salinity challenge and revealed that FXYD12 was involved in osmoregulation/ionoregulation of internal osmoregulatory organs (i.e., kidneys and intestines) via enhancing NKA activity.
URI: http://hdl.handle.net/11455/20278
其他識別: U0005-0102201318104400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0102201318104400
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.