Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/20289
標題: 楠溪森林動態樣區直立木本植物葉功能特性之研究
Studies of Leaf Functional Traits of Erect Woody Plants at Nanhsi Forest Dynamics Plot
作者: 鄭暐
Cheng, Wei
關鍵字: 葉功能特性
leaf functional traits
植物功能群
葉習性
比葉面積
葉氮含量
葉脈結構
直立木本植物
楠溪森林動態樣區
plant functional groups
leaf habit
specific leaf area
leaf nitrogen content
leaf vein architecture
erect wood plant
Nanhsi Forest Dynamics Plot
出版社: 生命科學系所
引用: 邱少婷、楊國禎、林笈克、許鈞雅。2005。楠梓仙溪流域中海拔地區常綠闊葉樹林與落葉林推移帶永久樣區設置及調查。行政院農委會林務局委託研究報告。 邱少婷、楊國禎、張又敏、湯凱鈞。2006。玉山國家公園楠溪流域上游永久樣區蔓藤生態之調查計畫。內政部營建署玉山國家公園管理處委託研究報告。 邱少婷。2007。玉山國家公園楠溪永久樣區植物生態調查計畫—闊葉林下之蔓藤植物社會。內政部營建署玉山國家公園管理處委託研究報告。 邱少婷。2008。玉山國家公園楠溪永久樣區植物生態調查計畫-林緣之蔓藤植物社會。內政部營建署玉山國家公園管理處委託研究報告。 翁其羽。2009。臺灣中海拔楠梓仙溪上游森林動態樣區凋落葉動態與物候類型。靜宜大學生態系研究所,碩士論文。 陳振銘。2003。南臺灣南仁山低地雨林短期植物物候調查與樹冠葉片結構、壽命和動態變化之研究。臺灣大學植物學研究所,碩士論文。 楊雅婷。2012。蓮華池森林動態樣區葉功能特徵之空間分布。東海大學生命科學系,碩士論文。 楊國禎、林笈克、黃江綸、張又敏。2006。楠梓仙溪流域中海拔地區常綠闊葉林8.37 公頃永久樣區設置及調查。行政院農委會林務局補助計畫系列。 楊國禎、蘇孟淮、王豫煌、黃江綸、翁其羽。2010。玉山國家公園楠梓仙溪林道地區動植物資源監測調查計畫。內政部營建署玉山國家公園管理處委託研究報告。 蔡淑華。1975。植物組織切片技術綱要。茂昌圖書有限公司。 蘇夢淮。1993。南仁山亞熱帶雨林樹冠層葉片結構之研究。臺灣大學植物學研究所,碩士論文。 Albert, C. H., W. Thuiller, N. G. Yoccoz, A. Soudant, F. Boucher, P. Saccone, and S. Lavorel. 2010. Intraspecific functional variability: extent, structure and sources of variation. Journal of Ecology 98:604-613. Chen, F. S., K. J. Niklas, G. S. Chen, and D. L. Guo. 2012. Leaf traits and relationships differ with season as well as among species groupings in a managed Southeastern China forest landscape. Plant Ecology 213:1489-1502. Cornelissen, J. H. C., S. Lavorel, E. Garnier, S. Diaz, N. Buchmann, D. E. Gurvich, P. B. Reich, H. ter Steege, H. D. Morgan, M. G. A. van der Heijden, J. G. Pausas, and H. Poorter. 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51:335-380. Dickison W.C. 2000. Integrative plant anatomy. Page 132-140. Academic Press. San Diego, California, USA. De''ath, G. 2002. Multivariate regression trees: a new technique for 24 modeling species-environment relationships. Ecology 83:1105-1117. Evans, J. R. and H. Poorter. 2001. Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, Cell and Environment 24:755-767. Gallagher, R. V. and M. R. Leishman. 2012. A global analysis of trait variation and evolution in climbing plants. Journal of Biogeography 39:1757-1771. Gan, Y., L. Zhou, Z. J. Shen, Z. X. Shen, Y. Q. Zhang, and G. X. Wang. 2010. Stomatal clustering, a new marker for environmental perception and adaptation in terrestrial plants. Botanical Studies 51:325-336. Gifford, E. M. and A. S. Foster. 1996. Morphology and evolution of vascular plants. Third edition. Page 502-504. W. H. Freeman and company, New York, USA. Hall, J. S., J. J. McKenna, P. M. S. Ashton, and T. G. Gregoire. 2004. Habitat characterizations underestimate the role of edaphic factors controlling the distribution of Entandrophragma. Ecology 85:2171-2183. Hallik, L., U. Niinemets, and I. J. Wright. 2009. Are species shade and drought tolerance reflected in leaf-level structural and functional differentiation in Northern Hemisphere temperate woody flora? New Phytologist 184:257-274. Harrison, S. P., I. C. Prentice, D. Barboni, K. E. Kohfeld, J. Ni, and J. P. Sutra. 2010. Ecophysiological and bioclimatic foundations for a global plant functional classification. Journal of Vegetation Science 21:300-317. Hill, M. O. 1979. TWINSPAN-A FORTRAN program for arranging multivariate data in an orderd Two-Way table by classification of the individuals and attributes. Cornell University, Ithace, New York. Hirose, T. 2012. Leaf-level nitrogen use efficiency: definition and importance. Oecologia 169:591-597. Hodgson, J. G., G. Montserrat-Marti, M. Charles, G. Jones, P. Wilson, B. Shipley, M. Sharafi, B. E. L. Cerabolini, J. H. C. Cornelissen, S. R. Band, A. Bogard, P. Castro-Diez, J. Guerrero-Campo, C. Palmer, M. C. Perez-Rontome, G. Carter, A. Hynd, A. Romo-Diez, L. D. Espuny, and F. R. Pla. 2011. Is leaf dry matter content a better predictor of soil fertility than specific leaf area? Annals of Botany 108:1337-1345. John, R., J. W. Dalling, K. E. Harms, J. B. Yavitt, R. F. Stallard, M. Mirabello, S. P. Hubbell, R. Valencia, H. Navarrete, M. Vallejo, and R. B. Foster. 2007. Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences of the United States of America 104:864-869. Klich, M. G. 2000. Leaf variations in Elaeagnus angustifolia related to environmental heterogeneity. Environmental and Experimental Botany 44:171-183. Kenzo, T., T. Ichie, Y. Watanabe, and T. Hiromi. 2007. Ecological distribution of homobaric and heterobaric leaves in tree species of Malaysian lowland tropical rainforest. American Journal of Botany 94:764-775. Kikuzawa, K. and D. D. Ackerly. 1999 Significance of leaf longevity in plants. Plant Species Biology 14:39-45. Laughlin, D. C., J. J. Leppert, M. M. Moore, and C. H. Sieg. 2010. A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora. Functional Ecology 24:493-501. Li, G. Y., D. M. Yang, and S. C. Sun. 2008. Allometric relationships between lamina area, lamina mass and petiole mass of 93 temperate woody species vary with leaf habit, leaf form and altitude. Functional Ecology 22:557-564. Loreau, M., S. Naeem, P. Inchausti, J. Bengtsson, J. P. Grime, A. Hector, D. U. Hooper, M. A. Huston, D. Raffaelli, B. Schmid, D. Tilman, and D. A. Wardle. 2001. Ecology - Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 294:804-808. Lusk, C. H. and D. I. Warton. 2007. Global meta-analysis shows that relationships of leaf mass per area with species shade tolerance depend on leaf habit and ontogeny. New Phytologist 176:764-774. Markesteijn, L., L. Poorter, and F. Bongers. 2007. Light-dependent leaf trait variation in 43 tropical dry forest tree species. American Journal of Botany 94:515-525. McCune, B. and M. J. Mefford. 1999. Multivariate analysis of ecological date, PC-ORD version 4. pp. 195-201. MjM Software Design, Gleneden Beach, Oregon, USA. Milla, R. and P. B. Reich. 2007. The scaling of leaf area and mass: the cost of light interception increases with leaf size. Proceedings of the Royal Society B-Biological Sciences 274:2109-2114. Niinemets, U., A. Portsmuth, and M. Tobias. 2006. Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants. New Phytologist 171:91-104. Niinemets, U., A. Portsmuth, and M. Tobias 2007a. Leaf shape and venation pattern alter the support investments within leaf lamina in temperate species: a neglected source of leaf physiological differentiation? Functional Ecology 21: 28-40. Niinemets, U., A. Portsmuth, D. Tena, M. Tobias, S. Matesanz, and F. Valladares. 2007b. Do we underestimate the importance of leaf size in plant economics? Disproportional scaling of support costs within the spectrum of leaf physiognomy. Annals of Botany 100:283-303. Nobis, M. 2005. SideLook 1.1 - Imaging software for the analysis of vegetation structure with true-colour photographs; http://www.appleco.ch. Oldham, A. R., S. C. Sillett, A. M. F. Tomescu, and G. W. Koch. 2010. the hydrostatic gradient, not light availability, drives height-related variation in Sequoia sempervirens (Cupressaceae) leaf anatomy. American Journal of Botany 97:1087-1097. Oleksyn, J., P. B. Reich, R. Zytkowiak, P. Karolewski, and M. G. Tjoelker. 2003. Nutrient conservation increases with latitude of origin in European Pinus sylvestris populations. Oecologia 136:220–235. van Ommen Kloeke, A. E. E., J. C. Douma, J. C. Ordonez, P. B. Reich, and P. M. van Bodegom. 2012. Global quantification of contrasting leaf life span strategies for deciduous and evergreen species in response to environmental conditions. Global Ecology and Biogeography 21:224-235. Pieruschka, R., A. Chavarria-Krauser, U. Schurr, and S. Jahnke. 2010. Photosynthesis in lightfleck areas of homobaric and heterobaric leaves. Journal of Experimental Botany 61:1031-1039. Pieruschka, R., U. Schurr, M. Jensen, W. F. Wolff, and S. Jahnke. 2006. Lateral diffusion of CO2 from shaded to illuminated leaf parts affects photosynthesis inside homobaric leaves. New Phytologist 169:779-787 Poorter, H., S. Pepin, T. Rijkers, Y. de Jong, J. R. Evans, and C. Korner. 2006. Construction costs, chemical composition and payback time of high- and low-irradiance leaves. Journal of Experimental Botany 57:355-371. Poorter, L. 2009. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests. New Phytologist 181: 890-900. Poorter, L. and F. Bongers. 2006. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87:1733-1743. Poorter, L. and D. M. A. Rozendaal. 2008. Leaf size and leaf display of thirty-eight tropical tree species. Oecologia 158:35-46. R Development Core Team. 2009. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Reich, P. B., C. Uhl, M. B. Walters, L. Prugh, and D. S. Ellsworth. 2004. Leaf demography and phenology in Amazonian rain forest: A census of 40 000 leaves of 23 tree species. Ecological Monographs 74:3-23. Reich, P. B., I. J. Wright, J. Cavender-Bares, J. M. Craine, J. Oleksyn, M. Westoby, and M. B. Walters. 2003. The evolution of plant functional variation: Traits, spectra, and strategies. International Journal of Plant Sciences 164:S143-S164. Reich, P. B., M. B. Walters, and D. S. Ellsworth. 1992. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecological Monographs 62:365-392. Reich, P. B., I. J. Wright, and C. H. Lusk. 2007. Predicting leaf physiology from simple plant and climate attributes: a global glopnet analysis. Ecological Applications 17:1982-1988. Santiago, L. S. and S. J. Wright. 2007. Leaf functional traits of tropical forest plants in relation to growth form. Functional Ecology 21:19-27. Silvertown, J. 2004. Plant coexistence and the niche. Trends in Ecology and Evolution 19:605-611. Ter Braak, C. J. F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167-1179. Ter Braak C. J. F., and P. Smilauer. 2002. CANOCO reference manual and CanoDraw for Windows user''s guide: software for canonical community ordination. Version 4.5 Microcomputer Power, Ithaca, New York, USA. Valladares, F. and U. Niinemets. 2008. Shade Tolerance, a Key Plant Feature of Complex Nature and Consequences. Pages 237-257. Annual Review of Ecology Evolution and Systematics. Annual Reviews, Palo Alto. Violle, C., M.-L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel, and E. Garnier. 2007. Let the concept of trait be functional! Oikos 116:882-892. Westoby, M. 1998. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil 199:213-227. Westoby, M., D. S. Falster, A. T. Moles, P. A. Vesk, and I. J. Wright. 2002. Plant ecological strategies: Some leading dimensions of variation between species. Annual Review of Ecology and Systematics 33:125-159. Witkowski, E. T. F. and B. B. Lamont. 1991. Leaf specific mass confounds leaf density and thickness. Oecologia 88:486-493. Wright, I. J., P. B. Reich, J. H. C. Cornelissen, D. S. Falster, E. Garnier, K. Hikosaka, B. B. Lamont, W. Lee, J. Oleksyn, N. Osada, H. Poorter, R. Villar, D. I. Warton, and M. Westoby. 2005a. Assessing the generality of global leaf trait relationships. New Phytologist 166:485-496. Wright, I. J., P. B. Reich, J. H. C. Cornelissen, D. S. Falster, P. K. Groom, K. Hikosaka, W. Lee, C. H. Lusk, U. Niinemets, J. Oleksyn, N. Osada, H. Poorter, D. I. Warton, and M. Westoby. 2005b. Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography 14:411-421. Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, F. Bongers, J. Cavender-Bares, T. Chapin, J. H. C. Cornelissen, M. Diemer, J. Flexas, E. Garnier, P. K. Groom, J. Gulias, K. Hikosaka, B. B. Lamont, T. Lee, W. Lee, C. Lusk, J. J. Midgley, M. L. Navas, U. Niinemets, J. Oleksyn, N. Osada, H. Poorter, P. Poot, L. Prior, V. I. Pyankov, C. Roumet, S. C. Thomas, M. G. Tjoelker, E. J. Veneklaas, and R. Villar. 2004. The worldwide leaf economics spectrum. Nature 428:821-827. Wright, I. J., M. Westoby, and P. B. Reich. 2002. Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. Journal of Ecology 90:534-543. Yang, K. C., J. K. Lin, C. F. Hsieh, C. L. Huang, Y. M. Chang, L. H. Kuan, J .F. Su and S. T. Chiu. 2008. Vegetation pattern and woody species composition of a broad-leaved forest at the upstream basin of Nantzuhsienhsi in mid-southern Taiwan. Taiwania 53:325-337. Yang, K. C., J. K. Lin, Y. H. Wang, C. F. Hsieh, and L. H. Kuan. 2010. Vegetation composition and structure in the ecotone between deciduous and evergreen broad-leaved forests in an upstream region of Nantzuhsiensi, south-central Taiwan. Taiwan Journal of Forest Science 25:41-52. Yuan, Z. Y. and H. Y. H. Chen. 2009. Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation. Global Ecology and Biogeography 18:11-18. Zhang, L. W., X. C. Mi, H. B. Shao, and K. P. Ma. 2011. Strong plant-soil associations in a heterogeneous subtropical broad-leaved forest. Plant and Soil 347:211-220. Zhao, X., Y. Yang, Z. Shen, H. Zhang, G. Wang, and Y. Gan. 2006. Stomatal clustering in Cinnamomum camphora. South African Journal of Botany 72:565-569.
摘要: 植物的功能特性反映了植物對環境的適應,可藉由葉功能特性了解植物生存的不同策略方式。而楠溪森林動態樣區為臺灣中海拔面積最大的森林動態樣區,涵蓋以長尾栲-假長葉楠(Castanopsis carlesii - Machilus japonica)常綠闊葉林和臺灣赤楊(Alnus formosana)落葉林的多樣性植物功能群,且鮮少探討植物與葉功能特性研究;因此本研究目的為建立楠溪樣區直立木本植物葉功能特性(leaf functional trait)資料,探討生長在不同植物社會具不同葉習性(落葉和常綠)及生長型(喬木和灌木)之植物的葉功能特性的差異,藉以了解葉功能特性與環境因子間的關係,和葉組織構造的權衡。採取23科44屬54種共341棵植株之葉片樣本,量測葉厚度(leaf thickness)、葉面積(leaf area)、葉乾含量(leaf dry matter content)、比葉面積(specific leaf area)、葉密度(leaf density)、葉氮含量(leaf nitrogen content)、葉碳含量(leaf carbon content)和葉碳氮比(leaf carbon and nitrogen ratio)等八種葉特性值作為指標。在落葉灌木、落葉喬木、常綠灌木和常綠喬木四個植物功能群中,喬木較灌木具較高葉碳含量值;常綠喬木在葉乾含量和葉密度具最大值,然而落葉灌木則有最小值。不同葉習性在葉氮含量、比葉面積和葉碳氮比皆有明顯的差別,落葉直立木本比起常綠直立木本具較高的葉氮含量值和比葉面積,以及較低的葉碳氮比。從假長葉楠優勢型、大葉石櫟(Pasania kawakamii)-假長葉楠優勢型、細枝柃木(Eurya loquaiana)-長尾栲優勢型和臺灣赤楊優勢型等四型植物社會中,檢測葉特性和植物社會間的關係,葉厚度和葉碳含量在四型植物社會間沒有顯著差異;臺灣赤楊優勢型的植物社會較其他三型植物社會具較低的葉乾含量和葉密度;細枝柃木-長尾栲優勢型較其他三型植物社會具最小的葉面積。比葉面積、葉氮含量和葉碳氮比則呈現在大葉石櫟-假長葉楠優勢型和細枝柃木-長尾栲優勢型間無法區分,但此群與臺灣赤楊優勢型和假長葉楠優勢型皆有顯著差異。落葉林與常綠闊葉林的溫度、濕度、光照度與冠層開闊度有明顯差異,葉氮含量、葉碳氮比、葉乾含量與冠層開闊度顯著相關。雖然典型對應分析(canonical correspondence analysis)和冗餘分析(redundancy analysis)均指出海拔高度是影響楠溪樣區直立木本植物物種分布和葉功能性狀關鍵的地形因子;但實際上海拔高度反映了溫度梯度的微氣候落差,微氣候影響才是關鍵的環境因子。以五加科為例,同一植物功能群生活在不同類型的森林,物種的葉特性也會有差異;以蕁麻科、薔薇科和杜鵑花科為例,生長在截然不同的微環境下,不同植物功能群在不同的生育地,呈現不同的葉特性組合和葉脈結構因應適存策略,因葉壽命、葉大小、脈密度等葉特性不同,物種葉片在主脈和細脈間投資的比例的不同。葉功能特性確實反映植物在適應環境上不同的生存策略,落葉和常綠闊葉林具有不同的物種組成和葉功能特性,物種是影響葉功能特性的主因,不同物種組成的植物社會反映其適存的生育環境,與葉功能特性有較緊密的連結。
URI: http://hdl.handle.net/11455/20289
其他識別: U0005-0302201314292500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0302201314292500
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.