Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/20296
標題: 病竇症候群相關疾病的基因學及臨床預測因子: 腎素血管收縮素系統在心血管疾病的影響
Genetic and clinical predictors of sick sinus syndrome associated diseases: impact of renin-angiotensin system on cardiovascular disorders
作者: 陳建佑
Chen, Jan-Yow
關鍵字: 病竇症候群
sick sinus syndrome
心房撲動
纖維化
主動脈剝離
腎素–血管收縮素系統
atrial flutter
fibrosis
aotic dissection
renin-angiotensin system
出版社: 生命科學系所
引用: 1. Mangrum JM, DiMarco JP. The evaluation and management of bradycardia. New England Journal of Medicine. 2000;342:703-709 2. AdÃn V, Crown L. Diagnosis and treatment of sick sinus syndrome. American Family Physician. 2003;67:1725-1732 3. Gregoratos G. Cardiology patient pages. Sick sinus syndrome. Circulation. 2003;108:e143-e144 4. Chen J-Y, Liou Y-M, Wu H-DI, Lin K-H, Chang K-C. Promoter polymorphism g-6a, which modulates angiotensinogen gene expression, is associated with non-familial sick sinus syndrome. PLoS ONE. 2012;7:e29951 5. Wahls SA. Sick sinus syndrome. American Family Physician. 1985;31:117-124 6. Rodriguez RD, Schocken DD. Update on sick sinus syndrome, a cardiac disorder of aging. Geriatrics. 1990;45:26-30, 33 7. Milanesi R, Baruscotti M, Gnecchi-Ruscone T, DiFrancesco D. Familial sinus bradycardia associated with a mutation in the cardiac pacemaker channel. New England Journal of Medicine. 2006;354:151-157 8. Makita N, Sasaki K, Groenewegen WA, Yokota T, Yokoshiki H, Murakami T, Tsutsui H. Congenital atrial standstill associated with coinheritance of a novel scn5a mutation and connexin 40 polymorphisms. Heart Rhythm. 2005;2:1128-1134 9. Stieber J, Hofmann F, Ludwig A. Pacemaker channels and sinus node arrhythmia. Trends in Cardiovascular Medicine. 2004;14:23-28 10. Dobrzynski H, Boyett MR, Anderson RH. New insights into pacemaker activity. Circulation. 2007;115:1921-1932 11. Holm H, Gudbjartsson DF, Sulem P, Masson G, Helgadottir HT, Zanon C, Magnusson OT, Helgason A, Saemundsdottir J, Gylfason A, Stefansdottir H, Gretarsdottir S, Matthiasson SE, Thorgeirsson G, Jonasdottir A, Sigurdsson A, Stefansson H, Werge T, Rafnar T, Kiemeney LA, Parvez B, Muhammad R, Roden DM, Darbar D, Thorleifsson G, Walters GB, Kong A, Thorsteinsdottir U, Arnar DO, Stefansson K. A rare variant in myh6 is associated with high risk of sick sinus syndrome. Nature Genetics. 2011;43:316-320 12. Morris GM, Monfredi O, Boyett MR. Not so fast! Sick sinus syndrome is a complex and incompletely understood disease that might prove hard to model in animals. Cardiovascular Research. 2011;92:178-179 13. Adn V, Crown L. Diagnosis and treatment of sick sinus syndrome. American family physician. 2003;67:1725-1732 14. Boyett MR, Tellez JO, Dobrzynski H. The sinoatrial node: its complex structure and unique ion channel gene program. In: Cardiac electrophysiology from cell to bedside, 4th edition by Zipes DP and Jalife J, Saunders Elsevier, Philadelphia, USA. 15. Alings AM, Bouman LN. Electrophysiology of the ageing rabbit and cat sinoatrial node--a comparative study. European Heart Journal. 1993;14:1278-1288 16. Hao X, Zhang Y, Zhang X, Nirmalan M, Davies L, Konstantinou D, Yin F, Dobrzynski H, Wang X, Grace A, Zhang H, Boyett M, Huang CLH, Lei M. Tgf-β1-mediated fibrosis and ion channel remodeling are key mechanisms in producing the sinus node dysfunction associated with scn5a deficiency and aging. Circulation. Arrhythmia and Electrophysiology. 2011;4:397-406 17. Lau D, Roberts Thomson K, Sanders P. Sinus node revisited. Current Opinion in Cardiology. 2011;26:55-59 18. Maier SKG, Westenbroek R, Yamanushi TT, Dobrzynski H, Boyett M, Catterall W, Scheuer T. An unexpected requirement for brain-type sodium channels for control of heart rate in the mouse sinoatrial node. Proceedings of the National Academy of Sciences of the United States of America. 2003;100:3507-3512 19. Zhang H, Zhao Y, Lei M, Dobrzynski H, Liu JH, Holden AV, Boyett MR. Computational evaluation of the roles of na+ current, ina, and cell death in cardiac pacemaking and driving. American Journal of Physiology. Heart and Circulatory Physiology. 2007;292:H165-H174 20. Tellez JO DH, Yanni J, Billeter R, Boyett MR. Effect of aging on gene expression in the rat sinoatrial node. Journal of Molecular and Cellular Cardiology. 2006;40:1 21. Haqqani H, Kalman J. Aging and sinoatrial node dysfunction: Musings on the not-so-funny side. Circulation. 2007;115:1178-1179 22. Jones S, Boyett M, Lancaster M. Declining into failure: The age-dependent loss of the l-type calcium channel within the sinoatrial node. Circulation. 2007;115:1183-1190 23. Kodama I, Nikmaram MR, Boyett MR, Suzuki R, Honjo H, Owen JM. Regional differences in the role of the ca2+ and na+ currents in pacemaker activity in the sinoatrial node. American Journal of Physiology. 1997;272:H2793-H2806 24. JC NiD. Isolation and electrophysiological characteristics of rabbit sino-atrial node cells. University of Oxford press, 1989. Oxford, UK. 25. Hagiwara N IH, Kameyama M. . Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino-atrial node cells. Journal of Physiology. 1988;395:233–253. 26. Lei M, Jones S, Liu J, Lancaster M, Fung SSM, Dobrzynski H, Camelliti P, Maier SKG, Noble D, Boyett M. Requirement of neuronal- and cardiac-type sodium channels for murine sinoatrial node pacemaking. Journal of Physiology. 2004;559:835-848 27. Rigg L, Terrar DA. Possible role of calcium release from the sarcoplasmic reticulum in pacemaking in guinea-pig sino-atrial node. Experimental Physiology. 1996;81:877-880 28. Shi W, Wymore R, Yu H, Wu J, Wymore RT, Pan Z, Robinson RB, Dixon JE, McKinnon D, Cohen IS. Distribution and prevalence of hyperpolarization-activated cation channel (hcn) mrna expression in cardiac tissues. Circulation Research. 1999;85:e1-e6 29. Moosmang S, Stieber J, Zong X, Biel M, Hofmann F, Ludwig A. Cellular expression and functional characterization of four hyperpolarization-activated pacemaker channels in cardiac and neuronal tissues. European journal of Biochemistry. 2001;268:1646-1652 30. Stieber J, Herrmann S, Feil S, Lster J, Feil R, Biel M, Hofmann F, Ludwig A. The hyperpolarization-activated channel hcn4 is required for the generation of pacemaker action potentials in the embryonic heart. Proceedings of the National Academy of Sciences of the United States of America. 2003;100:15235-15240 31. Irisawa H BH, Giles W. Cardiac pacemaking in the sinoatrial node. Physioogical Reviews. 1993;73:30 32. Söhl G, Willecke K. Gap junctions and the connexin protein family. Cardiovascular Research. 2004;62:228-232 33. Unger VM, Kumar NM, Gilula NB, Yeager M. Three-dimensional structure of a recombinant gap junction membrane channel. Science. 1999;283:1176-1180 34. Rackauskas M, Verselis V, Bukauskas F. Permeability of homotypic and heterotypic gap junction channels formed of cardiac connexins mcx30.2, cx40, cx43, and cx45. American journal of physiology. Heart and Circulatory Physiology. 2007;293:H1729-H1736 35. Kreuzberg M, Schrickel J, Ghanem A, Kim J-S, Degen J, Janssen Bienhold U, Lewalter T, Tiemann K, Willecke K. Connexin30.2 containing gap junction channels decelerate impulse propagation through the atrioventricular node. Proceedings of the National Academy of Sciences of the United States of America. 2006;103:5959-5964 36. Beardslee MA, Lerner DL, Tadros PN, Laing JG, Beyer EC, Yamada KA, Klber AG, Schuessler RB, Saffitz JE. Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia. Circulation Research. 2000;87:656-662 37. Winslow RL JH. Role of tissue geometry and spatial localization of gap junctions in generation of the pacemaker potential. J Physiol. . 1995;487 38. Dobrzynski H, Billeter R, Greener ID, Tellez JO, Chandler NJ, Flagg TP, Nichols CG, Lopatin AN, Boyett MR. Expression of kir2.1 and kir6.2 transgenes under the control of the alpha-mhc promoter in the sinoatrial and atrioventricular nodes in transgenic mice. Journal of molecular and cellular cardiology. 2006;41:855-867 39. Boyett MR IS, Yoo S, Li J, Liu J, Tellez JO, Greener ID, Honjo H, Billeter R, Lei M, Zhang H, Efimov IR, Dobrzynski H. Connexins in the sinoatrial and atrioventricular nodes. Advances in Cardiology. . 2006;42:23 40. Groenewegen WA, Firouzi M, Bezzina C, Vliex S, van Langen I, Sandkuijl L, Smits JPP, Hulsbeek M, Rook M, Jongsma H, Wilde AAM. A cardiac sodium channel mutation cosegregates with a rare connexin40 genotype in familial atrial standstill. Circulation Research. 2003;92:14-22 41. Hagendorff A, Schumacher B, Kirchhoff S, Lderitz B, Willecke K. Conduction disturbances and increased atrial vulnerability in connexin40-deficient mice analyzed by transesophageal stimulation. Circulation. 1999;99:1508-1515 42. van Veen TAB, van Rijen HVM, van Kempen MJA, Miquerol L, Opthof T, Gros D, Vos M, Jongsma H, de Bakker JMT. Discontinuous conduction in mouse bundle branches is caused by bundle-branch architecture. Circulation. 2005;112:2235-2244 43. Vongvatcharanon U, Vongvatcharanon S, Radenahmad N, Kirirat P, Intasaro P, Sobhon P, Parker T. Angiotensin ii may mediate apoptosis via at1-receptors in the rat cardiac conduction system. Journal of Renin-Angiotensin-Aldosterone System. 2004;5:135-140 44. Sawa H, Tokuchi F, Mochizuki N, Endo Y, Furuta Y, Shinohara T, Takada A, Kawaguchi H, Yasuda H, Nagashima K. Expression of the angiotensinogen gene and localization of its protein in the human heart. Circulation. 1992;86:138-146 45. Saito K, Gutkind JS, Saavedra JM. Angiotensin ii binding sites in the conduction system of rat hearts. American Journal of Physiology - Heart and Circulatory Physiology. 1987;253:H1618-H1622 46. Hein L, Stevens ME, Barsh GS, Pratt RE, Kobilka BK, Dzau VJ. Overexpression of angiotensin at1 receptor transgene in the mouse myocardium produces a lethal phenotype associated with myocyte hyperplasia and heart block. Proceedings of the National Academy of Sciences USA. 1997;94:6391-6396 47. Sadoshima J, Izumo S. Molecular characterization of angiotensin ii--induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the at1 receptor subtype. Circulation Research. 1993;73:413-423 48. Li D, Shinagawa K, Pang L, Leung TK, Cardin S, Wang Z, Nattel S. Effects of angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing–induced congestive heart failure. Circulation. 2001;104:2608-2614 49. Duff JL, Marrero MB, Paxton WG, Schieffer B, Bernstein KE, Berk BC. Angiotensin ii signal transduction and the mitogen-activated protein kinase pathway. Cardiovascular Research. 1995;30:511-517 50. Hagendorff A, Schumacher B, Kirchhoff S, Lüderitz B, Willecke K. Conduction disturbances and increased atrial vulnerability in connexin40-deficient mice analyzed by transesophageal stimulation. Circulation. 1999;99:1508-1515 51. Kasi VS, Xiao HD, Shang LL, Iravanian S, Langberg J, Witham EA, Jiao Z, Gallego CJ, Bernstein KE, Dudley SC. Cardiac-restricted angiotensin-converting enzyme overexpression causes conduction defects and connexin dysregulation. American Journal of Physiology - Heart and Circulatory Physiology. 2007;293:H182-H192 52. Zankov DP, Omatsu-Kanbe M, Isono T, Toyoda F, Ding W-G, Matsuura H, Horie M. Angiotensin ii potentiates the slow component of delayed rectifier k+ current via the at1 receptor in guinea pig atrial myocytes. Circulation. 2006;113:1278-1286 53. Goette A, Lendeckel U. Electrophysiological effects of angiotensin ii. Part i: Signal transduction and basic electrophysiological mechanisms. Europace. 2008;10:238-241 54. Tamura K, Yokoyama N, Sumida Y, Fujita T, Chiba E, Tamura N, Kobayashi S, Kihara M, Murakami K, Horiuchi M, Umemura S. Tissue-specific changes of type 1 angiotensin ii receptor and angiotensin-converting enzyme mrna in angiotensinogen gene-knockout mice. Journal of Endocrinology. 1999;160:401-408 55. Rubenstein JJ, Schulman CL, Yurchak PM, DeSanctis RW. Clinical spectrum of the sick sinus syndrome. Circulation. 1972;46:5-13 56. Chen J-Y, Lin K-H, Liou Y-M, Chang K-C, Huang SKS. Usefulness of pre-procedure cavotricuspid isthmus imaging by modified transthoracic echocardiography for predicting outcome of isthmus-dependent atrial flutter ablation. Journal of the American Society of Echocardiography. 2011;24:1148-1155 57. Khaykin Y, Marrouche N, Martin D, Saliba W, Schweikert R, Wexman M, Strunk B, Beheiry S, Saad E, Bhargava M, Burkhardt JD, Joseph G, Tchou P, Natale A. Pulmonary vein isolation for atrial fibrillation in patients with symptomatic sinus bradycardia or pauses. Journal of Cardiovascular Electrophysiology. 2004;15:784-789 58. Ishikawa T, Sumita S, Kikuchi M, Nakagawa T, Kosuge M, Kuji N, Kimura K, Tochikubo O, Usui T, Umemura S. Incidence of atrial flutter and atrial fibrillation in patients with implanted physiological pacemakers. Japanese Circulation Journal. 2000;64:505-509 59. Wellens HJJ. Contemporary management of atrial flutter. Circulation. 2002;106:649-652 60. Tai C-T, Chen S-A. Electrophysiological mechanisms of atrial flutter. Journal of the Chinese Medical Association. 2009;72:60-67 61. Feld GK, Mollerus M, Birgersdotter Green U, Fujimura O, Bahnson TD, Boyce K, Rahme M. Conduction velocity in the tricuspid valve-inferior vena cava isthmus is slower in patients with type i atrial flutter compared to those without a history of atrial flutter. Journal of Cardiovascular Electrophysiology. 1997;8:1338-1348 62. Stevenson I, Kistler P, Spence S, Vohra J, Sparks P, Morton J, Kalman J. Scar-related right atrial macroreentrant tachycardia in patients without prior atrial surgery: Electroanatomic characterization and ablation outcome. Heart Rhythm. 2005;2:594-601 63. Cabrera J, Snchez-Quintana D, Farr J, Rubio J, Ho S. The inferior right atrial isthmus: Further architectural insights for current and coming ablation technologies. Journal of Cardiovascular Electrophysiology. 2005;16:402-408 64. Tai C-T, Chen S-A. Cavotricuspid isthmus: Anatomy, electrophysiology, and long-term outcome of radiofrequency ablation. Pacing and Clinical Electrophysiology. 2009;32:1591-1595 65. Tai C-T, Chen S-A. Electrophysiological mechanisms of atrial flutter. Journal of the Chinese Medical Association. 2009;72:60-67 66. Spach MS, Dolber PC. Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle. Evidence for electrical uncoupling of side-to-side fiber connections with increasing age. Circulation Research. 1986;58:356-371 67. Spach MS, Dolber PC, Heidlage JF. Influence of the passive anisotropic properties on directional differences in propagation following modification of the sodium conductance in human atrial muscle. A model of reentry based on anisotropic discontinuous propagation. Circulation Research. 1988;62:811-832 68. Sadoshima J, Izumo S. Molecular characterization of angiotensin ii--induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the at1 receptor subtype. Circulation Research. 1993;73:413-423 69. Sadoshima J, Izumo S. Molecular characterization of angiotensin ii--induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the at1 receptor subtype. Circulation Research. 1993;73:413-423 70. Cauchemez B, Haissaguerre M, Fischer B, Thomas O, Clementy J, Coumel P. Electrophysiological effects of catheter ablation of inferior vena cava-tricuspid annulus isthmus in common atrial flutter. Circulation. 1996;93:284-294 71. Poty H, Saoudi N, Abdel Aziz A, Nair M, Letac B. Radiofrequency catheter ablation of type 1 atrial flutter. Prediction of late success by electrophysiological criteria. Circulation. 1995;92:1389-1392 72. Lin Y-J, Tai C-T, Huang J-L, Liu T-Y, Lee P-C, Ting C-T, Chen S-A. Characteristics of virtual unipolar electrograms for detecting isthmus block during radiofrequency ablation of typical atrial flutter. Journal of the American College of Cardiology. 2004;43:2300-2304 73. Natale A, Newby KH, Pisan E, Leonelli F, Fanelli R, Potenza D, Beheiry S, Tomassoni G. Prospective randomized comparison of antiarrhythmic therapy versus first-line radiofrequency ablation in patients with atrial flutter. Journal of the American College of Cardiology. 2000;35:1898-1904 74. Redfearn D, Skanes A, Gula L, Krahn A, Yee R, Klein G. Cavotricuspid isthmus conduction is dependent on underlying anatomic bundle architecture: Observations using a maximum voltage-guided ablation technique. Journal of Cardiovascular Electrophysiology. 2006;17:832-838 75. Poty H, Saoudi N, Nair M, Anselme F, Letac B. Radiofrequency catheter ablation of atrial flutter. Further insights into the various types of isthmus block: Application to ablation during sinus rhythm. Circulation. 1996;94:3204-3213 76. Chen J, de Chillou C, Basiouny T, Sadoul N, Filho JD, Magnin Poull I, Messier M, Aliot E. Cavotricuspid isthmus mapping to assess bidirectional block during common atrial flutter radiofrequency ablation. Circulation. 1999;100:2507-2513 77. Anselme F, Klug D, Scanu P, Poty H, Lacroix D, Kacet S, Cribier A, Saoudi N. Randomized comparison of two targets in typical atrial flutter ablation. The American Journal of Cardiology. 2000;85:1302-1307 78. Tsai CF, Tai CT, Yu WC, Chen YJ, Hsieh MH, Chiang CE, Ding YA, Chang MS, Chen SA. Is 8-mm more effective than 4-mm tip electrode catheter for ablation of typical atrial flutter? Circulation. 1999;100:768-771 79. Shah DC, Takahashi A, Jas P, Hocini M, Peng JT, Clementy J, Hassaguerre M. Tracking dynamic conduction recovery across the cavotricuspid isthmus. Journal of the American College of Cardiology. 2000;35:1478-1484 80. Da Costa A, Jamon Y, Romeyer-Bouchard C, Thvenin J, Messier M, Isaaz K. Catheter selection for ablation of the cavotricuspid isthmus for treatment of typical atrial flutter. Journal of InterventionalCardiac Electrophysiology. 2006;17:93-101 81. Scave C, Jas P, Hsu L-F, Sanders P, Hocini M, Weerasooriya R, Macle L, Raybaud F, Clementy J, Hassaguerre M. Prospective randomised comparison of irrigated-tip and large-tip catheter ablation of cavotricuspid isthmus-dependent atrial flutter. European Heart Journal. 2004;25:963-969 82. Da Costa A, Cucherat M, Pichon N, Messier M, Laporte S, Romyer-Bouchard C, Mismetti P, Lopez M, Isaaz K. Comparison of the efficacy of cooled-tip and 8-mm-tip catheters for radiofrequency catheter ablation of the cavotricuspid isthmus: A meta-analysis. Pacing and Clinical Electrophysiology. 2005;28:1081-1087 83. Da Costa A, Faure E, Thvenin J, Messier M, Bernard S, Abdel K, Robin C, Romeyer C, Isaaz K. Effect of isthmus anatomy and ablation catheter on radiofrequency catheter ablation of the cavotricuspid isthmus. Circulation. 2004;110:1030-1035 84. Ventura R, Willems S, Weiss C, Flecke J, Risius T, Rostock T, Hoffmann M, Meinertz T. Large tip electrodes for successful elimination of atrial flutter resistant to conventional catheter ablation. Journal of Interventional Cardiac Electrophysiology. 2003;8:149-154 85. Jas P, Hassaguerre M, Shah DC, Takahashi A, Hocini M, Lavergne T, Lafitte S, Le Mouroux A, Fischer B, Clmenty J. Successful irrigated-tip catheter ablation of atrial flutter resistant to conventional radiofrequency ablation. Circulation. 1998;98:835-838 86. Da Costa A, Romeyer-Bouchard C, Dauphinot V, Lipp D, Abdellaoui L, Messier M, Thévenin J, Barthélémy J-C, Isaaz K. Cavotricuspid isthmus angiography predicts atrial flutter ablation efficacy in 281 patients randomized between 8 mm- and externally irrigated-tip catheter. European Heart Journal. 2006;27:1833-1840 87. Asirvatham SJ. Correlative anatomy and electrophysiology for the interventional electrophysiologist. Journal of Cardiovascular Electrophysiology. 2009;20:113-122 88. Da Costa A, Mourot S, RomÉYer-Bouchard C, ThÉVenin J, Samuel B, Kihel A, Isaaz K. Anatomic and electrophysiological differences between chronic and paroxysmal forms of common atrial flutter and comparison with controls. Pacing and Clinical Electrophysiology. 2004;27:1202-1211 89. Simon RDB, Rinaldi CA, Baszko A, Gill JS. Electroanatomic mapping of the right atrium with a right atrial basket catheter and three-dimensional intracardiac echocardiography. Pacing and ClinicalElectrophysiology. 2004;27:318-326 90. Scaglione M, Caponi D, Di Donna P, Riccardi R, Bocchiardo M, Azzaro G, Leuzzi S, Gaita F. Typical atrial flutter ablation outcome: Correlation with isthmus anatomy using intracardiac echo 3d reconstruction. Europace. 2004;6:407-417 91. Komatsu S, Okuyama Y, Omori Y, Oka T, Mizuno H, Honda T, Fujisawa Y, Kiyomoto M, Koshimune Y, Higashide T, Hirayama A, Kodama K. Evaluation of the cavotricuspid isthmus and right atrium by multidetector-row computed tomography in patients with common atrial flutter. Heart and Vessels. 2005;20:264-270 92. Heidbchel H, Willems R, van Rensburg H, Adams J, Ector H, Van de Werf F. Right atrial angiographic evaluation of the posterior isthmus: Relevance for ablation of typical atrial flutter. Circulation. 2000;101:2178-2184 93. Cabrera JA, Sanchez Quintana D, Ho SY, Medina A, Wanguemert F, Gross E, Grillo J, Hernandez E, Anderson RH. Angiographic anatomy of the inferior right atrial isthmus in patients with and without history of common atrial flutter. Circulation. 1999;99:3017-3023 94. Gami A, Edwards W, Lachman N, Friedman P, Talreja D, Munger T, Hammill S, Packer D, Asirvatham S. Electrophysiological anatomy of typical atrial flutter: The posterior boundary and causes for difficulty with ablation. Journal of Cardiovascular Electrophysiology. 2010;21:144-149 95. Morton J, Sanders P, Davidson N, Sparks P, Vohra J, Kalman J. Phased-array intracardiac echocardiography for defining cavotricuspid isthmus anatomy during radiofrequency ablation of typical atrial flutter. Journal of Cardiovascular Electrophysiology. 2003;14:591-597 96. Sinha A, Nanda N, Misra V, Khanna D, Dod H, Vengala S, Mehmood F, Singh V. Live three-dimensional transthoracic echocardiographic assessment of transcatheter closure of atrial septal defect and patent foramen ovale. Echocardiography. 2004;21:749-753 97. Fukumoto A, Yaku H, Doi K, Ito H, Numata S, Hayashida K, Inoue T, Akabame S, Oda Y, Matsubara H, Nishimura T. Images in cardiovascular medicine. Continuous thrombus in the right and left atria penetrating the patent foramen ovalis. Circulation. 2005;112:e143-e144 98. Pharr J, West M, Kusumoto F, Figueredo V. Prominent crista terminalis appearing as a right atrial mass on transthoracic echocardiogram. Journal of the American Society of Echocardiography. 2002;15:753-755 99. Chen J-Y, Hsu H-B, Chang K-C, Huang SKS. An extensive recess in the cavotricuspid isthmus identified by transthoracic three-dimensional echocardiography in atrial flutter ablation. Journal of Cardiovascular Electrophysiology. 2009;20:1291-1291 100. Poty H, Saoudi N, Abdel Aziz A, Nair M, Letac B. Radiofrequency catheter ablation of type 1 atrial flutter. Prediction of late success by electrophysiological criteria. Circulation. 1995;92:1389-1392 101. Cabrera JA, Sanchez Quintana D, Ho SY, Medina A, Anderson RH. The architecture of the atrial musculature between the orifice of the inferior caval vein and the tricuspid valve: The anatomy of the isthmus. Journal of Cardiovascular Electrophysiology. 1998;9:1186-1195 102. Hagendorff A, Schumacher B, Kirchhoff S, Lüderitz B, Willecke K. Conduction disturbances and increased atrial vulnerability in connexin40-deficient mice analyzed by transesophageal stimulation. Circulation. 1999;99:1508-1515 103. Firouzi M, Ramanna H, Kok B, Jongsma HJ, Koeleman BPC, Doevendans PA, Groenewegen WA, Hauer RNW. Association of human connexin40 gene polymorphisms with atrial vulnerability as a risk factor for idiopathic atrial fibrillation. Circulation Research. 2004;95:e29-e33 104. Schmidt H, Fazekas F, Kostner GM, van Duijn CM, Schmidt R. Angiotensinogen gene promoter haplotype and microangiopathy-related cerebral damage : Results of the austrian stroke prevention study. Stroke. 2001;32:405-412 105. Schmidt H, Aulchenko YS, Schweighofer N, Schmidt R, Frank S, Kostner GM, Ott E, van Duijn C. Angiotensinogen promoter b-haplotype associated with cerebral small vessel disease enhances basal transcriptional activity. Stroke. 2004;35:2592-2597 106. Lamas GA, Lee K, Sweeney M, Leon A, Yee R, Ellenbogen K, Greer S, Wilber D, Silverman R, Marinchak R, Bernstein R, Mittleman RS, Lieberman EH, Sullivan C, Zorn L, Flaker G, Schron E, Orav EJ, Goldman L. The mode selection trial (most) in sinus node dysfunction: Design, rationale, and baseline characteristics of the first 1000 patients. American Heart Journal. 2000;140:541-551 107. Nielsen JC, Thomsen PEB, Højberg S, Møller M, Vesterlund T, Dalsgaard D, Mortensen LS, Nielsen T, Asklund M, Friis EV, Christensen PD, Simonsen EH, Eriksen UH, Jensen GVH, Svendsen JH, Toff WD, Healey JS, Andersen HR. A comparison of single-lead atrial pacing with dual-chamber pacing in sick sinus syndrome. European Heart Journal. 2011;32:686-696 108. Kowey PR, Kocovic DZ. Ambulatory electrocardiographic recording. Circulation. 2003;108:e31-e33 109. Hammill SC, Sugrue DD, Gersh BJ, Porter CB, Osborn MJ, Wood DL, Holmes DR. Clinical intracardiac electrophysiologic testing: Technique, diagnostic indications, and therapeutic uses. Mayo Clinic proceedings. 1986;61:478-503 110. NARULA OS, SAMET P, JAVIER RP. Significance of the sinus-node recovery time. Circulation. 1972;45:140-158 111. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: Analysis and visualization of ld and haplotype maps. Bioinformatics. 2005;21:263-265 112. Tsai C-T, Lai L-P, Lin J-L, Chiang F-T, Hwang J-J, Ritchie MD, Moore JH, Hsu K-L, Tseng C-D, Liau C-S, Tseng Y-Z. Renin-angiotensin system gene polymorphisms and atrial fibrillation. Circulation. 2004;109:1640-1646 113. Fallin D, Cohen A, Essioux L, Chumakov I, Blumenfeld M, Cohen D, Schork NJ. Genetic analysis of case/control data using estimated haplotype frequencies: Application to apoe locus variation and alzheimer''s disease. Genome Research. 2001;11:143-151 114. Ardlie KG, Kruglyak L, Seielstad M. Patterns of linkage disequilibrium in the human genome. Nature Reviews. Genetics. 2002;3:299-309 115. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D. The structure of haplotype blocks in the human genome. Science. 2002;296:2225-2229 116. Hladikova M, Vašků A, Štourač P, Benešová Y, Bednařík J. Two frequent polymorphisms of angiotensinogen and their association with multiple sclerosis progression rate. Journal of the Neurological Sciences. 2011;303:31-34 117. Inoue I, Nakajima T, Williams CS, Quackenbush J, Puryear R, Powers M, Cheng T, Ludwig EH, Sharma AM, Hata A, Jeunemaitre X, Lalouel JM. A nucleotide substitution in the promoter of human angiotensinogen is associated with essential hypertension and affects basal transcription in vitro. The Journal of Clinical Investigation. 1997;99:1786-1797 118. Gavazzi G, Deffert C, Trocme C, Schppi M, Herrmann F, Krause K-H. Nox1 deficiency protects from aortic dissection in response to angiotensin ii. Hypertension. 2007;50:189-196 119. Moltzer E, te Riet L, Swagemakers SMA, van Heijningen P, Vermeij M, van Veghel R, Bouhuizen A, van Esch JHM, Lankhorst S, Ramnath NWM, de Waard M, Duncker D, van der Spek PJ, Rouwet E, Danser AHJ, Essers J. Impaired vascular contractility and aortic wall degeneration in fibulin-4 deficient mice: Effect of angiotensin ii type 1 (at1) receptor blockade. Plos One. 2011;6:e23411-e23411 120. Cao RY AT, Ford MD, Piomelli U, Funk CD. The murine angiotensin ii-induced abdominal aortic aneurysm model: Rupture risk and inflammatory progression patterns. Front Pharmacol. 2010;1:7 121. Chang C-P, Liu J-C, Liou Y-M, Chang S-S, Chen J-Y. The role of false lumen size in prediction of in-hospital complications after acute type b aortic dissection. Journal of the American College of Cardiology. 2008;52:1170-1176 122. Eagleton M, Xu J, Liao M, Parine B, Chisolm G, Graham L. Loss of stat1 is associated with increased aortic rupture in an experimental model of aortic dissection and aneurysm formation. Journal of Vascular Surgery. 2010;51:951-961 123. Qin Z. Newly developed angiotensin ii-infused experimental models in vascular biology. Regulatory Peptides. 2008;150:1-6 124. Saraff K, Babamusta F, Cassis L, Daugherty A. Aortic dissection precedes formation of aneurysms and atherosclerosis in angiotensin ii-infused, apolipoprotein e-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology. 2003;23:1621-1626 125. Takeshita S, Sakamoto S, Kitada S, Akutsu K, Hashimoto H. Angiotensin-converting enzyme inhibitors reduce long-term aortic events in patients with acute type b aortic dissection. Circulation Journal. 2008;72:1758-1761 126. Tieu B, Lee C, Sun H, Lejeune W, Recinos A, Ju X, Spratt H, Guo D-C, Milewicz D, Tilton R, Brasier A. An adventitial il-6/mcp1 amplification loop accelerates macrophage-mediated vascular inflammation leading to aortic dissection in mice. The Journal of Clinical Investigation. 2009;119:3637-3651 127. Chen X-f, Wang J-a, Hou J, Gui C, Tang L-j, Chen X-q, Xie X-j, Jiang J-j, Cai J-f, Chen H-s, Lu H-s, Chen H. Extracellular matrix metalloproteinase inducer (emmprin) is present in smooth muscle cells of human aneurysmal aorta and is induced by angiotensin ii in vitro. Clinical Science. 2009;116:819-826 128. Estrera AL, Miller CC, Safi HJ, Goodrick JS, Keyhani A, Porat EE, Achouh PE, Meada R, Azizzadeh A, Dhareshwar J, Allaham A. Outcomes of medical management of acute type b aortic dissection. Circulation. 2006;114:I-384-I-389 129. Trimarchi S, Nienaber CA, Rampoldi V, Myrmel T, Suzuki T, Bossone E, Tolva V, Deeb MG, Upchurch GR, Cooper JV, Fang J, Isselbacher EM, Sundt TM, Eagle KA, Investigators obotI. Role and results of surgery in acute type b aortic dissection. Circulation. 2006;114:I-357-I-364 130. Hagan PG, Nienaber CA, Isselbacher EM, Bruckman D, Karavite DJ, Russman PL, Evangelista A, Fattori R, Suzuki T, Oh JK, Moore AG, Malouf JF, Pape LA, Gaca C, Sechtem U, Lenferink S, Deutsch HJ, Diedrichs H, Marcos y Robles J, Llovet A, Gilon D, Das SK, Armstrong WF, Deeb GM, Eagle KA. The international registry of acute aortic dissection (irad): New insights into an old disease. The Journal of American Medical Association. 2000;283:897-903 131. Anagnostopoulos CE, Prabhakar MJ, Kittle CF. Aortic dissections and dissecting aneurysms. The American journal of cardiology. 1972;30:263-273 132. Wheat MW. Acute dissecting aneurysms of the aorta: Diagnosis and treatment--1979. The American Heart Journal. 1980;99:373-387 133. Roberts WC. Aortic dissection: Anatomy, consequences, and causes. The American Heart Journal. 1981;101:195-214 134. Hirst AE, Johns VJ, Kime SW. Dissecting aneurysm of the aorta: A review of 505 cases. Medicine. 1958;37:217-279 135. Nienaber CA, Eagle KA. Aortic dissection: New frontiers in diagnosis and management. Circulation. 2003;108:628-635 136. Roseborough G, Burke J, Sperry J, Perler B, Parra J, Williams GM. Twenty-year experience with acute distal thoracic aortic dissections. Journal of vascular surgery : official publication, the Society for Vascular Surgery. 2004;40:235-246 137. Suzuki T, Mehta RH, Ince H, Nagai R, Sakomura Y, Weber F, Sumiyoshi T, Bossone E, Trimarchi S, Cooper JV, Smith DE, Isselbacher EM, Eagle KA, Nienaber CA. Clinical profiles and outcomes of acute type b aortic dissection in the current era: Lessons from the international registry of aortic dissection (irad). Circulation. 2003;108:II-312-II-317 138. Erbel R, Alfonso F, Boileau C, Dirsch O, Eber B, Haverich A, Rakowski H, Struyven J, Radegran K, Sechtem U, Taylor J, Zollikofer C, Klein WW, Mulder B, Providencia LA. Diagnosis and management of aortic dissection. European Heart Journal. 2001;22:1642-1681 139. Miller DC, Mitchell RS, Oyer PE, Stinson EB, Jamieson SW, Shumway NE. Independent determinants of operative mortality for patients with aortic dissections. Circulation. 1984;70:I153-I164 140. Glower DD, Fann JI, Speier RH, Morrison L, White WD, Smith LR, Rankin JS, Miller DC, Wolfe WG. Comparison of medical and surgical therapy for uncomplicated descending aortic dissection. Circulation. 1990;82:IV39-IV46 141. Fann JI, Miller DC. Aortic dissection. Annals of Vascular Surgery. 1995;9:311-323 142. Chirillo F, Marchiori MC, Andriolo L, Razzolini R, Mazzucco A, Gallucci V, Chioin R. Outcome of 290 patients with aortic dissection. A 12-year multicentre experience. European Heart Journal. 1990;11:311-319 143. Jamieson WR, Munro AI, Miyagishima RT, Allen P, Tyers GF, Gerein AN. Aortic dissection: Early diagnosis and surgical management are the keys to survival. Canadian Journal of Surgery. 1982;25:145-149 144. Sueyoshi E, Sakamoto I, Hayashi K, Yamaguchi T, Imada T. Growth rate of aortic diameter in patients with type b aor
摘要: 病竇症候群是一群因為竇房節功能異常引起的心律疾病,約占心臟節律器置放病人的50%;病理學上呈現的是竇房節及心房纖維化。家族性病竇症候群的產生被認為與離子通道的突變有關; 然而,有關非家族性病竇症候群的研究機轉卻很少。非家族性病竇症候群經常伴隨著心房撲動以及表現頻-緩脈症候群。右心房的下腔靜脈三尖瓣峽是一個位於心房產生迴旋迴路重要的緩慢傳導區;心房纖維化及肌纖維特別的排列方式被認為是和此區域傳導緩慢的機轉有關。相關的研究發現指出:心臟組織的纖維化可能與腎素–血管收縮素系統上升調控有關。因此,腎素–血管收縮素系統在心房撲動機轉上可能扮演著重要角色。心導管高頻燒灼手術阻斷下腔靜脈三尖瓣峽區的手術被認為是處理心房撲動的優先選擇方法,下腔靜脈三尖瓣峽區結構的變異被報告與高頻燒灼手術的困難有關。然而,與高頻燒灼手術的困難有關的詳細的結構變異預測因子尚未被明確的報告。我們使用經胸心臟超音波儀以評估下腔靜脈三尖瓣峽區的結構變異,發現峽區上歐氏脊的結構變異是心房撲動高頻燒灼手術困難的獨立預後因子。 本論文旨在利用基因學的研究方法來探討“非家族性病竇症候群的可能致病基因和病理機轉”。主要的研究發現為“血管收縮素原啟動子基因的多形性性狀可以調控血管收縮素原的表現,以及影響非家族性病竇症候群疾病的易感性”。 依據基因與疾病的關聯研究,我們發現腎素–血管收縮素系統和非家族性病竇症候群的疾病易感性有關。 除此之外,腎素–血管收縮素系統也曾被報告和其它的心血管疾病相關。 主動脈剝離是一種因主動脈內皮裂傷引起的可致命的心血管疾病。腎素–血管收縮素系統的上升調控曾被報告和主動脈剝離產生的機轉有關,另外主動脈剝離的臨床預後的預測因子也是非常重要的,然而,很少研究報告提出結論。我們運用電腦斷層影像來尋求主動脈剝離預後的解剖學預測因子, 發現主動脈剝離偽腔大小是主動脈剝離預後的獨立預後因子。 總而言之,非家族性病竇症候群的疾病易感性和腎素–血管收縮素系統的基因表現密切相關。我們的研究報告提供了非家族性病竇症候群疾病易感性的生物學預測因子,也提出了和非家族性病竇症候群及腎素–血管收縮素系統相關的心房撲動和主動脈剝離的預後的臨床預測因子。我們認為腎素–血管收縮素系統和非家族性病竇症候群及其相關的心血管疾病的病生理基轉密切相關。
Sick sinus syndrome (SSS) is a group of abnormal heart rhythm disorders that result from sinus node malfunction. The syndrome accounts for approximately 50% of pacemaker implantations for bradyarrhythmia. The pathologic findings of SSS have revealed fibrotic change over the sinus node and atrium. Evidences suggest genetic mutations in ion channels may lead to familial SSS. However, limited study is available regarding the mechanism of age-related non-familial SSS. Non-familial SSS is frequently associated with an atrial flutter and presents as tachycardia-bradycardia syndrome. The cavotricuspid isthmus (CTI) is a critical and slow conduction zone of the reentry circuit. Atrial fibrosis and the architecture of the atrial musculature have been suggested to be associated with the underlying mechanism of the slow conduction zone. Myocardial fibrosis is related to up-regulation of rennin-angiotensin system (RAS). These findings indicate the role of RAS in the underlying mechanism of atrial flutter. Radiofrequency catheter ablation therapy to block the CTI has been suggested as the method of choice for atrial flutter management. Anatomical variants of CTI have been related to the difficulty of ablation therapy. However, the detailed anatomical predictors of the CTI for the difficult procedure of radiofrequency catheter ablation have not been well described. We utilized transthoracic echocardiography to evaluate the anatomy of the CTI and found that a Eustachian valve variation of the CTI is an independent predictor for the difficult procedure of AFL ablation. The primary objective of the present study is utilizing gene study methods to investigate the possible candidate gene and underlying pathologic mechanism for non-familial SSS. We found that angiotensinogen promoter polymorphisms are associated with susceptibility to non-familial SSS through the modulation of angiotensinogen expression. In a gene association study, we found that the RAS system was associated with susceptibility to non-familial SSS. In addition, the RAS has also been reported to be associated with other cardiovascular disorders. Aortic dissection is a lethal cardiovascular disorder due to intimal tearing. The up-regulation in the RAS has been reported to be related to the underlying mechanism of aortic dissection. Besides, the clinical predictors for the outcome of aortic dissection are important. However, few reports have addressed this issue. We utilized computed tomography imaging to identify the anatomical predictors of the outcomes of aortic dissection. The false lumen size of an aortic dissection was found to be an independent predictor for the outcomes of aortic dissection. In conclusion, susceptibility to non-familial SSS is associated with RAS gene expression. This study identifies a biological predictor for susceptibility to non-familial SSS and clinical predictors for the outcomes of atrial flutter and aortic dissection, which are linked to non-familial SSS and RAS. The RAS is suggested to be closely linked to the pathophysiologic mechanisms of non-familial SSS and related cardiovascular diseases.
URI: http://hdl.handle.net/11455/20296
其他識別: U0005-2201201318410600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2201201318410600
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.