Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/20305
標題: 結球白菜和不結球白菜花粉超低溫冷凍保存流程之探討
Investigation on Pollen Cryopreservation Protocols of Brassica campestris L. subup. pekinensis and Brassica campetris L. subsp. chinensis
作者: 張心怡
Chang, Hsin-Yi
關鍵字: 結球白菜
Brassica campestris L. subup. pekinensis
不結球白菜
花粉
超低溫冷凍保存
花粉活性
含水量
Brassica campetris L. subsp. chinensis
Pollen
Cryopreservation
Pollen viability
water content
出版社: 生命科學系所
引用: 王三太、林子凱。(2005)。臺灣農家要覽增修訂三版 農作篇(二) 貳.蔬菜 五.葉菜類 (十四)小白菜。農業委員會臺灣農家要覽增修訂三版策劃委員會。pp 423-28。 李家文。(1984)。中國的白菜。中國農業出版社。 孟金陵。(1995)。植物生殖遺傳學。科學出版社。 洪美玲。(1980)。臺灣農家要覽(上) 園藝作物-蔬菜篇 16.結球白菜。財團法人豐年社。pp.951-955 張連宗。(2005)。臺灣農家要覽增修訂三版 農作篇(二) 貳.蔬菜 五.葉菜類 (四)結球白菜。農業委員會臺灣農家要覽增修訂三版策劃委員會。pp. 377-84 張簡秀容、張粲如(1995)。臺灣短期葉菜類產業之概況及展望。臺灣蔬菜產業改進研討會專集 2, 153-166 曾夢蛟、尤進欽。(2004)。 生物技術在蔬菜產業上之應用與展望. 臺灣蔬菜產業發展研討會專刊。pp. 56-70 廖芳心。(1995)。結球葉菜類產業現況分析與展望。臺灣蔬菜產業改進研討會專集。pp. 133-152. 尹佳蕾、趙惠恩。(2005)。花粉生活力影響因素及花粉貯藏概述。中國農學通報4, 110-114 王欽麗、盧龍斗、吳小琴、陳祖鏗、林金星。(2002)。花粉的保存及其生活力測定。植物學通報 19(3):365-73 王源龍。(2003)。番木瓜莖頂之液態氮超低溫保存方法及傷害之探討。國立中興大學生命科學研究所博士論文。 左丹丹、明軍、劉春、王麗娜。(2007)。植物花粉生活力檢測技術進展。安徽農業科學35(16):4742- 45 朱麗淑。(1996)。不同前處理對番木瓜莖頂超低溫保存存活率之影響。國立中興大學生命科學院植物學研究所碩士論文。 江雨生、高鑄九。(1989)。桃、梨花粉的超低溫 (-196℃) 保存。上海農業學報 5, 1-8 江徽之。(2012)。臺灣白花蝴蝶蘭莖頂玻璃化法超低溫冷凍保存流程之探討。中興大學生命科學系所學位論文。 艾鹏飛、羅正榮。(2004)。柿品種’禪寺丸’花粉超低溫保存研究。華中農業大學學報 23, 563-565. 李坤紘。(2008)。臺灣藥用植物食茱萸與牛樟玻璃化法超低溫冷凍保存前處理流程之探討。國立中興大學生命科學系碩士論文。 李祥菁。(2000)。不同前處理對山藥腋芽低溫冷凍保存存活率之影響。國立中興大學生命科學院植物學研究所碩士論文。 林怡君。(2001)。台農57、台農68品種甘藷超低溫冷陳保存前處理流程之探討。國立中興大學生命科學院植物學研究所碩士論文。 林經剴。(2009)。臺灣原生藥用植物石薺薴和六角草玻璃化法超低溫冷凍保存流程之探討。中興大學生命科學系所學位論文. 林維熙。(2008)。臺灣原生藥用植物高氏柴胡玻璃質化法超低溫冷凍保存流程之探討。中興大學生命科學系所學位論文。 林燕如。(2004)。蔗糖前處理對臺農31、臺農新31及臺農60號甘藷超低溫冷凍保存之影響。國立中興大學生命科學院植物學研究所碩士論文。 邱智聖。(2011)。青花菜和臺灣蝴蝶蘭花粉乾燥法超低溫冷凍保存流程之探討。中興大學生命科學系所學位論文。 洪永倫。(2008)。大蒜玻璃化法超低溫冷凍保存流程之探討。國立中興大學生命科學系碩士論文。 胡馨分。(2006)。北蕉玻璃化法超低溫冷凍保存前處理流程之探討。國立中興大學生命科學系碩士論文。 張正桓。(2006)。苦瓜花粉形態、花粉活力、授粉及果實生長之研究。中興大學園藝學系所學位論文。 梁立、徐秉芳、鄭從義、周嫦。(1993)。紫菜苔花粉超低温保存及其原生質體分離。植物學報35, 733-738. 莊蟬伊。(2003)。蔗糖前處理對山藥種間超低溫冷凍保存及生理之影響。國立中興大學生命科學系碩士論文。 郭宏遠、宋妤。(2007)。花粉保存與利用。植物種苗 9, 48-58. 陳岱陽。(2008)。臺灣四種中草藥-地筍、臺灣黃岑、石香薷、生毛將軍玻璃質化法超低溫冷凍保存處理流程之探討。國立中興大學生命科學系碩士論文。 陳玟君。(2006)。台農13號鳳梨玻璃化法超低溫冷凍保存前處理流程之探討。國立中興大學生命科學系碩士論文。 陳玟潔。(2012)。沉香玻璃化法超低溫冷凍保存流程之探討。國立中興大學生命科學系碩士論文。 陳亮憓、蔡秀隆、鄭延景。(2008)。不同溫度下淹水對小白菜產量與品質的影響。臺灣農學會報 9, 446-459. 陳婉屏。(2003)。台南育6號樹薯超低溫冷凍保存前處理流程之探討。國立中興大學生命科學研究所碩士論文。 陳瓊均。(2006)。巨峰與蜜紅葡萄玻璃化法超低溫冷凍保存前處理流程之探討。國立中興大學生命科學系所碩士論文。 彭燕玲。(2012)。臺灣原生植物青脆枝玻璃化法超低溫冷凍保存流程之探討。中興大學生命科學系所學位論文。 黃敬涵。(2011)。臺灣原生植物牛樟玻璃化法超低溫冷凍保存流程之探討。中興大學生命科學系所學位論文。 楊忠祐。(2002)。台農69號品種甘藷之超低溫冷陳保存研究。國立中興大學植物學研究所碩士論文。 楊俊剛、徐凱、佟二健、曹兵、倪小會、許俊香。(2010)。控釋施肥與普通氮肥混施對春白菜產量、品質和氮素損失的影響。應用生態學報 21, 3147-3153. 詹金鳳。(2010)。臺灣原生藥用植物艾納香玻璃化法超低溫冷凍保存流程之探討. 中興大學生命科學系所學位論文。 趙宏波、陳發棣、房偉民。(2006)。菊屬植物花粉生活力檢測方法的比較。 浙江林學院學報 23(4),406-409 劉倩倩、徐一帆、林新春、方偉。(2012)。雷竹花粉萌發率及貯藏方法研究。福建林學院學報 32(2),142-150 劉淑芬。(2005)。台農16號鳳梨玻璃化法超低溫冷凍保存前處理流程之探討。國立中興大學生命科學系碩士論文。 蔡淑芬。(2004)。臺農25、臺農64與臺農66品種甘藷玻璃化法超低溫冷凍保存前處理流程之探討。國立中興大學生命科學系碩士論文。 戴元熏。(2012)。花椰菜和青花菜花粉乾燥法超低溫冷凍保存流程之探討。中興大學生命科學系所學位論文。 羅文陽。(2007)。番木瓜玻璃質化法超低溫冷凍保存流程之探討。國立中興大學生命科學系碩士論文。 羅智明。(1998)。不同前處理對原生報歲蘭超低溫冷凍保存傷害之探討。國立中興大學生命科學院植物學研究所碩士論文。 譚其猛。(1979)。試論大白菜品種的起源,分布和演化。中國農業科學。4, 68-75. 蘇上傑。(2013)。臺灣原生藥用植物擬紫蘇草莖頂玻璃化法超低溫冷凍保存流程之探討。中興大學生命科學系所學位論文。 顧亞東、張華麗、張西西。(2011)。非洲鳳仙花粉萌發條件及花粉活力研究。北方園藝。6, 65-67 行政院農業委員會101年農業統計年報。http://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx 中央氣象局氣候統計-每月氣象資料。 http://www.cwb.gov.tw/V7/climate/monthlyData/mD.htm Dafni, A., and Firmage, D. (2000). Pollen viability and longevity: practical, ecological and evolutionary implications. In Pollen and Pollination. Springer, pp.113-132. Ganeshan, S., and Rajasekharan, P. (2000). Conservation of nuclear genetic diversity (NGD) in Citrus genepool: implications in citrus breeding and genetic conservation. Paper presented at: Hi tech citrus management, Proceedings of international symposium on citriculture. Nagpur, pp.85-90 Leprince, O., and Buitink, J. (2008). The glassy state in dry seeds and pollen. Plant Desiccation Tolerance. Blackwell, pp.193-214. Mathad, R., Vasudevan, S., and Patil, S. (2013). Cryo-preservation of pollen for hybrid seed production in hot pepper. Prospects in Bioscience: Addressing the Issues. Springer, pp. 273-276. Rubatzky, V., and Yamaguchi, M. (1997). World vegetables : principles, production, and nutritive values. Springer, pp.401-4 Shivanna, K.R., and Johri, B.M. (1985). The angiosperm pollen: structure and function. Wiley Eastern, pp.1-374 Stanley, R., and Linskens, H. (1974). Pollen: biology, biochemistry, management. Springer-Verlag, pp.1-307. Towill, L., and Walters, C. (2000). Cryopreservation of pollen. Cryopreservation of tropical germplasm Current research progress and application Ibarak, pp.115-129. Abdelgadir, H., Johnson, S., and Van Staden, J. (2012). Pollen viability, pollen germination and pollen tube growth in the biofuel seed crop Jatropha curcas (Euphorbiaceae). S. Afr. J. Bot. 79, 132-139. Adaniya, S. (2001). Optimal pollination environment of tetraploid ginger (Zingiber officinale Roscoe) evaluated by in vitro pollen germination and pollen tube growth in styles. Sci. Hortic.90, 219-226. Akutsu, M., and Sugiyama, K. (2008). Establishment of a long-term storage method for soft X-ray irradiated pollen in watermelon. Euphytica. 164, 303-308. Alburquerque, N., Garcia Montiel, F., and Burgos, L. (2007). Short communication. Influence of storage temperature on the viability of sweet cherry pollen. Span. J. Agric. Res. 5,86-90 Aronne, G. (1999). Effects of relative humidity and temperature stress on pollen viability of Cistus incanus and Myrtus communis. Grana 38, 364-367. Barnabas, B., and Rajki, E. (1981). Fertility of deep-frozen maize (Zea mays L.) pollen. Ann. Bot. 48, 861-864. Boudaher, F., Chebli, Y., and Geitmann, A. (2009). Optimization of conditions for germination of cold-stored Arabidopsis thaliana pollen. Plant cell reports. 28, 347-357. Brewbaker, J., and Kwack, B. (1963). The essential role of calcium ion in pollen germination and pollen tube growth. Am. J. of Bot. 859-865. Buitink, J., Walters, C., Hoekstra, F., and Crane, J. (1998). Storage behavior of Typha latifolia pollen at low water contents: Interpretation on the basis of water activity and glass concepts. Physiol. Plant. 103, 145-153. Chapman, L., and Goring, D. (2010). Pollen–pistil interactions regulating successful fertilization in the Brassicaceae. J. Exp. Bot. 61, 1987-1999. Chaudhury, R., Malik, S., and Rajan, S. (2010). An improved pollen collection and cryopreservation method for highly recalcitrant tropical fruit species of mango (Mangifera indica L.) and litchi (Litchi chinensis Sonn.). CryoLetters 31, 268-278. DeMauro, M. (1993). Relationship of breeding system to rarity in the lakeside daisy (Hymenoxys acaulis var. glabra). Conservation Biol. 7, 542-550. Dubouzet, J., Shimofurutachi, M., Arisumi, K.., Etoh, T., Matsuo, E., and Sakata, Y. (1993). Improvement of pollen germinability and storability in some Japanese Alliums. Memoirs of the Faculty of Agriculture, Kagoshima University 29, 65-74. Ercisli, S. (2007). Determination of pollen viability and in vitro pollen germination of Rosa dumalis and Rosa villosa. Bangl. J. Bot.36, 185-187. Fang, K., Zhang, L., and Lin, J. (2006). A rapid, efficient method for the mass production of pollen protoplasts from Pinus bungeana Zucc. ex Endl. and Picea wilsonii Mast. Flora. 201, 74-80. Fei, S., and Nelson, E. (2003). Estimation of pollen viability, shedding pattern, and longevity of creeping bentgrass on artificial media. Crop Science 43, 2177-2181. Firon, N., Nepi, M., and Pacini, E. (2012). Water status and associated processes mark critical stages in pollen development and functioning. Ann. Bot. 109, 1201-1214. Fonseca, A., and Westgate, M. (2005). Relationship between desiccation and viability of maize pollen. Field Crops Research 94, 114-125. Frankham, R. (2012). How closely does genetic diversity in finite populations conform to predictions of neutral theory? Large deficits in regions of low recombination. Heredity 108, 167-178. Franzon, R., Correa, E., and Raseira, M. (2005). In vitro pollen germination of feijoa (Acca sellowiana (Berg) Burret). Crop Breed. Appl. Biotechnol. 5, 229-233. Ganeshan, S. (1986). Cryogenic preservation of papaya pollen. Sci Hortic. 28, 65-70. Goraj, S., Libik-Konieczny, M., Surowka, E., Rozpadek, P., Kalisz, A., Libik, A., Nosek, M., Waligorski, P., and Miszalski, Z. (2012). Differences in the activity and concentration of elements of the antioxidant system in different layers of Brassica pekinensis head. J. Plant Physiol. 169, 1158-1164. Grilli Caiola, M., Di Somma, D., and Lauretti, P. (2011). Comparative study of pollen and pistil in Crocus sativus L.(Iridaceae) and allied species. Annali Di Botanica 58. Guarnieri, M., Speranza, A., Nepi, M., Artese, D., and Pacini, E. (2006). Ripe pollen carbohydrate changes in Trachycarpus fortunei: the effect of relative humidity. Sex. Plant Reprod. 19, 117-124. Guttormsen, G., and Moe, R. (1985). Effect of plant age and temperature on bolting in Chinese cabbage. Sci Hortic. 25, 217-224. Hanna, W., and Towill, L. (1995). Long-term pollen storage. Plant breeding reviews 13, 179-208. Harbaum, B., Hubbermann, E., Zhu, Z., and Schwarz, K. (2008). Impact of fermentation on phenolic compounds in leaves of pak choi (Brassica campestris L. ssp. chinensis var. communis) and Chinese leaf mustard (Brassica juncea coss). J. Agric. Food Chem. 56, 148-157. He, Y., Xue, W., Sun, Y., Yu, X., and Liu, P. (2000). Leafy head formation of the progenies of transgenic plants of Chinese cabbage with exogenous auxin genes. Cell research 10, 151-160. Herrero, M., and Johnson, R. (1980). High temperature stress and pollen viability of Maize1. Crop Sci 20, 796-800. Hoekstra, F. (1979). Mitochondrial development and activity of binucleate and trinucleate pollen during germination in vitro. Planta 145, 25-36. Islam, M., and Choi, H. (2009). Antidiabetic effect of Korean traditional Baechu (Chinese cabbage) kimchi in a type 2 diabetes model of rats. J. Med. Food 12, 292-297. Jain, A., and Shivanna, K. (1988). Storage of pollen grains in organic solvents: effect of organic solvents on leaching of phospholipids and its relationship to pollen viability. Ann. Bot. 61, 325-330. Jain, B., and Prajapati, P. (2010). Effect of sucrose, boron, calcium, magnesium and nitrate during in vitro pollen germination in Luffa aegyptiaca Mill. J. Pure and App. Sci. pp. 5-8. Jayaprakash, P., and Sarla, N. (2001). Development of an improved medium for germination of Cajanus cajan (L.) Millsp. pollen in vitro. J. Exp. Bot. 52, 851-855. Kakani, V., Prasad, P., Craufurd, P., and Wheeler, T. (2002). Response of in vitro pollen germination and pollen tube growth of groundnut (Arachis hypogaea L.) genotypes to temperature. Plant, Cell & Environment 25, 1651-1661. Khatun, S., and Flowers, T. (1995). The estimation of pollen viability in rice. J. Exp. Bot. 46, 151-154. Kim, S., and Rieseberg, L. (1999). Genetic architecture of species differences in annual sunflowers: implications for adaptive trait introgression. Genetics 153, 965-977. Koubouris, G., Metzidakis, I., and Vasilakakis, M. (2009). Impact of temperature on olive (Olea europaea L.) pollen performance in relation to relative humidity and genotype. Environ. Exp. Bot. 67, 209-214. Lansac, A., Sullivan, C., Johnson, B., and Lee, K. (1994). Viability and germination of the pollen of sorghum (Sorghum bicolor L. Moench). Ann. Bot. 74, 27-33. Ledesma, N., and Sugiyama, N. (2005). Pollen quality and performance in strawberry plants exposed to high-temperature stress. J. Am. Soc. Hortic. Sci. 130, 341-347. Lora, J., Oteyza, M., Fuentetaja, P., and Hormaza, J. (2006). Low temperature storage and in vitro germination of cherimoya (Annona cherimola Mill.) pollen. Sci Hortic. 108, 91-94. Marcellan, O., and Camadro, E. (1996). The viability of asparagus pollen after storage at low temperatures. Sci Hortic. 67, 101-104. Marquard, R. (1992). Fruit set of pecan requires a low percentage of live pollen in controlled pollination. HortScience 27. Mayer, E., and Gottsberger, G. (2000). Pollen viability in the genus Silene (Caryophyllaceae) and its evaluation by means of different test procedures. Flora. 195, 349-353. Mert, C. (2009). Temperature responses of pollen germination in walnut (Juglans regia L.). J. Biol. Environ. Sci.(3), 37-43. Mital, K. and Archana, M. (2012). In vitro pollen germination of Datura Metel L. (1) effect of sucrose. International Indexed Refereed Research Journal. pp. 57-58. Panella, L., Wheeler, L., and McClintock, M. (2009). Long-term survival of cryopreserved sugarbeet pollen. Journal of Sugar Beet Research 46, 1-9 Park, B., Liu, Z., Kanno, A., and Kameya, T. (2005). Genetic improvement of chinese cabbage for salt and drought tolerance by constitutive expression of a B. napus LEA gene. Plant Sci. 169, 553-558. Persia, D., Cai, G., Del Casino, C., Faleri, C., Willemse, M., and Cresti, M. (2008). Sucrose synthase is associated with the cell wall of tobacco pollen tubes. Plant physiol. 147, 1603-1618. Pierson, E., Miller, D., Callaham, D., Shipley, A., Rivers, B., Cresti, M., and Hepler, P. (1994). Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: effect of BAPTA-type buffers and hypertonic media. The Plant Cell 6, 1815-1828. Pinillos, V., and Cuevas, J. (2008). Standardization of the fluorochromatic reaction test to assess pollen viability. Biotechnic & Histochemistry 83, 15-21. Podsędek, A. (2007). Natural antioxidants and antioxidant capacity of Brassica vegetables: A review. LWT - Food Science and Technology 40, 1-11. Roberts, I., Gaude, T., Harrod, G., and Dickinson, H. (1983). Pollen-stigma interactions in Brassica oleracea; a new pollen germination medium and its use in elucidating the mechanism of self incompatibility. Theoret. Appl. Genetics 65, 231-238. Roeckel-Drevet, P., Digonnet, C., Matthys-Rochon, E., Champiat, D., and Dumas, C. (1995). Fertility of Zea mays pollen during dehydration: physiological steps outlined by nucleotide measurements. Plant physiol. bioch. 33, 289-294. Rosell, P., Herrero, M., and Galan Sauco, V. (1999). Pollen germination of cherimoya (Annona cherimola Mill.).: In vivo characterization and optimization of in vitro germination. Sci. Hortic. 81, 251-265. Sahoo, P., Tripathy, S., Mishra, B., Adhikari, S., Das, B., Nandi, S., Babu, P., Sarangi, N., and Ayyappan, S. (2005). Reproductive biology of Withania somnifera (L.) Dunal. Current Science 88, 1375. Shivanna, K., Linskens, H., and Cresti, M. (1991). Responses of tobacco pollen to high humidity and heat stress: viability and germinability in vitro and in vivo. Sex. Plant Reprod. 4, 104-109. Słomka, A., Kawalec, P., Kellner, K., Jędrzejczyk-Korycińska, M., Rostański, A., and Kuta, E. (2010). Was reduced pollen viability in Viola tricolor L. the result of heavy metal pollution or rather the tests applied? Acta. Biol. Cracov. Bot. 52, 123-127. Sparks, D., and Yates, I. (2002). Pecan pollen stored over a decade retains viability. Hort. Science 37, 176-177. Van Bilsen, D., and Hoekstra, F. (1993). Decreased membrane integrity in aging Typha latifolia L. pollen (accumulation of lysolipids and free fatty acids). Plant physiol. 101, 675-682. Van Bilsen, D., Hoekstra, F., Crowe, L., and Crowe, J. (1994). Altered phase behavior in membranes of aging dry pollen may cause imbibitional leakage. Plant physiol. 104, 1193-1199. Van Gelderen, E., Fossey, A., and Robbertse, P. (1995). The criteria of measurement of the inorganic acid test of pollen viability. S. Afr. J. Bot. 61, 253-259.
摘要: 本試驗以不同品系結球白菜 (Brassica campestris L. subup. pekinensis) 和不結球白菜 (Brassica campetris L. subsp. chinensis) 的花粉為材料,進行乾燥法超低溫冷凍保存,探討不同含水量對花粉體外和活體萌發率影響。 體外萌發結果顯示,自然乾燥一小時的各品系花粉在21 %蔗糖濃度的B&K培養基具萌發率較高。取出新鮮花苞內花藥,放在直徑2.2 cm的塑膠小盒,利用矽膠乾燥劑脫水處理,再經液態氮保存至少一週,回溫後塗抹於21%蔗糖濃度培養基,測試體外萌發率。結果顯示,各品系脫水40 ~ 60 min後,經液態氮保存至少一週,花粉開始具有體外萌發力。結球白菜’201’、’801’和’玉豐’保存至少一週的高萌發率組別,介於乾燥處理80 ~ 140 min,萌發率為11.5 ~ 13.4 %,此時花藥含水量介於4.7 ~ 18.2 % 之間。不結球白菜’三鳳’和’鳳珍’冷凍保存至少一週的高萌發率組別,介於乾燥處理60 ~ 100 min,萌發率為7.5 ~ 11.0 %,此時花藥含水量介於15.4 ~ 27.7 %之間。冷凍保存至少一年與一週的花粉體外萌發率無顯著差異(P<0.05)。 活體萌發則藉由授粉觀察結莢率、結籽數與種子萌發率。結球白菜’201’、’801’和’玉豐’各品系自交,於乾燥脫水處理80 min時具有較高結莢率,此時花藥含水量分別為21.2、15.2和23.0 %。雜交結果則因品系有差異,以’201’、’801’和’玉豐’為父本,分別和’玉豐’、’玉豐’和’801’雜交。活體萌發最佳處理組分別為脫水時間100、120和120 min,花藥含水量分別為13.1、7.5和5.4 %。不結球白菜’三鳳’和’鳳珍’最佳活體萌發處理組脫水時間80和60 min,花藥含水量介於18.2和27.7 %。各最佳處理組均具有一定結籽數與種子萌發率。冷凍保存至少一年乾燥處理60 ~ 100 min的組別,冷凍保存後,回溫授粉具結莢率結籽數和種子萌發率。 總結以上,結球白菜最佳處理組為花粉乾燥處理80 ~ 120 min,花藥含水量介於8.6 ~ 18.2 %之間;不結球白菜最佳處理組為花粉乾燥處理60 ~ 80 min,花藥含水量介於18.3 ~ 27.7 %之間。冷凍保存一週後,可達最佳體外萌發率和活體萌發率。利用乾燥法超低溫冷凍保存流程可有效長期保存結球白菜和不結球白菜花粉,並配合體外萌發率可快速檢驗花粉活性。使用上簡單方便,具實用價值,可應用於育種及種原保存。
In this study the pollen of Brassica campestris L. subup. pekinensis and Brassica campetris L. subsp. chinensis are used for drying protocols of cryopreservation, and investigated for the effect of different water content on pollen viability with in vitro and in vivo test. In vitro test showed the pollen of different lines treated with one hour air drying have highest pollen germination rate on B&K medium with 21% sucrose concentration. The test process removed the anther from fresh buds, and then placed it into small plastic bowl whith the diameter of 2.2 cm. The anther was then dehydrated by silica desiccant and storage in liquid nitrogen (-196°C) at least one week for cryopreservation. Afterwards, the pollen was rewarmed and then smeared on B&K medium with 21% sucrose concentration to exmine its in vitro germination rate. The result shows, after 40 ~ 60 minutes of dehydration and one week of nitrogen storage, lines of pollens produced the ability to germinate in the pollen tube. Brassica campestris L. subup. pekinensis ‘201’、’801’ and ‘Yu-Fong’ anther, which were dehydrated 80 ~ 140 min, produced a high pollen germination rate of 11.5 ~ 13.4 % while having 4.7 ~ 18.2 % water content. Brassica campetris L. subsp. chinensis ‘San-Fon’ and ‘Fon-Jan’ anther, which were dehydrated 60 ~ 100 minutes, also produced a high pollen germination rate of 7.5 ~ 11.0 %, while having 15.4 ~ 27.7 % water content. Pollens cryopreserved over one year maintain similar trends of in vivo germination rate compared with cryopreservation over one week. On the other hand, In vivo test shows Brassica campestris L. subup. pekinensis ‘201’,’801’ and ‘Yu-Fong’ with self-pollination have highest podding rate when it has been dehydrated for 80 minutes, with the water content of 21.2, 15.2 and 23.0 %; with cross-pollination on ‘Yu-Fong’, ‘Yu-Fong’ and ‘801’, the optimization treatment was dehydrated for 100,120 and 120 minutes, with the water content of 13.1, 7.5 and 5.4 %. Brassica campetris L. subsp. chinensis ‘San-Fon’ and ‘Fon-Jan’ with the optimization treatment was dehydrated 80 and 60 minutes, with the water content of 18.2 and 27.7 %.Generally speaking, the best group of different pollen lines produces a distinctive amount of seed yield and seed germination. Pollen for dehydrated 60 ~ 100 minutes and cryoperserved for one year stilling possess both podding and seeding ability. Based on these results, the research samples of Brassica campestris L. subup. pekinensis dehydrated 80 ~ 120 min, with the water content of 8.6 ~ 18.2 % and Brassica campetris L. subsp. chinensis dehydrated 60 ~ 80 min, with the water content of 18.3 ~ 27.7 %, both cryopreserved in liquid nitrogen for at least one week, reflects the best in vitro and in vivo germination rate. The drying protocol of cryopreservation is an effective long term storage option for Brassica campestris L. subup. pekinensis and Brassica campetris L. subsp. chinensis pollen. When combined with in vivo examination the pollen germination rate can rapidly tested. This protocol is simple to execute and carries practical usability on the breeding and germplasm conservation of Brassica campestris L. subup. pekinensis and Brassica campetris L. subsp. chinensis.
URI: http://hdl.handle.net/11455/20305
其他識別: U0005-1608201317424500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1608201317424500
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.