Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/20308
標題: 耐鹽植物冰花E2 UBC1與UBC2蛋白功能及與E3 McCPN1之專一性分析
Charcterization of ice plant E2 ubiquitin-conjugating enzymes UBC1 and UBC2 and their specificities to E3 ligase McCPN1
作者: 馬嘉柔
Ma, Chia-Jou
關鍵字: 冰花
ubiquitination
McCPN1
McUBC1
McUBC2
出版社: 生命科學系所
引用: 林亞君 (2009) 以酵母菌雙雜交法分析冰花鹽誘導蛋白 mcSKD1與mcSNF1和mcCPN1之間的交互作用。中興大學生命科學系研究所碩士論文。 周映孜 (2007) 以蛋白質交互作用分析耐鹽植物冰花腎型細胞累積耐鹽相關mcSKD1蛋白及其參與之高等植物耐鹽機制。中興大學生命科學系研究所博士論文。 黃女娟 (2010) 耐鹽植物冰花sucrose non-fermenting related kinase mcSNF1自行及受質磷酸化之活性探討。中興大學生命科學系研究所碩士論文。 陳玉嬋 (2005) 耐鹽植物冰花copine基因之分離與蛋白功能分析。中興大學生命科學系專題研究報告。 陳玉嬋 (2008) 具有E3 ligase 活性之冰花mcCPN1 基因表現和蛋白累積量的分析 。中興大學生命科學系研究所碩士論文。 楊邡郁 (2006) 冰花訊息傳導相關mcSNF1在鹽逆境下基因表現及蛋白累積之分析。中興大學生命科學系研究所碩士論文。 顏錫愷 (2000) 冰花傷害誘導蛋白WI12之組織專一性分析。中興大學生命科學系研究所博士論文。 Adams, P., Nelson, D., Yamada, S., Chmara, W., Jensen, R. G., Bohnert H. J., and Griffiths, H. (1998). Growth and development of Mesembryanthemum crystallinum (Aizoaceae). New Phytol. 138: 171-190. Aung, K., Lin, S. -I., Wu, C. -C., Huang, Y. -T., Su, C. -l., and Chiou, T. -J. (2006). pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol. 141: 1000-1011. Blatt, M.R. (2000). Cellular signaling and volume control in stomatal movements in plants. Annu. Rev. Cell Dev. Biol. 16: 221–241. Bohnert, H. J., and Cushman, J. (2000). The ice plant comth: lessons in abiotic stress tolerance. J. Plant Growth Regul. 19: 334-436. Cao, Y., Dai, Y., Cui, S., and Ma, L. (2008). Histone H2B monoubiquitination in the chromatin of FLOWERING LOCUS C regulates flowering time in Arabidopsis. Plant Cell. 20: 2566–2602. Coccetti, P., Tripodi, F., Tedeschi, G., Nonnis, S., Marin, O., Fantinato, S., Cirulli, C., Vanoni, M., and Alberghina, L. (2008). The CK2 phosphorylation of catalytic domain of Cdc34 modulates its activity at the G(1) to S transition in Saccharomyces cerevisiae. Cell Cycle 7: 1391–1401 Chan, N. L., and Hill, C. P. (2001). Defining polyubiquitin chain topology. Nat. Struct. Biol. 8: 650-652. Cheng, M.-C., Hsieh, E.-J., Chen, J.-H., Chen, H.-Y., and Lin, T.-P. (2012). Arabidopsis RGLG2, functioning as a RING E3 ligase, interacts with AtERF53 and negatively regulates the plant drought stress response. Plant Physiol. 158: 363-375. Cui, F., Liu, L., Zhao, Q., Zhang, Z., Li, Q., Lin, B., Wu, Y., Tang, S., and Xie, Q. (2012). Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid-mediated salt stress tolerance. Plant Cell doi: http://dx.doi.org/10.1105/tpc.111.093062 Deshaies, R. J., and Joazeiro, C. A. (2009). RING domain E3 ubiquitin ligases. Annu Rev Biochem. 78: 399–434. Douglas, U. K. (1970). Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. Dowil, R. T., Lu, X., Saracco, S. A., Vierstra, R. D., and Downes, B. P. (2011). Arabidopsis membrane-anchored ubiquitin-fold (MUB) proteins localize a specific subset of ubiquitin-conjugating (E2) enzymes to the plasma membrane. J. Biol. Chem. 286: 14913-14921. Finley, D. (2009). Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78: 477–513. Flowers, T. J. (2004). Improving crop salt tolerance. J. Exp. Bot. 55: 301-319. Hanahan, D. (1983). Studies on transformation of Eschericha coli with plasmids. J. Mol. Biol. 166: 557-580. Hatakeyama, S., Yada, M., Matsumoto, M., Ishida, N., and Nakayama, K. I. (2001). U-box proteins as a new family of ubiquitin-protein ligases. J. Biol. Chem. 276: 33111–33120. Hershko, A., and Ciechanover, A. (1998). The ubiquitin system. Annu. Rev. Biochem. 67: 425 – 479. High, S., Flint, N. and Dobberstein, B. (1991) . Requirements for the membrane insertion of signal-anchor type proteins. J. Cell Bioi. 113: 25-34. Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G., and Jentsch, S. (2002). RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419: 135–141. Jentsch, S. (1992). The ubiquitin-conjugation system. Annu. Rev. Genet. 26:179–207. Kalchman, M. A., Graham, R. K., Xia, G., Koide, H. B., Hodgson, J. G., Graham, K. C., Goldberg, Y. P., Gietz, R. D., Pickart, C. M., and Hayden, M. R. (1996). Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzyme. J. Biol. Chem. 271:19385–19394. Kirkpatrick, D. S., Hathaway, N. A., Hanna, J., Elsasser, S., Rush, J., Finley, D., King, R. W., and Gygi, S. P. (2006). Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nat. Cell Biol. 8: 700-710. Ko, J. –H., Yang, S. H., and Han, K. -H. (2006). Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant J. 47: 343–355. Kourtis, N., and Tavernarakis, N. (2011). Cellular stress response pathways and ageing: intricate molecular relationships. EMBO J. 30: 2520-2531. Kraft, E., Stone, S.L., Ma, L., Su, N., Gao, Y., Lau, O.-S., Deng, X.-W., and Callis, J. (2005). Genome analysis and functional characterization of the E2 and RING-type E3 ligase ubiquitination enzymes of Arabidopsis. Plant Physiol. 139: 1597–1611. Lee, K., and Myung, K. (2008). PCNA modifications for regulation of post-replication repair pathways. Mol. Cells 26: 5-11. Li, W., and Schmidt, W. (2010). A lysine-63-linked ubiquitin chain-forming conjugase, UBC13, promotes the developmental response to iron deficiency in Arabidopsis roots. Plant J. 62: 330-343. Luo, J., Shen, G., Yan, J., He, C., and Zhang, H. (2006). AtCHIP functions as an E3 ubiquitin ligase of protein phosphatase 2A subunits and alters plant response to abscisic acid treatment. Plant J. 46: 649-657. Michelle, C., Vourc''h, P., Mignon, L., Andres, C. R. (2009). What was the set of ubiquitin and ubiquitin-like conjugating enzymes in the eukaryote common ancestor? J. Mol. Evol. 68: 616-628. Miyada, C. G., Stoltzfus, L. and Wilcox, G. (1984). Regulation of the araC gene of Escherichia coli: catabolite repression, autoregulation, and effect on araBAD expression. Proc. Natl. Acad. Sci. U.S.A. 81: 4120-4124. Munns, R. (2005). Genes and salt tolerance: bringing them together. New Phytol. 167: 645-663. Ogden, S., Haggerty, D., Stoner. C. M., Kolodrubetz, D. and Schleif, R. (1980). The Escherichia coli L-arabinose operon: binding sites of the regulatory proteins and a mechanism of positive and negative regulation. Proc. Natl. Acad. Sci. U.S.A. 77: 3346-3350 Perier, F., Coulter, K.L., Liang, H., Radeke, C.M., Gaber, R.F., and Vandenberg, C.A. (1994). Identification of a novel mammalian member of the NSF/CDC48p/Paslp/TBP-1 family through heterologous expression in yeast. FEBS Lett. 351: 286-290. Pickart, C. M., and Fushman, D. (2004). Polyubiquitin chains: polymeric protein signals. Curr. Opin. Chem. Biol. 8: 610–616. Plafker, K. S., Nguyen, L., Barneche, M., Mirza, S., Crawford, D., and Plafker, S. M. (2010). The ubiquitin-conjugating enzyme UbcM2 can regulate the stability and activity of the antioxidant transcription factor Nrf2. J. Biol. Chem. 285: 23064–23074. Rodrigo-Brenni, M. C., and Morgan, D. O. (2007). Sequential E2s drive polyubiquitin chain assembly on APC targets. Cell. 130:127–139. Schulman, B. A., and Harper, J. W. (2009). Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nature Rev. Mol. Cell Biol. 10: 319–331. Smalle, J., and Vierstra, R.D. (2004). The ubiquitin 26s proteasome proteolytic pathway. Annu. Rev. Plant Physiol. Plant Mol. Biol. 55: 555–590 Soss, S. E., Yue, Y., Dhe-Paganon, S., and Chazin, W. J. (2011). E2 conjugating enzyme selectivity and requirements for function of the E3 ubiquitin ligase CHIP. J. Biol. Chem. 286: 21277-21286. Studier F.W., Rosenberg, A.H., Dunn, J.J.and Dubendorff, J.W. (1990). Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185: 60-89. Studier, F. W., and Moffatt, B. A. (1986). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned gene. J. Mol. Biol. 189: 113-130. Su, H., Golldack, D., Zhao, C., and Bohnert, H. J. (2002). The expression of HAK-type K+ transporters is regulated in response to salinity stress in common ice plant. Plant Physiol. 129: 1482-1493. Taiz, L., and Zeiger, E. (2006). Stress physiology. In Plant physiology, L. Taiz and E. Zeiger, eds (Sunderland, Massachusetts: Sinauer Associates, Inc.), pp. 671-705. Takahashi, H., Nozawa, A., Seki, M., Shinozaki, K., Endo, Y. and Sawasaki, T. (2009). A simple and high-sensitivity method for analysis of ubiquitination and polyubiquitination based on wheat cell-free protein synthesis. BMC Plant Biol. 9: 39. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol. Biol. Evol. 28: 2731-2739. Ulrich, H. D. (2005). The RAD6 pathway: control of DNA damage bypass and mutagenesis by ubiquitin and SUMO. Chembiochem. 6: 1735-1743. Van Wijk, S. J. L., and Timmers, H. T. M. (2010). The family of ubiquitin- conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J. 24: 981–993. Wan, X., Mo, A., Liu, S., Yang, L., and Li, L. (2010). Constitutive expression of a peanut ubiquitin-conjugating enzyme gene in Arabidopsis confers improved water-stress tolerance through regulation of stress responsive gene expression. J. Biosci. Bioeng. 111: 478–484. Wen, R., Newton, L., Li, G., Wang, H., and Xiao, W. (2006). Arabidopsis thaliana UBC13: implication of error-free DNA damage tolerance and Lys63-linked polyubiquitylation in plants. Plant Mol. Biol. 61: 241–253. Wen, R., Torres-Acosta, J.A., Pastushok, L., Lai, X., Pelzer, L., Wang, H., and Xiao, W. (2008). Arabidopsis UEV1D promotes Lysine-63-linked polyubiquitination and is involved in DNA damage response. Plant Cell 20: 213–227. Wenzel, D.M., Stoll, K.E., and Klevit, R.E. (2011). E2s: structurally economical and funtionally replete. Biochem. J. 433: 31-42. Wickliffe, K. E., Williamson, A., Meyer, H. J., Kelly, A., and Rape, M. (2011). K11-linked ubiquitin chains as novel regulators of cell division . Trends Cell Biol. 21: 656-663. Windheim, M., Peggie, M., and Cohen, P. (2008). Two different classes of E2 ubiquitin-conjugating enzymes are required for the mono-ubiquitination of proteins and elongation by polyubiquitin chains with a specific topology. Biochem. J. 409:723–729. Xu, P., Duong, D. M., Seyfried, N. T., Cheng, D., Xie, Y., Robert, J., Rush, J., Hochstrasser, M., Finley, D., and Peng, J. (2009). Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137: 133-145. Yan, J., Wang, J., Huang, J. R., Patterson, C., and Zhang, H. (2003). AtCHIP, a U-box-containing E3 ubiquitin ligase, plays a critical role in temperature stress tolerance in Arabidopsis. Plant Physiol. 132: 861–869. Ye, Y. and Rape, M. (2009). Building ubiquitin chains: E2 enzymes at work. Nat. Rev. Mol. Cell. Biol. 10: 755-764. Yen, H. E., Wu, S.-M., Hong, Y.-H., and Yen, S.-K. (2000). Isolation of 3 salt-induced low-abundance cDNAs from light-grown callus of Memsembryanthemum crystallinum by suppression subtractive hybridization. Physiol. Plant 110: 402-409. Yin, Q., Lin, S. -C., Lamothe, B., Lu, M., Lo, Y. -C., Hura, G., Zheng, L., Rich, R. L., Campos, A. D., Myszka, D. G., Lenardo, M. J., Darnay, B. G., and Wu, H. (2009). E2 interaction and dimerization in the crystal structure of TRAF6. Nat. Struct. Mol. Biol. 16: 658-666. Zhou, G. -A., Chang, R. -Z., and Qiu, L. -J. (2010). Overexpression of soybean ubiquitin-conjugating enzyme gene GmUBC2 confers enhanced drought and salt tolerance through modulating abiotic stress-responsive gene expression in Arabidopsis. Plant Mol. Biol. 72: 357-367. Zhou, H., Wertz, I., O’Rourke, K., Ultsch, M., Seshagiri, S., Eby, M., Xiao, W., and Dixit, V.M. (2004). Bcl10 activates the NF-kappaB pathway through ubiquitination of NEMO. Nature 427: 167–171. Zhu, J. -K. (2001). Plant salt tolerance. Trends Plant Sci. 6: 66-71.
摘要: 泛素(ubiquitin)為一個具高度保留性的蛋白質,它會被共價鍵結在受質蛋白上,這個過程稱為ubiquitination,由三個酵素參與連續催化而成。首先是泛素活化酶(ubiquitin-activating enzyme, E1)水解ATP活化泛素;再經由泛素結合酶(ubiquitin- conjugating enzyme, UBC, E2)與泛素結合形成中間產物;最後由泛素連接酶(ubiquitin ligase, E3)辨識受質蛋白,並催化泛素與受質形成共價鍵結。是生物體內相當重要的蛋白後修飾作用,參與真核生物許多重要生理反應,如蛋白降解、生物逆境及生長的調控等從耐鹽模式植物冰花(Mesembryanthemum crystallinum L.)所鑑定的一個RING-type E3 ligase McCOPIN1 (McCPN1),已知具有E3 ligase的活性且參與冰花對鹽逆境的適應,但是其參與的ubiquitination途徑機制未明。本實驗室之前已鑑定出兩個冰花E2基因McUBC1與McUBC2,其中McUBC1在鹽處理後之癒傷組織中表現量會上升,但所獲得之UBC1基因並非全長。因此本論文主要目標即在確認McUBC1與McUBC2是否能與E3 McCPN1共同催化protein ubiquitination的作用,進而對於此一途徑參與冰花耐鹽性有進一步的了解。 首先以RACE鑑定出McUBC1完整orf全長為462 bp,可轉譯出153個胺基酸的蛋白;之後比對McUBC1和McUBC2蛋白的胺基酸序列,發現McUBC1與McUBC2相同度為43%,相似度為77%,親緣分析顯示各屬於不同之UBC次家族。利用大腸桿菌蛋白表現系統,得到純化的McUBC1-(His)6與McUBC2-(His)6,以in vitro ubiquitination assay分析E2活性,結果發現McUBC2-(His)6能與McCPN1共同催化ubiquitination的反應,顯示McUBC2-McCPN1是一組具有功能的E2-E3組合。反之McUBC1-(His)6或是McUBC1/UEV2 heterodimer E2均無法催化ubiquitination的反應。以RT-PCR分析鹽處理冰花葉部及小苗McUBC1及McUBC2基因表現量之變化,結果顯示鹽處理對McUBC1與McUBC2表現量影響不顯著,兩基因在冰花小苗或成熟植株階段,均會持續表現。綜合上述之結果,發現鹽處理不會影響McUBC1與McUBC2的基因表現;且McUBC2會透過與McCPN1共同催化ubiquitination反應,參與冰花耐鹽機制的調控,使冰花能在鹽逆境下正常生長。
Ubiquitin is a highly conserved small protein. Substrate proteins can be attached with a single or multiple ubiquitins, a process called ubiquitination, which is carried out by a set of three enzymes. Ubiquitin-activating enzyme (E1) consumes ATP to activate ubiquitin, then the activated ubiquitin is spontaneously transferred to ubiquitin-conjugating enzyme (E2) followed by transfer of ubiquitin to substrate protein catalyzed by ubiquitin ligase (E3). Ubiquitination is involved in a number of cellular processes, such as protein degradation by proteasome, stress response, and development. A RING-type E3 McCOPIN1 (McCPN1) was identified from halophyte ice plant (Mesembryanthemum crystallinum L.) and was implicated in participation of the salt stress response in ice plant. The involvement of McCPN1 in stress-related protein ubiquitination remains unknown. Two ice plant E2 McUBC1 and McUBC2 were previously identified in ice plant. The expression of McUBC1 is upregulated in salt-stressed ice plant callus, but we only have partial sequence of McUBC1. The main theme of this thesis is to analyze McUBC1 and McUBC2’s E2 activity, along with their specificity to the E3 ligase McCPN1. RACE was carried out to obtain the full length McUBC1. Full length of McUBC1orf consists of 462 bp, encoding a 153 amino acids protein. Sequence alignment shows 43% identity and 77% similarity between McUBC1 and McUBC2. Phylogenic analysis suggests McUBC1 and McUBC2 belong to different UBC subgroups. McUBC1-(His)6 and McUBC2-(His)6 recombinant proteins was expressed in Escherichai coli and in vitro ubiquitination assay was performed to detect E2 activity of purified McUBC1-(His)6 and McUBC2-(His)6. The results showed McUBC2 and McCPN1 can form a proper E2/E3 complex to carry out ubiquitination. In contrast McUBC1/UEV2 heterodimer E2 failed carry out ubiquitnation with McCPN1. The expression of McUBC1 and McUBC2 under salt stress was further examined through RT-PCR, and their expression levels in seedlings and leaves did not show variation with the treatment of salt stress. In conclusion, McUBC1 and McUBC2 are constitutively expressed in ice plant. McUBC2 may participate in salt stress response through forming the E2/E3 complex with McCPN1, which in turn ubiquinate salt stress-related proteins leading adaptation to the salinity environment.
URI: http://hdl.handle.net/11455/20308
其他識別: U0005-2308201215361100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2308201215361100
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.