Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/20320
標題: 表現吳郭魚金屬硫蛋白於KY3 酵母菌中以提升清除自由基能力及酒精耐受性之研究
Enhancement of Free Radical Scavenging Ability and Ethanol Tolerance in KY3 Yeast by Expression Tilapia Metallothionein
作者: 劉彥君
Liu, Yen-Chun
關鍵字: 金屬硫蛋白
Metallothionein
活性氧屬
酒精產率
Reactive oxygen species(ROS)
Ethanol productivity
出版社: 生命科學系所
引用: Alfenore, S., Molina-Jouve, C., Guillouet, S. E., Uribelarrea, J. L., Goma, G. & Benbadis, L. (2002). Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process. Appl Microbiol Biotechnol 60, 67-72. Aruoma, O. (1994). Nutrition and health aspects of free radicals and antioxidants. Food and Chemical Toxicology 32, 671-683. Binz, P. A. (1999). Metallothionein: molecular evolution and classification. Metallothionein 4, 7-13. Bontidean, I., Ahlqvist, J., Mulchandani, A., Chen, W., Bae, W., Mehra, R. K., Mortari, A. & Csoregi, E. (2003). Novel synthetic phytochelatin-based capacitive biosensor for heavy metal ion detection. Biosensors and Bioelectronics 18, 547-553. Cartwright, C. P., Beavan, M. J., Ruby, F., De Morais, S. M. F. & Rose, A. H. (1986). Ethanol dissipates the proton-motive force across the plasma membrane of Saccharomyces cerevisiae. Journal of general microbiology 132, 369. Chang, J. J., Ho, C. Y., Ho, F. J., Tsai, T. Y., Ke, H. M., Wang, C. H. T., Chen, H. L., Shih, M. C., Huang, C. C. & Li, W. H. (2012). PGASO: A synthetic biology tool for engineering a cellulolytic yeast. Biotechnology for Biofuels 5, 53. Cheng, C. C. (2011). Application of MerB and MT proteins for the removal of mercurial compounds. In Department of Life Sciences. National Chung-Hsing University. Chung, R. S., Penkowa, M., Dittmann, J., King, C. E., Bartlett, C., Asmussen, J. W., Hidalgo, J., Carrasco, J., Leung, Y. K. J. & Walker, A. K. (2008). Redefining the role of metallothionein within the injured brain Extracellular metallothioneins play an important role in the astrocyte-neuron response to injury. Journal of Biological Chemistry 283, 15349-15358. Costa, V., Amorim, M., Reis, E., Quintanilha, A. & Moradas-Ferreira, P. (1997). Mitochondrial superoxide dismutase is essential for ethanol tolerance of Saccharomyces cerevisiae in the post-diauxic phase. Microbiology 143, 1649-1656. Cousins, R. J. (1998). A role of zinc in the regulation of gene expression. Proceedings of the Nutrition Society 57, 307-311. Dall, M. T., Nicaud, J. M. & Gaillardin, C. (1994). Multiple-copy integration in the yeast Yarrowia lipolytica. Curr Genet 26, 38-44. Ding, J., Huang, X., Zhang, L., Zhao, N., Yang, D. & Zhang, K. (2009). Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 85, 253-263. Dombek, K. & Ingram, L. (1987). Ethanol production during batch fermentation with Saccharomyces cerevisiae: changes in glycolytic enzymes and internal pH. Appl Environ Microbiol 53, 1286-1291. Dombek, K. M. & Ingram, L. O. (1986). Magnesium limitation and its role in apparent toxicity of ethanol during yeast fermentation. Appl Environ Microbiol 52, 975-981. Droge, W. (2002). Free radicals in the physiological control of cell function. Physiological reviews 82, 47-95. Du, X. & Takagi, H. (2007). N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. Appl Microbiol Biotechnol 75, 1343-1351. Edwards, S. W. (1995). Cell signalling by integrins and immunoglobulin receptors in primed neutrophils. Trends in Biochemical Sciences 20, 362-367. Falchuk, K. H. (1998). The molecular basis for the role of zinc in developmental biology. Molecular and cellular biochemistry 188, 41-48. Farrell, A. E., Plevin, R. J., Turner, B. T., Jones, A. D., O''hare, M. & Kammen, D. M. (2006). Ethanol can contribute to energy and environmental goals. Science 311, 506-508. Fleet, G. (2003). Yeast interactions and wine flavour. International Journal of Food Microbiology 86, 11-22. Fonseca, G. G., Heinzle, E., Wittmann, C. & Gombert, A. K. (2008). The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79, 339-354. Halliwell, B. (1989). Free radicals, reactive oxygen species and human disease: a critical evaluation with special reference to atherosclerosis. British journal of experimental pathology 70, 737. Halliwell, B. (2005). Free radicals and other reactive species in disease. Wiley Online Library. Hamer, D. H. (1986). Metallothionein1, 2. Annual review of biochemistry 55, 913-951. Ho, C.-Y. (2013). Construction of cellulosic ethanol production process via Bacillus-yeast co-culturing strategy. In Department of Life Sciences. National Chung-Hsing University. Ho, C. Y., Chang, J. J., Lee, S. C., Chin, T. Y., Shih, M. C., Li, W. H. & Huang, C. C. (2012). Development of cellulosic ethanol production process via co-culturing of artificial cellulosomal Bacillus and kefir yeast. Applied Energy. Hoppe, G. K. & Hansford, G. S. (1982). Ethanol inhibition of continuous anaerobic yeast growth Biotechnol Lett 4, 39-44. Hsieh, J.-L. (2009). Molecular Characteristics and Applications of Mercury-Ion-Binding Protein MerP from Bacillus megaterium MB1. In Department of Life Science. National Chung-Hsing University. Huang, D., Ou, B. & Ronald, L. (2005). The chemistry behind antioxidant capacity assays. Journal of agricultural and food chemistry 53, 1841-1856. Jimenez, J. & Benitez, T. (1987). Adaptation of Yeast Cell Membranes to Ethanol. Appl Environ Microbiol 53, 1196-1198. Kaegi, J. H. R. & Schaeffer, A. (1988). Biochemistry of metallothionein. Biochemistry 27, 8509-8515. Kagi, J. H. R. (1991). Overview of metallothionein. Methods in enzymology 205, 613-626. Keaney, J. F., Shwaery, G. T., Xu, A., Nicolosi, R. J., Loscalzo, J., Foxall, T. L. & Vita, J. A. (1994). 17 beta-estradiol preserves endothelial vasodilator function and limits low-density lipoprotein oxidation in hypercholesterolemic swine. Circulation 89, 2251-2259. Kitagaki, H., Araki, Y., Funato, K. & Shimoi, H. (2007). Ethanol-induced death in yeast exhibits features of apoptosis mediated by mitochondrial fission pathway. FEBS Lett 581, 2935-2942. Kojima, Y., Binz, P. A. & Kagi, J. (1999). Nomenclature of metallothionein: proposal for a revision. Metallothionein IV, ed 1, 3-6. Lane, M. M. & Morrissey, J. P. (2010). Kluyveromyces marxianus: A yeast emerging from its sister''s shadow. Fungal Biology Reviews 24, 17-26. Lazo, J. S., Kondo, Y., Dellapiazza, D., Michalska, A. E., Choo, K. H. A. & Pitt, B. R. (1995). Enhanced sensitivity to oxidative stress in cultured embryonic cells from transgenic mice deficient in metallothionein I and II genes. Journal of Biological Chemistry 270, 5506-5510. Liang-Yu Chen, A. C., Linda Yi-Lin Chen, Jenny Pin-Chia Hsu (2009). Determination of Diluted Ethyl Alcohol in Liquid Solutions by gas chromatography with internal standard calibration. Maiorella, B., Blanch, H. W. & Wilke, C. R. (1983). By‐product inhibition Effects on ethanolic fermentation by saccharomyces cerevisiae. Biotechnol Bioeng 25, 103-121. Maret, W. (2008). Metallothionein redox biology in the cytoprotective and cytotoxic functions of zinc. Exp Gerontol 43, 363-369. Margoshes, M. & Vallee, B. L. (1957). A cadmium protein from equine kidney cortex. Journal of the American Chemical Society 79, 4813-4814. Medawar, W., Strehaiano, P. & Delia, M.-L. (2003). Yeast growth: lag phase modelling in alcoholic media. Food Microbiology 20, 527-532. Meyer, A. S., Donovan, J. L., Pearson, D. A., Waterhouse, A. L. & Frankel, E. N. (1998). Fruit hydroxycinnamic acids inhibit human low-density lipoprotein oxidation in vitro. Journal of agricultural and food chemistry 46, 1783-1787. Mishra, P. & Prasad, R. (1988). Role of phospholipid head groups in ethanol tolerance of Saccharomyces cerevisiae. Journal of general microbiology 134, 3205-3211. Nordberg, G. F., Garvey, J. S. & Chang, C. C. (1982). Metallothionein in plasma and urine of cadmium workers. Environmental research 28, 179-182. Ogawa, Y., Nitta, A., Uchiyama, H., Imamura, T., Shimoi, H. & Ito, K. (2000). Tolerance mechanism of the ethanol-tolerant mutant of sake yeast. J Biosci Bioeng 90, 313-320. Penkowa, M., Tio, L., Giralt, M., Quintana, A., Molinero, A., Atrian, S., Vašak, M. & Hidalgo, J. (2006). Specificity and divergence in the neurobiologic effects of different metallothioneins after brain injury. Journal of neuroscience research 83, 974-984. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26, 1231-1237. Read, J. D., Colussi, P. A., Ganatra, M. B. & Taron, C. H. (2007). Acetamide selection of Kluyveromyces lactis cells transformed with an integrative vector leads to high-frequency formation of multicopy strains. Appl Environ Microbiol 73, 5088-5096. Rhee, S. G., Chang, T. S., Jeong, W. & Kang, D. (2010). Methods for detection and measurement of hydrogen peroxide inside and outside of cells. Molecules and cells 29, 539-549. Rochelle, L. G., Fischer, B. M. & Adler, K. B. (1998). Concurrent production of reactive oxygen and nitrogen species by airway epithelial cells in vitro. Free Radical Biology and Medicine 24, 863-868. Rutherford, B. J., Dahl, R. H., Price, R. E., Szmidt, H. L., Benke, P. I., Mukhopadhyay, A. & Keasling, J. D. (2010). Functional genomic study of exogenous n-butanol stress in Escherichia coli. Appl Environ Microbiol 76, 1935-1945. Sambrook, J. & Russell, D. W. (2001). Molecular cloning: a laboratory manual. CSHL press. Sanchez, M., Iglesias, F. J., Santamaria, C. & Dominguez, A. (1993). Transformation of Kluyveromyces lactis by electroporation. Appl Environ Microbiol 59, 2087. Stanley, D., Bandara, A., Fraser, S., Chambers, P. J. & Stanley, G. A. (2010). The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J Appl Microbiol 109, 13-24. Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M. & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry and Cell Biology 39, 44-84. Vasak, M. (2005). Advances in metallothionein structure and functions. Journal of Trace Elements in Medicine and Biology 19, 13-17. Viegas, C. A., Rosa, M. F., Sa-Correia, I. & Novais, J. M. (1989). Inhibition of yeast growth by octanoic and decanoic acids produced during ethanolic fermentation. Appl Environ Microbiol 55, 21-28. Wang, J., Komarov, P. & Degroot, H. (1993). Luminol Chemiluminescence in Rat Macrophages and Granulocytes: The Role of NO, O-2-/H2O2, and HOCl. Archives of biochemistry and biophysics 304, 189-196. Wang, Y.-F. (2012). Antioxidant ability of the oligopeptides derived from metallothionein. In Department of Life Sciences. National Chung-Hsing University. Zhang, B., Georgiev, O., Hagmann, M., Gunes, C., Cramer, M., Faller, P., Vasak, M. & Schaffner, W. (2003). Activity of metal-responsive transcription factor 1 by toxic heavy metals and H2O2 in vitro is modulated by metallothionein. Molecular and cellular biology 23, 8471-8485. Zhou, K. & Yu, L. (2004). Antioxidant properties of bran extracts from Trego wheat grown at different locations. Journal of agricultural and food chemistry 52, 1112-1117. 林姿宏 (2002). 蕃茄果實暨製品及蕃茄紅素的生物活性之探討︰ 1) 清除自由基作用 2) 抗氧化變異作用. In 醫學研究所. 台北醫學大學. 陳吉村 (2008). 抗氧化分析技術在農業上之應用. 花蓮區農業專訓 第六十四期, 13-15.
摘要: 金屬硫蛋白(metallothionein, MT)為一約6000 ~ 7000 Dalton大小的蛋白質,廣泛存在於各生物中,因其富含半胱胺酸(cysteine),故可利用cysteine的硫醇基(thiol group)和重金屬結合(例如:鎘、鋅、銅),進而降低重金屬於細胞內累積所造成的傷害。另外,有文獻指出當酵母菌暴露於乙醇(ethanol)壓力環境下時,粒線體是主要產生活性氧屬(reactive oxygen species, ROS)的位置,當自由基於粒腺體內無法完全清除時會漸漸擴散至細胞質,進而造成脂質、蛋白質和核酸受到傷害。由過去研究發現MT 亦具有清除自由基能力,故本研究希望於酵母菌 Kluyveromyces marxianus KY3 中大量表現(overexpression)MT 蛋白,以提升酵母菌在發酵過程中因酒精逐漸累積所造成氧化壓力環境的抗性。本實驗室先前研究發現,相較於人類及老鼠的MT 蛋白,吳郭魚(Tilapia)的MT 蛋白(簡稱TMT)具有更好的清除自由基能力,故本研究使用TMT 以及另外於TMT 蛋白的前端(即N端)融合(fusion)革蘭氏陽性菌之汞離子結合蛋白MerP的訊號序列(signal peptide),期望藉由此signal peptide 將TMT(簡稱spTMT)表現於粒線體內膜或是細胞膜處,以達到更好的清除ROS效果。除此之外,將TMT 及spTMT 的DNA 序列進行codon usage 的優化(optimization),期望目標基因在KY3 中有較好的蛋白表現量。TMT、TMTO、spTMT和spTMTO 四種轉植株經H2DCFDA assay 發現在誘導21個小時有最佳清除自由基效果,且相較於控制組皆有較好清除自由基能力。在酒精耐受度測試得知轉植株TMT和TMTO在含有5% 酒精濃度時生長情形較控制組好。接著利用ABTS assay 分別探討細胞質及細胞膜中的蛋白質清除自由基能力,實驗結果發現融合signal peptide 的TMT 蛋白應有表現於細胞中帶有「膜」的位置。利用氣相層析儀(gas chromatography, GC)分析四種轉植株發現TMT 及TMTO 在發酵前期約22.5~34.5 小時間具有較佳酒精生產力,故在未來可能將其應用在發酵前期以提升酒精產量。
Metallothioneins(MTs) are widely found in organisms, cysteine–rich and 6000 – 7000 Dalton molecular weight of proteins. It can utilize the thiol group of cysteine to bind heavy metals(ex: Zn, Cd and Cu)and to decrease the cytotoxic effects. Moreover, when yeast cells are exposed to the environment having ethanol will lead to generation of the reactive oxygen species(ROS). It was found that MT has the ability to scavenge free radicals. Therefore, we hope to increase the tolerance of ethanol by overexpressing MT protein under ethanol stress conditions. In addition, our laboratory has found that tilapia MT (designated as TMT) protein had better free radical scavenging ability when compared with human and mouse MT. This study used TMT protein and N-terminal of TMT protein fusion signal peptide of mercury-ion-binding protein MerP from Gram positive bacterial (designated as spTMT) to allow TMT protein be located in the cytosol membrane or inner membrane of mitochondrial to enhance the free radical scavenging ability. In addition, the DNA sequences of TMT and spTMT were optimized by codon usage to increase the TMT protein productivity in KY3 yeast. TMT、TMTO、spTMT and spTMTO four types of transformants have better free radical scavenging ability when protein was induced for 21 hours, revealing better free radical scavenging ability than the control group by H2DCFDA assay. Transformants had better growth abilities with medium containing 5% ethanol by ethanol tolerance test. ABTS assay was used to investigate the protein free radical scavenging ability The results suggest that the TMT protein was located in the membrane by the signal peptide. TMT and TMTO had better ethanol productivity in pre-fermentation approximately at 22.5 to 34.5 hours by gas chromatography analysis of the four transformants. In the future, the recombinant strains coulde be applied in pre-fermentation of alcohol to enhance ethanol production.
URI: http://hdl.handle.net/11455/20320
其他識別: U0005-3001201321305200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3001201321305200
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.