請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/2069
標題: 含磁滯估測器之三軸壓電致動平台穩定適應模糊控制設計
Stable Adaptive Fuzzy Control with Hysteresis Observer for a Three-Axis Piezoactuated Stage
作者: 廖秉德
liao, bing-der
關鍵字: Hysteresis
磁滯效應
Piezoactuated Stage
壓電致動平台
出版社: 機械工程學系所
引用: [1] P. Ge, and M. Jouaneh, “Tracking Control of a Piezoceramic Actuator,” IEEE Trans. on Control Systems Technology, Vol. 4, No. 1, pp. 209-216, May 1996. [2] S. Yu, G. Alici, B. Shirinzadeh, and J. Smith, “Sliding Mode Control of a Piezoelectric Actuator with Neural Network Compensating Rate-Dependent Hysteresis,” IEEE Int. Conf. on Robotics and Automation, pp. 3641-3645, Apr. 2005. [3] G. Song, J. Zhao, X. Zhou, and J. A. De Abreu-Garcia, “Tracking Control of a Piezoceramic Actuator with Hysteresis Compensation Using Inverse Preisach Model,” IEEE/ASME Trans. on Mechatronics, Vol. 10, No. 2, pp. 198-209, 2005. [4] B. M. Chen, T. H. Lee, C.-C. Hang, Y. Guo, and S. Weerasooriya, “An Almost Disturbance Decoupling Robust Controller Design for a Piezoceramic Bimorph Actuator with Hysteresis,” IEEE Trans. on Control Systems Technology, Vol. 7, No. 2, pp. 160-173, 1999. [5] 黃恆庭,“壓電致動器磁滯模型之觀測器”,逢甲大學自動控制工程學系,碩士論文,民國九十年。 [6] 張柏翌,“三軸奈米平台之穩定適應控制:以ALTERA DSP發展版 實現”,國立中興大學機械工程學系,碩士論文,民國九十四年。 [7]X. Sun, and T. Chang, “Control of Hysteresis in a Monolithic Nanoactuator,” in Proc. American Control Conference, Arlington, VA, Vol. 3, pp. 2261-2266, 2001. [8]T. S. Low, and W. Guo, “Modeling of a Three-layer Piezoelectric Bimorph Beam with Hysteresis,” J. of Microelectromechanical Systems, Vol. 4, No. 4, pp. 230-237, 1995. [9]C. Sperpico, and C. Visone, “Magnetic Hysteresis Modeling via Feed-Forward Neural Networks,” IEEE Trans. on Magnetics, Vol. 34, No. 3, pp. 623-628, May 1998. [10] L. Sun, C. Ru, W. Rong , L. Chen, and M. Kong, “Tracking Control of Piezoelectric Actuator Based on a New Mathematical Model,” J. of Micromechanics and Microengineering, Vol. 14, No. 11, pp. 1439-1444, Nov. 2004. [11] L. A. Zadeh, “Fuzzy Sets,” Information and Control, Vol. 8, pp. 338-353, 1965. [12] L.-X. Wang, A Course in Fuzzy Systems and Control, Prentice Hall, 1997.
摘要: 本論文根據含簡化Dahl動態磁滯模式之三軸壓電致動平台動力學模式,設計一含PD回授之穩定適應模糊控制器,其中含一估測磁滯變數的估測器。設計控制策略時,針對系統的參數辨識誤差、不確定性與耦合效應視為外部干擾,採用模糊函數近似器加以補償。並以Lyapunov穩定理論證明整體閉迴路系統的穩定性。並以MATLAB進行電腦模擬,先針對二種不同期望軌跡瞭解控制策略之追蹤性能,再以不同的耦合效應探討模糊函數近似器的補償效能,最後也以改變系統參數的方式作大量電腦模擬,以瞭解該適應控制系統之強健性。
In this thesis, based on the dynamic model of a three-axis piezoactuated stage with simplified Dahl hysteresis model, we propose a stable adaptive fuzzy controller with a hysteresis variables observer. In the control design, a fuzzy function approximator is used for compensating for the effects of parameter estimate inaccuracy, model uncertainty, and coupling among three axes(considered as external disturbance). The overall closed-loop system stability is guaranteed in the design using Lyapunov stability theory. Some computer simulations using MATLAB are conducted to study the tracking performance under different desired trajectories. The compensation performance of the fuzzy function approximator is illustrated using different coupling effects among three axes. Finally, robustness of the adaptive control system with respect to system parameter variation is also discussed.
URI: http://hdl.handle.net/11455/2069
其他識別: U0005-2108200811513900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2108200811513900
顯示於類別:機械工程學系所

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。