Please use this identifier to cite or link to this item:
標題: 裂解技術於環狀胜肽之質譜分析應用
Elucidation of CID and ETD based MS/MS Fragmentation for Analysis of Cyclic Peptides
作者: 吳家豪
Wu, Jia-Hau
關鍵字: 環狀胜肽
cyclic peptide
mass analysis
出版社: 分子生物學研究所
引用: 1.Wan EC, Ho C, Sin DW, Wong YC. Detection of residual bacitracin A, colistin A, and colistin B in milk and animal tissues by liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 2006, 385, 181-8. 2.Kim PI, Ryu J, Kim YH, Chi YT. Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J. Microbiol Biotechnol. 2010, 20, 138-45. 3.Mulligan CN. Environmental applications for biosurfactants. Environ Pollut. 2005, 133, 183-98. 4.Jones AW, Cooper HJ. Dissociation techniques in mass spectrometry-based proteomics. Analyst. 2011, 17, 3419-29. 5.Craik DJ. Circling the enemy: cyclic proteins in plant defence. Trends Plant Sci. 2009, 6, 328-35. 6.Keymanesh K, Soltani S, Sardari S. Application of antimicrobial peptides in agriculture and food industry. World J. Microbiol. Biotechnol. 2009, 25, 933-44. 7.Matyus E, Kandt C, Tieleman DP. Computer simulation of antimicrobial peptides. Curr Med Chem. 2007, 26, 2789-98. 8.Edman P. Method for the determination of the amino acid sequence in peptides. Acta Chem. Scand. 1950, 4, 283–93. 9.Seidler J, Zinn N, Boehm, ME, Lehmann WD. De novo sequencing of peptides by MS/MS. Proteomics. 2010, 10, 634-49. 10.Mohimani H, Yang YL, Liu WT, Hsieh PW, Dorrestein PC, Pevzner PA. Sequencing cyclic peptides by multistage mass spectrometry. Proteomics. 2011, 11, 3642-50. 11.Ngoka LC, Gross ML. Multistep tandem mass spectrometry for sequencing cyclic peptides in an ion-trap mass spectrometer. J. Am. Soc. Mass. Spectrom. 1999, 10, 732-46. 12.Govaerts, C., Rozenski, J., Orwa, J., Roets, E., Van, Schepdael. A, Hoogmartens J. Mass spectrometric fragmentation of cyclic peptides belonging to the polymyxin and colistin antibiotics studied by ion trap and quadrupole/orthogonal-acceleration time-of-flight technology. Rapid Commun Mass Spectrom. 2002, 9, 823-33. 13.Govaerts C, Li C, Orwa J, Van Schepdael A, Adams E, Roets E. Hoogmartens, J. Sequencing of bacitracin A and related minor components by liquid chromatography/electrospray ionization ion trap tandem mass spectrometry. Rapid Commun Mass Spectrom. 2003, 12, 1366-79. 14.Duan X, Engler FA, Qu J. Electron transfer dissociation coupled to an Orbitrap analyzer may promise a straightforward and accurate sequencing of disulfide-bridged cyclic peptides: a case study. J. Mass. Spectrom. 2010 ,45, 1477-82. 15.Guan F, Uboh CE, Soma LR, Rudy J. Sequence elucidation of an unknown cyclic peptide of high doping potential by ETD and CID tandem mass spectrometry. J. Am. Soc. Mass. Spectrom. 2011, 22, 718-30. 16.Seidler J, Zinn N, Boehm ME, Lehmann WD. De novo sequencing of peptides by MS/MS. Proteomics. 2010, 4, 634-49. 17.Williams SM, Brodbelt JS. MS(n) characterization of protonated cyclic peptides and metal complexes. J Am Soc Mass Spectrom. 2004, 7, 1039-54. 18.Rožman M, Gaskell SJ. Non-covalent interactions of alkali metal cations with singly charged tryptic peptides. J Mass Spectrom. 2010, 12, 1409-15. 19.Fung YM, Liu H, Chan TW. Electron capture dissociation of peptides metalated with alkaline-earth metal ions. J Am Soc Mass Spectrom. 2006, 6, 757-71. 20.Watson HM, Vincent JB, Cassady CJ. Effects of transition metal ion coordination on the collision-induced dissociation of polyalanines. J Mass Spectrom. 2011, 11, 1099-107. 21.Chen X, Fung YM, Chan WY, Wong PS, Yeung HS, Chan TW. Transition metal ions: charge carriers that mediate the electron capture dissociation pathways of peptides. J Am Soc Mass Spectrom. 2011, 12, 2232-45. 22.Turecek F, Holm AI, Panja S, Nielsen SB, Hvelplund P. Transition metals as electron traps. II. Structures, energetics and electron transfer dissociations of ternary Co, Ni and Zn-peptide complexes in the gas phase. J Mass Spectrom. 2009, 10, 1518-31. 23.Chen X, Chan WY, Wong PS, Yeung HS, Chan TW. Formation of peptide radical cations (m+‧) in electron capture dissociation of peptides adducted with group IIB metal ions. J Am Soc Mass Spectrom. 2011, 2, 233-44. 24.Dong J, Vachet RW. Coordination sphere tuning of the electron transfer dissociation behavior of Cu(II)-peptide complexes. J Am Soc Mass Spectrom. 2012, 2, 321-9. 25.Iavarone AT, Paech K, Williams ER. Effects of charge state and cationizing agent on the electron capture dissociation of a peptide. Anal Chem. 2004, 8, 2231-8. 26.Vasicek L, Brodbelt JS. Enhanced electron transfer dissociation through fixed charge derivatization of cysteines. Anal Chem. 2009, 19, 7876-84. 27.Carlton DD Jr, Schug KA. A review on the interrogation of peptide-metal interactions using electrospray ionization-mass spectrometry. Anal Chim Acta. 2011, 1-2, 19-39. 28.Ko BJ, Brodbelt JS. Enhanced electron transfer dissociation of peptides modified at C-terminus with fixed charges. J Am Soc Mass Spectrom. 2012, 11, 1991-2000. 29.Zubarev RA, Kelleher NL, McLafferty FW. Electron capture dissociation of multiply charged protein cations. A nonergodic process. J. Am. Chem. Soc. 1998, 13, 3265–66 30.Bakhtiar R, Guan Z. Electron capture dissociation mass spectrometry in characterization of peptides and proteins. Biotechnol Lett. 2006, 14, 1047-59. 31.Jensen CS, Wyer JA, Houmoller J, Hvelplund P, Nielsen SB. Electron-capture induced dissociation of doubly charged dipeptides: on the neutral losses and N-Cα bond cleavages. Phys Chem Chem Phys. 2011, 41, 18373-8. 32.Kim MS, Pandey A. Electron transfer dissociation mass spectrometry in proteomics. Proteomics. 2012, 4-5, 530-42. 33.Wiesner J, Premsler T, Sickmann A. Application of electron transfer dissociation (ETD) for the analysis of posttranslational modifications. Proteomics. 2008, 21, 4466-83. 34.Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 9528-33. 35.Xia Y, Gunawardena HP, Erickson DE, McLuckey SA. Effects of cation charge-site identity and position on electron-transfer dissociation of polypeptide cations. J Am Chem Soc. 2007, 40, 12232-43. 36.Mikesh LM, Ueberheide B, Chi A, Coon JJ, Syka JE, Shabanowitz J, Hunt DF. The utility of ETD mass spectrometry in proteomic analysis. Biochim Biophys Acta. 2006 , 12, 1811-22. 37.Good DM, Wirtala M, McAlister GC, Coon JJ. Performance characteristics of electron transfer dissociation mass spectrometry. Mol Cell Proteomics. 2007, 11, 1942-51. 38.Swaney DL, McAlister GC, Wirtala M, Schwartz JC, Syka JE, Coon JJ. Supplemental activation method for high-efficiency electron-transfer dissociation of doubly protonated peptide precursors. Anal Chem. 2007, 2, 477-85. 39.Chan WY, Chan TW, O''Connor PB. Electron transfer dissociation with supplemental activation to differentiate aspartic and isoaspartic residues in doubly charged peptide cations. J Am Soc Mass Spectrom. 2010 , 6, 1012-5. 40.Liu CW, Lai CC. Effects of electron-transfer coupled with collision-induced dissociation (ET/CID) on doubly charged peptides and phosphopeptides. J Am Soc Mass Spectrom. 2011 ,1 ,57-66. 41.McAlister GC, Phanstiel D, Good DM, Berggren WT, Coon JJ. Implementation of electron-transfer dissociation on a hybrid linear ion trap-orbitrap mass spectrometer. Anal Chem. 2007, 10, 3525-34. 42.Molina H, Matthiesen R, Kandasamy K, Pandey A. Comprehensive comparison of collision induced dissociation and electron transfer dissociation. Anal Chem. 2008, 13, 4825-35. 43.Ngoka LCM, Gross ML, Peter LT. Toogood. Sodium-directed selective cleavage of lactones: a method for structure determination of cyclodepsipeptides. Int. J. Mass Spectrom. 1999, 182, 289-98. 44.Newton KA, Pitteri SJ, Laskowski M Jr, McLuckey SA. Effects of single amino acid substitution on the collision-induced dissociation of intact protein ions: Turkey ovomucoid third domain. J Proteome Res. 2004, 5, 1033-41. 45.Magni F, Arcelloni C, Paroni R, Fermo I, Bonini PA, Del Puppo M, Manzocchi A, Galli Kienle M. Open-chain peptides obtained by acidic hydrolytic cleavage of cyclosporin A. Biol Mass Spectrom. 1994, 8, 514-8. 46.Andersson MA, Mikkola R, Kroppenstedt RM, Rainey FA, Peltola J, Helin J, Sivonen K, Salkinoja-Salonen MS. The mitochondrial toxin produced by Streptomyces griseus strains isolated from an indoor environment is valinomycin. Appl Environ Microbiol. 1998, 12, 4767-73. 47.Copper HJ, Hudgins RR, Marshall AG, Electron capture dissociation Fourier transform ion cyclotron resonance mass spectrometry of cyclodepsipeptides, branched peptides, and ε-peptides. Int. J. Mass. Spectrom. 2004, 234, 23-35
摘要: 環狀胜肽 (cyclic peptide) 是由蛋白質或非蛋白質胺基酸藉由胜肽鍵所形成之環狀化合物,其種類繁多,並各自有不同功用,如可作為抗體、毒性物質、抗免疫物質、離子傳導調控物質、蛋白質鍵結抑制物或酵素抑制物。目前,環狀胜肽的應用相當多樣化,如使用於畜牧業作為其動物的促進生長藥物、農業上的天然農藥、天然界面活性劑等,甚至運用在高級化妝品、土壤復育、原油回收、幫助去除重金屬汙染等。對於環狀胜肽的相關研究,逐漸吸引學者的關注,本實驗的研究策略是以質譜分析技術為基礎並有別於前人研究以碰撞誘導裂解 (collision induced dissociation, CID) 分析環狀胜肽為主,嘗試運用其他較為新穎的裂解技術,包含電子轉移裂解 (electron transfer dissociation, ETD)、Electron-transfer collisionally activated dissociation (ETcaD) 及電子轉移結合碰撞引致裂解 (electron-transfer coupled with collision-induced dissociation, ET/CID) 進行環狀胜肽定性技術開發與探討。對於本身較不易帶有多價數之環狀胜肽,嘗試藉由添入金屬醋酸鹽溶液提升環狀胜肽於電灑法中電荷數,並觀察其是否可提升 ETD 的裂解效率,增加裂解資訊提高序列涵蓋率 (sequence coverage),使其擁有較高的可信度,建立一套環狀胜肽之質譜分析平台,協助未來相關菌種純化環狀胜肽之品質監測。
The cyclic peptide is one kind of cyclic compounds which combine of the protein and non-protein amino acids, many of kinds has more different functions, such as antibodies, toxic substances, anti-immune substances, ion transfer regulators, protein binding inhibitor or enzyme inhibitors. The application of the cyclic peptide is quite diverse, and gradually attracted the attention of scholars. The research strategy of this experiment is based on electron-spray ionization tandem mass spectrometry (ESI-MS/MS) combine with collision induced dissociation (CID) and electron transfer dissociation (ETD) to sequence cyclic peptides, to apply to the determination of cyclic peptides, Surfactin、Colistin、Polymyxin B、Iturin a and Bacitracin. Observations of different amino acid residues from CID and ETD experiments for the peptide were interpreted by their fragments, and try to join with metal acetate solution, that expect to enhance the number of electric charge for cyclic peptide in the electrospray ionization method, and observe whether increases the sequence coverage of ETD or not, to improve the qualitative degree the establishment of a cyclic peptide analysis platform, it might be the related bacteria purified cyclic peptide technology development and quantitative research.
其他識別: U0005-0508201316174500
Appears in Collections:分子生物學研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.