Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2089
標題: 六軸微定位平台之設計與分析
Design and Analysis of Six Axes Micro-Positioning Stage
作者: 張善岳
Chang, Shan-Yueh
關鍵字: six axes macro-positioning stage
六軸微定位平台
monolithic mechanism
flexural structure
6W
一體機構
撓性結構
6W(檢討法)
出版社: 機械工程學系所
引用: [1] 吳冬立,「並聯式六自由度奈米級微定位平台研製」,碩士論文,國立臺灣大學,中華民國九十一年六月。 [2] G. J. Chung, K. B. Choi, and C. H. Park, “Development of Planar Parallel Stage Mechnism for Nano Order Precision Robot Manipulator,” Proceedings of the IEEE International Conference on Robotics and Biominetics, 2005, pp. 139-144. [3] 范鈞婷,「一種六自由度微定位平台的設計與量測」,碩士論文,高雄第一科技大學機械與自動化工程學系,中華民國九十五年六月。 [4] 馮榮豐、胡勝淳,「由橢圓複合式放大機構構成的六自由度微/奈米精密定位平台」,專利公告號I244960 (發明-中華民國),中華民國九十六年。 [5] 李一民,「六自由度微定位平台之設計與分析」,碩士論文,中興大學機械學系研究所,中華民國九十五年六月。 [6] Jywe1 W. Y., Liu2 C. H. and Teng Y. F., “Development of a flexure hinge-based stack-type five-degrees-of-freedom nanometre-scale stage for a heavy-loading machining process,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 221, number 3, 2007, pp379-385. [7] 陳龍安,「創造思考教學的理論與實際」,台北:心理,中華國民九十五年。 [8] 謝龍昌、曾錦煥、趙志揚、劉霆、馮展華、王以莊,「創意設計理論與實務—機械類教材」,教育部八十九年度委託研究計劃,中華民國九十年六月。 [9] 楊家昇,「精密進給系統驅動機構之設計研究」,碩士論文,中興大學機械研究所,中華民國九十三年七月。 [10] Paros, J.M.,and Weisbord, L., “How to design flexure hinge”, Machine Design, Vol. 37, Nov. 1965. [11] B. H. Kang, T. Y. Wen, N. G. Dagalakis, and J. J. Gorman, “Analysis and Design of Parallel Mechanisms With Flexure Joints,” Proceedings of the IEEE Transctions on Robotics, Vol. 21, No. 6, December 2005, pp. 1179 – 1185. [12] J. J. Yu, S. S. Bi, G. H. Zong, and X. J. Liu, “On the Design of Compliant-Based Micro-Motion Manipulators with a Nanometer Range Resolution,” Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2003, pp. 149-154 [13] Physik Instrumente, Micropositioning,Nanopositioning, Nano-automation, 2001. [14] Stewart D., “A platform with six degrees of freedom,” Proc. Inst. Mech.Eng., vol. 180, no. 1, 1965, pp. 371–386. [15] G. Pritschow, and K.H. Wurst, “Systematic design of hexapods and other parallel link systems,” Proceedings of the CIRP Annals - Manufacturing Technology, v 46, n 1, 1997, pp. 291-295. [16] 張所鋐,李振邦,劉霆,「單層三自由度微定位平台」,專利公告號00431249(新型-中華民國),中華國民九十二年。 [17] D. C. Handley, T. F. Lu, and Y. K. Yong, “Workspace Investigation of a 3 DOF Compliant Micro-motion Stage,” Proceedings of the 2004 8th International Conference on Control, Automation, Robotics and Vision, December 2004, pp. 1279-1284. [18] B. J. Yi, H. Y. Na, G. B. Chung, W. K. Kim, and I. H. Suh, “Design and Experiment of a 3 DOF Parallel Micro-Mechanism Utilizing Flexure Hinges,” Proceedings of the IEEE international Conference on Robotics and Automation, May 2002, pp. 1167-1172. [19] Soni, A. H., Mechanism Synthesis and Analysis, McGraw-Hill, New York, 1974. [20] Smith, S.T. and Chetwynd D.G., Foundations of Ultraprecision Mechanism Design, CRC Press, New York, 1992, Ch4. [21] Gere, J.M., Mechanics of Materials, Brook/Cole, California, 2001, pp. 899. [22] Physic Instrument, NanoPositioning, US Edition Catalog, 2001. [23] IOtech, DaqBoard/2000 and /2000c Series User’s Manual, April, 2002.
摘要: 本研究之目的為設計出一個六軸微定位平台,採用壓電材料、配合撓性結構來達到奈米定位效果,在本研究中利用6W(檢討法)來激發新的構想,克服平台結構的問題,設計一個新的機構,整體設計乃為一體機構無需組裝。 本論文的研究步驟主要可分為三個階段,(1)定位平台的概念設計、(2)定位平台的理論及模擬分析、(3)定位平台的實體實驗。在設計分析流程中,首先根據設計需求而配合6W產生定位平台的設計概念,再針對定位平台的撓性結構之構型分析其自由度、靜態與動態特性,最後將理論分析與ANSYS有限元素分析、自然頻率響應實驗的結果三者比較,藉此以驗證整個理論分析流程的正確性,並經由實體實驗量測出在X方向之最大位移為4.98μm、Y方向之最大位移為12.03μm、Z方向之最大位移為12.8μm。θ軸之最大旋轉量為42.4μrad、ψ軸之最大旋轉量為351.36μrad、φ軸之最大旋轉量為330.44μrad之定位平台。
The purpose of this research is to design a six axes macro-positioning stage. By using flexure hinge and piezoelectric actuator, this stage can achieve precision positioning with nanometer resolution. The 6W method was used to solve the problem embedded in the conventional precision stage and generate a new conceptual design. We designed a macro-positioning stage in monolithic mechanism with six axes. In this thesis, the functional requirements were discussed firstly. A conceptual design was followed according to these functional requirements. Then a mathematical model of the stage was constructed. Finite element analysis with experiment was conducted to verify the design. The experiment results show that the stage can achieve a maximum displacement 4.98μm in X axis; 12.03μm in Y axis; and 12.8μm in Z axis. The stage can also achieve a maximum rotation 396.8 μrad around X axis; 326.2μrad around Y axis; and 322.7μrad around Z axis.
URI: http://hdl.handle.net/11455/2089
其他識別: U0005-2208200807500400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2208200807500400
Appears in Collections:機械工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.