Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2125
標題: 工具機之Z軸振動及負載研究
A Study on the Vibration and Loading on Z axis of Machine Tools
作者: 李宗融
Li, Zong-Rong
關鍵字: Cantilever beam
懸臂樑
Simple beam
Natural frequency
Mode shape function
Harmonic analysis
簡支樑
自然頻率
模態函數
簡諧分析
出版社: 機械工程學系所
引用: 參考文獻 [1]王福清,工作機械概要,上銀科技股份有限公司系統發展部,2006年2月27日。 [2]R.E. Schorry, “Machine Tool Structural Modeling and Simulation,” http://www.cinmac.com/Used/index.htm, Cincinnati Machine, a UNOVA Company, 2000, pp.1-33. [3]R.W. Clough, “The finite element method in plane stress analysis,” Processdings of American Society of Civil Engineers 2nd Conference on Electronic Computation, Sep.1960, pp.345-378. [4]A. Hrennikoff, “Solution of problems in elasticity by the frame work method,” ASME Journal of Applied Mechanics, 1941, pp.169-175. [5]R. Courant, “Variational methods for the solution of problems of equilibrium and vibrations,” Bulletin of the American Mathematical Society, 1943, pp.1-23. [6]M.J. Turner, E.H. Dill, H.C. Martin and R.J. Melosh, “Large deflections of structures subjected to heating and external loads,” Journal of Aeronautical Sciences, 1960, pp.97-107. [7]R. H. Gallapher, J. Padlog and P. P. Bijlaard, “Stress analysis of heated complex shapes,” Journal of the Ameriacn Rocket Socity, 1962, pp.700-707. [8]O. Zeinkiewicz, M. Watson and I.P. King, “A numerical method of visco-elastic stress analysis,” International Journal of Mechanical Sciences, 1968, pp.807-827. [9]O. Zeinkiewicz and Y.K. Cheung, The Finite Element Method in Structural and Continuum Mechanics, McGraw-Hill, 1967. [10]J.T. Oden, Finite Elements of Nonlinear Continua, McGraw-Hill, 1972. [11]S. Moaveni, Finite element analysis:theory and application with ANSYS, Prentice-Hall, 2001. [12]S. Kong, S. Zhou, Z. Nie and K. Wang, “The size-dependent natural frequency of Bernoulli–Euler micro-beams,” International Journal of Engineering Science, May 2008, pp.427-437. [13]T. Naik, E.K. Longmire and S.C. Mantell, “Dynamic response of a cantilever in liquid near a solid wall,” School of Mechanical Engineering, Shandong University, January 2003, pp.240-254. [14]S. Orhan, “Analysis of free and forced vibration of a cracked cantilever beam,” NDT & E International, September 2007, pp.443-450. [15]L. Yu and T.H.T. Chan, “Parametric studies on moving axle load identification,” Proceedings of the ASME Design Engineering Technical Conference, September 9-12, 2001, pp.1-8. [16]W. Sochacki, “The dynamic stability of a simply supported beam with additional discrete elements,” Journal of Sound and Vibration, July 2008, pp.180-193. [17]J. Avsec and M. Oblak, “Thermal vibrational analysis for simply supported beam and clamped beam,” Journal of Sound and Vibration, December 2007, pp.514-525. [18]陳精一,「ANSYS振動學實務分析」,高立圖書有限公司,2005年8月20日。 [19]王伯村,「振動學」,全華圖書股分有限公司,2003年9月12日。 [20]津村利光、大西清、洪榮哲、黃廷合,「機械設計製圖便覽」,全華圖書股分有限公司,2005年09月。 [21]陳志鏗、李春穎,「COSMOS/Works 2006應用解析-基礎篇」,高立圖書有限公司,2007年2月10日。 [22]劉晉奇、褚晴暉,「有限元素分析與ANSYS的工程應用」,滄海書局,2006年。 [23]實威科技股份有限公司,「COSMOSWorks電腦輔助工程分析-入門篇Designer」,全華圖書股份有限公司,2007年。 [24]實威科技股份有限公司,「COSMOSWorks電腦輔助工程分析-進階篇Professional」,全華圖書股份有限公司,2007年。 [25]D.J. Mead, “The forced vibration of one-dimensional multi-coupled periodic structures: An application to finite element analysis,” Journal of Sound and Vibration, June 2008, pp.1-23. [26]L. Jun and H. Hongxing, “Dynamic stiffness vibration analysis of an elastically connected three-beam system,” Applied Acoustics, July 2008, pp.591-600. [27]P. Malekzadeh, M. Farid and P. Zahedinejad, “A three-dimensional layerwise-differential quadrature free vibration analysis of laminated cylindrical shells,” International Journal of Pressure Vessels and Piping, July 2008, pp.450-458. [28]S. Loutridis, E. Douka and L.J. Hadjileontiadis, “Forced vibration behaviour and crack detection of cracked beams using instantaneous frequency,” NDT & E International, July 2005, pp.411-419. [29]黃俊銘,「數值分法-使用MATLAB程式語言」,全華圖書股分有限公司,2004年10月。 [30]吳盈輝,「樑結構由操作變形振型之模態振型預測」,屏東科技大學機械工程系碩士論文,2002年。 [31]外貿協會台北訊,「工具機業年度盛會台北工具機展商機無限」,2007年3月12日,http://203.66.210.84。
摘要: 近年來由於加工品質不斷地提高,使工具機的性能需求也逐漸提高,因此對於加工精度的要求將是公司與顧客所重視的部分。而各家公司為了改善工具機的精度,不斷地開發新機種來提高精度,或是針對原始模型作最佳化設計。而造成加工精度最大的問題在於主軸頭與平台之間的位移量,由於負載及振動的影響,使主軸頭與平台的相對位移量作改變。 因此本研究將探討主軸頭與平台間因受負載與振動所產生的位移量大小。先將實體模型作數學模型分析,並簡化其結構依據整體體積與重量為主,再將簡化模型以懸臂樑與簡支樑的固定方式,作理論值與分析值之比較,分析其結果與整體模型之間的誤差,並提出造成誤差的原因,作為未來改善的方向,而將得到的結果做為未來研究的依據。
Due to the improvement of machining quality, the demands of high performance of machine tool have been increased in recent years. Hence, the requirements for high machining precision gain a lot of intentions by the customers and machine makers. To improve the precision of machine tool, most companies have made their efforts on developing new model or doing optimization design on their origin designs. One of the key issues that cause the precision problem is the displacement between the spindle head and the platform. The relative displacement between the spindle head and platform will vary due to the effect of loading and vibration. Hence, in this thesis, the relative displacement between spindle head and platform due to loading and vibration will be studied. The mathematic model analysis is performed in the first beginning. A simplified model is then constructed according to its volume and weight. The cantilever beam and simple beam are then used for model analysis. The analyzing results are then being used for comparison between theoretical values and analysis values. According to the verification results, the causing of errors will then be discussed for future improvements and for further studies.
URI: http://hdl.handle.net/11455/2125
其他識別: U0005-2508200814180700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2508200814180700
Appears in Collections:機械工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.