Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/21750
標題: Cloning of the Transglutaminase Gene from Streptomyces and Production of Active Recombinant Transglutaminase in E. coli
Streptomyces 轉麩氨醯胺酶基因選殖分析及利用大腸桿菌細胞生產具活性的重組酵素
作者: Chen, Yu-Cheng
陳裕成
關鍵字: 轉麩氨醯胺酶大腸桿菌
transglutaminase
出版社: 分子生物學研究所
引用: 白燿嘉 (2002) Streptomyces rectiverticillatus 轉麩氨醯胺酶基因之篩選與酵素特 性之研究。國立中興大學分子生物學研究所碩士論文。 吳師誠 (2002) Streptomyces kentuckense 轉麩氨醯胺酶基因之篩選與酵素特性之 研究。國立中興大學分子生物研究所碩士論文。 陳宗愚(2002) Streptomyces flavopericus 轉麩氨醯胺酶純化及特性分析及 Streptomyces 轉麩氨醯胺酶在大腸菌之表現。國立中興大學分子生物研 究所碩士論文。 詹弘祥(2005) 在大腸菌生產重組 Streptomyces 轉麩氨醯胺酶及重組酵素 pro-peptide 功能之探討。國立中興大學分子生物研究所碩士論文。 吳介文、蔡國珍、江善宗 (1996) 轉麩氨醯胺基酶生產菌株之篩選及影響其產量 因子之探討。中國農化會誌34: 228-240.。 王志鵬 (2001) 枯草桿菌Bacillus subtilis DB104 電轉形效率之增進 II. 設計、合 成第一型抗凍蛋白基因及其於枯草桿菌、大腸桿菌中之表現。國立中興 大學食品暨應用生物科技學系碩士論文。 Aeschlimann D, and Paulsson M. (1994) Transglutaminases: protein cross-linking enzymes in tissues and body fluids. Thromb. Haemost. 71: 402-415. Abe, T. S., DiAugustine, R. P. and Folk, J. E. (1977) Rabbit liver transglutaminase : physical, chemical and catalytic properties. Biochemicstry 16: 5495-5501. Ando, H., Adachi, K., Umeda, K., Matsuura, A., Nonaka, M., Uchio, R., Tanaka, H., and Motoki, M. (1989) Purification and characteristics of a novel transglutaminase derived from microorganisms. Agric. Biol. Chem. 53: 2613-2617. Ando, Y., Imamura, S., Yamagata, Y., Kikuchi, T., Murachi, T., Kannagi, R. (1987) High-performance liquid chromatographic assay of transglutaminase and its application to the purification of human erythrocyte transglutaminase and platelet factor XIII. J. Biochem. (Tokyo). 101:1331-1337. Barker, D., silen, L. J., and D. A. Agard. (1992) Protease pro region required for folding is a potent inhibitor of the mature enzyme. Proteins Struct. Funct. Genet. 12: 339-344. Chen, X. and Wu, R. (1997) Direct amplification of unknown genes and fragments by uneven polymerase chain reaction. Gene 185: 195-199. Choi, J. H., and Lee, S. Y., (2004) Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl. Microbiol. Biotechnol. 64: 625–635 Connellan, J. M., Chung, S. I., Whetzel, N. K., Bradley, L. M., and Folk, J. E. (1971) Structural properties of guinea pig liver transglutaminase. J. Biol. Chem. 246: 1093-1098. Dadabay, C. Y. and Pike, L. J. (1989) Purification and characterization of a cytosolic transglutaminase from a cultured human tumor-cell line. Biochem. J. 264: 679-686. Dubbink, H. J., de Waal, L., van Haperen, R., Verkaik, N. S., Trapman, J., Romijn, J. C. (1998) The human prostate-specific transglutaminase gene (TGM4): genomic organization, tissue-specific expression, and promoter characterization. Genomics 51: 434-444. Duran, R., junrua, M.,Schmitter, JM., Gancet, C., and Goulas, P. (1998) Purification, characterization, and gene cloning of transglutaminase from Streptoverticillium cinnamoneum CBS 683.68. Biochimie. 80: 313-319. Fesus, L., V. Thomazy and A. Falus. (1987) Induction and activation of tissue transglutaminase during proprammed ceu death. FEBS Lett. 224: 104-108 Folk, J. E. (1970) Transglutaminase in “Methods in Enzymology”, Tabor, H., and Tabor, C. W. (ed.), Vol. 17, pp: 889-894. Academic Press, New York. Folk, J. E. (1980) Transglutaminases Ann. Rev. Biochem. 49: 517-531. Folk, J. E., and Chung, S. I. (1973) Molecular and catalytic properties of transglutaminases. Adv. Enzymol. 38: 109-191. Folk, J. E., and Cole, P. W. (1966) Mechanism of action of guinea pig liver transglutaminase. J. Biol. Chem. 241: 5518-5525. Gentile, V., Grant, F. J., Porta, R., Baldini, A. (1995) Localization of the human prostate transglutaminase (type IV) gene (TGM4) to chromosome 3p21.33-p22 by fluorescence in situ hybridization. Genomics 27: 219-220. Gerber, U., jucknischke, U., Putzein, S. & Fuchsbauer, H. L. (1994) A rapid and simple method for the purification of transglutaminase from Streptomyces mobaraense. Biochem. J. 299: 825-829. Greenberg, C. S., Birckbickler, P. J. and Rice, R. H. (1991) Transglutaminase: multifunctional cross-linking enzymes that stabilize tissues. FASEB J. 5: 3071-3077. Gray, A. M. and Mason, A. J. (1990) Requirement for activin A and transforming growth factor-β 1 pro-regions in homodimer assembly. Science 247: 1328-1330. Ichinose, A., Bottenus, R. E. and Davie, E. W. (1990) Structure of transglutaminase. J. Biol. Chem. 265: 13411-13414. Ikura, K., Nasu, T., Yokota, H., Tsuchiya, Y., Sasaki, R. and Chiba, H. (1988) Amino acid sequence of guinea pig liver transglutaminase from it cDNA squence. Biochemistry 27: 2898-2905. Josten, A., Meusel, M., Spener, F. (1998) Microbial transglutaminase-mediated synthesis of hapten-protein conjugates for immunoassays. Anal. Biochem. 258: 202-208. Kanaji, T., Ozaki, H. Takao, T., Kawajir, H., Ide, H., Motoki, M., and Shimonishi, Y. (1993) Primary structure of microbial transglutaminase from Streptoverticillium sp. strain S-8112. J. Biol. Chem. 268: 11565-11572. Kawai, M., Takehana, S., and Takagi, H. (1997) High-level expression of the chemically synthesized gene for microbial transglutaminase from Streptoverticillium in Escherichia coli. Biosci. Biotechnol. Biochem. 61: 830-835. Kikuchi, Y., Date, M., Yokoyama, K., Umezawa, Y., and Matsui, H. (2003) Secretion of active-form Streptoverticillium mobaraense transglutaminase by Corynebacterium glutamicum: processing of the pro-transglutaminase by a cosecreted subtilisin-like protease from Streptomyces albogriseolus. Appl. Environ. Microbiol. 69: 358-366. Klein, J.D., Guzman, E., and Kuehn, G.D. (1992) Purification and partial characterization of transglutaminase from Physarum polycephalum. J Bacteriol. 174: 2599-2605. Knight, R. L., Hand, D., Piacentini, M., Griffin, M. (1993) Characterization of the transglutaminase-mediated large molecular weight polymer from rat liver; its relationship to apoptosis. Eur. J. Cell Biol. 60: 210-216. Kobayashi, K., Hashiguchi, K., Yokozeki, K., and Yamanaka, S. (1998) Molecular cloning of the transglutaminase gene from Bacillus subtilis and its expression in Escherichia coli. Biosci. Biotechnol. Biochem. 62: 1109-1114. Lammertyn E, Anne J. (1998) Modifications of Streptomyces signal peptides and their effects on protein production and secretion. FEMS Microbiol. Lett. 160: 1-10. Lucast, L. J., Batey, R. T., Doudna, J. A. (2000) Large-scale purification of a stable form of recombinant tobacco etch virus protease. Biotechniques. 30: 544-546. Matheis, G., and Whitaker, J. R. (1987) A review: enzymatic cross-linking of proteins application to foods. J. Food Biochem. 11: 309-327. Morosoli, R., Shareck, F., and Kluepfel, D. (1997) Protein secretion in Streptomyces FEMS Microbiol. Lett. 146: 167-174. Nagamune, T., Kamiya, N., Takazawa,T., Tanaka, T., Ueda, H. (2003)Site-specific cross-linking of functional proteins by transglutamination. Enzyme Microb. Technol. 33: 492–496. Nallamsetty, S., Kapust, R. B., Tozser, J., Cherry, S., Tropea, J. E., Copeland, T. D. Waugh, D. S. (2004) Efficient site-specific processing of fusion proteins by tobacco vein mottling virus protease in vivo and in vitro. Protein Expr. Purif. 38: 108-115. Nossal, N. G., and Heppel, L. A. (1966) The release of enzymes by osmotic shock from Escherichia coli in exponential phase. J. Biol. Chem. 241: 3055-3062. Ohta, Y., and Inouye, M. (1990) Pro-subtilisin E: purification and characterization of its autoprocessing to active subtilisin E in vitro. Mol. Microbial. 4: 295-304. Ota, M., Sawa, A., Nio, N., Ariyoshi, Y. (1999) Enzymatic ligation for synthesis of single-chain analogue of monellin by transglutaminase. Biopolymers 50: 193-200 Pasternack, R., Dorsch, S., otterbach, T. J., Bobenek, R. I., Wolf, S., Fuchsbauer, H-L. (1998) Bacterial pro-transglutaminase from Streptoverticillium mobaraense purification, characterisation and sequence of the zymogen. Eur. J. Biochem. 257: 570-576. Piacentini, M., L. Fesus, M. G. Farrace, L. Ghibelli, L. Piredda And G. Melino. (1991) The expression of “tissue” transglutaminase into human cancer cell lines is related with the programmed cell death (apoptosis). Eur. J. Cell Biol. 54: 246-254. Sambrook, J., and Russell, D. W. (2001) Molecular Cloning: A Laboratory Manual, 3th ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Samuel, Z. (1995) Functionalized polyethylene glycerol for preparation of biologically relevant conjugates. Biconjugate Chem. 6: 150-165. Schwartz, M. L., Pizzo, S. V., Hill, R. L. and Mckee, P. A. (1973) Human Factor XIII from plasma and platelets. J. Biol. Chem. 248: 1395-1407. Seitz, J., Keppler, C., Huntemann, S., Rausch, U., Aumuller, G. (1991) Purification and molecular characterization of a secretory transglutaminase from coagulating gland of the rat. Biochim. Biophys. Acta. 1078: 139-146. Shigenaga, T., Takayenoki, Y., Kawasaki, S., Seki, N., Muta, T., Toh, Y., Ito, A., Iwanaga, S. (1993) Separation of large and small granules from horseshoe crab (Tachypleus tridentatus) hemocytes and characterization of their components. J. Biochem. (Tokyo). 114: 307-316. Takehana, S., Washizu, K., Ando, K., Koikeda, S., Takeuchi, K., Matsui, H., Motoki, M., and Takagi, H. (1994) Chemical synthesis of the gene for microbial transglutaminase from Streptoverticillium and its expressions in Escherichia coli. Biosci. Biotech. Biochem. 58: 88-92. Tanaka,T., Kamiyab,N., Nagamunea,T. (2004) N-terminal glycine-specific protein conjugation catalyzed by microbial transglutaminase. FEBS Lett. 579: 2092-2096. Tokunaga F., Yamada M., Miyata T., Ding Y. L., Hiranaga-Kawabata M., Muta T., Iwanaga S., Ichinose A., Davie E. W. (1993) Limulus hemocyte transglutaminase. Its purification and characterization, and identification of the intracellular substrates. J. Biol. Chem. 268: 252-261. Tsai, G. J., Lin, S. M. and Jiang, S. T. (1996) Transglutaminase from Streptoverticillium ladakanum and application to minced fish product. J. Food. Sci. 61:1234-1238. Tzeng, S. S., Yin, L. J., Chen, G. H., Jiang, S. T. (2005) Molecular cloning of microbial transglutaminase from Streptovertiillium ladakanum BCRC 12422. J. Fish. Soc. 32: 53-67. Washizu, K., Ando, K., Koikeda, S., Hirose, S., Matsurra, A., Takagi, H., Motoki, M., and Takeuchi, K. (1994) Molecular cloning of the gene for microbial transglutaminase from Streptoverticillium and its expression in Streptomyces lividans. Biosci. Biotech. Biochem. 58: 82-87. Weissman, J. S., and Kim, P. S. (1992) The pro region of BPTI facilitates folding. Cell 71: 841-851. Wilhelm, B., B., A. Meinhardt and J. Seitz. (1996) Transglutaminase purification and activity assays. J. Chromatogr. B. Biomed. Appl. 684: 163-177. Winther, J. R., and P. Sorensen. (1991) Propeptide of carbojypeptidase Y provides a chaperone-like function as well as inhibition of the enzymatic activity. Proc. Natl. Acad. Sci. USA 88: 9330-9334. Yokoyama K.-I., kikuchi, Y., and Yasueda, H. (1998) Overproduction of DnaJ in Escherichia coli improves in vivo solubility of the recombinant fish-derived transglutaminase. Biosci. Biotechnol. Biochem. 62:1205-1210. Yokoyama, L-I., Nakamura, M., Seguro, K., and Kubota, K. (2000) Overproduction of microbial transglutaminase in Escherichia coli, in vitro refolding, and characterization of the refolding form. Biosci. Biotechnol. Biochem. 64: 1263-1270. Yokoyama, K., Nio, N., and Kikuchi, Y. (2004) Properties and applications of microbial transglutaminase. Appl. Microbiol Biotechnol. 64: 625-635 Yurimoto, H., Yamane, M., Kikuchi,Y., Matsui, H., Kato, N., and Yasuyoshi, S. (2004) The pro-peptide of Streptomyces mobaraensis transglutaminase functions in cis and in trans to mediate efficient secretion of active enzyme from methylotrophic yeasts. Biosci. Biotechnol. Biochem., 68: 2058–2069. Zhu, J., A. Rinzema, J. Tramper and J. Bol. (1995) Microbial transglutaminase – a review of its production and application in food processing. Appl. Microbial Biotechnol. 44: 277-282. Zotzel, J., Keller, P., and Fuchsbauer, H.L. (2003a) Transglutaminase from Streptomyces mobaraenses is activated by an endogenous metalloprotease. Eur. J. Biochem. 270: 3214-3222. Zotzel, J., Pasternack, R., Pelzer, C., Ziegert, D., Mainusch, M., and Fuchsbauer, H.L. (2003b) Activated transglutaminase from Streptomyces mobaraenses is processed by a tripeptidyl aminopeptidase in the final step. Eur. J. Biochem. 270: 4149-4155.
摘要: Transglutaminases (amine γ-glutaminyl transferase, EC 2.3.2.13 ; TGase) are enzymes that catalyze the acyl transfer reaction between inter- or intramolecules of proteins, resulting in the formation of covalently cross-linkage and polymerization of proteins. To date, most of the TGases are isolated from Streptoverticillium spp. or expressed as recombinant proteins in other bacterial species. The object of this study was to produce the active form TGase in E. coli. To better understand the effect of sequence diversity on the TGase activity, we also embarked on cloning of Streptoverticillium TGase gene. The S. ladakanum TGase gene was cloned in this study by Uneven PCR and found to contain an ORF of 1233 bp encoding a 410 amino acids protein. The calculated molecular weight of the deduced ORF is 45.8 kDa and with a pI value of 6.2. The nucleotide and amino acid sequence of S. ladakanum TGase gene has the highest identity with that of the S. mobaraense. To enhance the production of soluble TGase in E. coli, several attempts have been conducted in this study. Expression of SkproTGase was directed by CspA cold shock promoter and induced by low temperature. However, no increase in the soluble TGase expression was observed. Active form of mature TGase could be obtained with protease digestion by coexpression of the proTGase and the specific protease (TVMV or TEV protease) in E. coli. The result revealed that the mature TGase was produced at 1.3~1.5 mg per 50 ml LB and the specific activity of the enzyme was about 35~39 U/mg. To our surprise, SDS-PAGE analysis indicated that the cleaved Trx-pro peptide was co-purified with the His-tagged mature SkTGase. The Resource S cation exchange column was then applied to purify the mature SkTGase from the cleaved Trx-pro peptide. The specific activity of the purified SkTGase was found to be 77.5 U/mg, indicating that the cleaved pro-peptide might affect the activity of the mature TGase. To obtain active form mature TGase without protease digestion, Trx-pro peptide and mature TGase genes were constructed in the same plasmid and co-expressed as a polycistronic mRNA. The result showed that active form of mature TGase was produced, however, with lower specific activity and yield than the fusion construct. Expression of Trx-pro peptide and mature TGase by two individual promoters displayed no significant increase in enzyme activity and production. To enhance the secretion of recombinant TGase into culture medium, expression of S. kentuckense preproTGase in E. coli was carried out. Our result indicated that recombinant TGase located in the periplasm but not in the culture broth. Moreover, no TGase was found in the culture broth when the YaB signal peptide of Bacillus subtilis was fused to the proTGase gene and expressed in B. subtilis.
轉麩氨醯胺酶 (transglutaminase, TGase) 為一種催化蛋白分子間或分子內醯基轉移的酵素,可以形成共價鍵結。而目前大部分的TGase 由 Streptomyces 菌種中被純化出來或於其他微生物進行重組蛋白的表現。本研究目的主要為利用E. coli生產具活性的 TGase,此外亦針對 S. ladakanum TGase 基因進行選殖分析,期望更了解不同菌種間 TGase 基因的差異對酵素活性的影響。本研究利用 uneven PCR 從S. ladakanum 菌株中選殖出完整 TGase 基因,其ORF有 1,233-bp,可轉譯出 410 個胺基酸,分子量為 45.8 kDa,蛋白等電點 (pI) 為 6.2,其核苷酸與胺基酸序列同質性與S. mobaraense 最高。為了增加 E. coli體內可溶性 TGase的產量,在本研究中做了許多的嘗試,利用E. coli CspA cold shock promoter 於低溫誘導表現 S. kentuckense proTGase 蛋白,然而結果顯示並無增加可溶性 TGase 的表現。而為了獲得具活性的 mature TGase,我們於 E. coli體內藉由共同表現 proTGase 蛋白與專一性辨識切割的蛋白酶 (TVMV 或 TEV protease) 的方式進行實驗,結果發現蛋白產率約為 1.3 ~ 1.5 mg / 50 ml,比活性約為 35 ~ 39 U/mg。另人驚訝的是從 SDS-PAGE 的分析中指出,未含 His-tag 的 pro-peptide 卻與 mature TGase 一起被分離出。進一步利用陽離子交換樹脂管柱分離,可部份回收單獨的mature TGase,其比活性可達 77.5 U/mg,這顯示了被切割出的pro-peptide 可能影響 mature TGase 的活性。另一方面,為了達到不經蛋白酶切割即獲得具活性之 mature TGase 酵素的目的,將Trx-pro peptide 與 mature TGase 基因構築於同一質體上,且以 polycistronic mRNA 的方式進行共同表現,結果發現雖可獲得具活性的 mature TGase,但其比活性及產量則較 Trx-proTGase 基因的融合構築低。另外以不同啟動子分別表現 Trx-pro peptide 與 mature TGase 基因的實驗顯示產量與比活性亦沒有明顯提升。而為了使重組 TGase 分泌至胞外,於 E. coli進行S. kentuckense preproTGase 的蛋白表現,結果顯示重組 TGase只能分泌至細胞間質,而胞外培養液中則無法觀察到。此外,將 Bacillus subtilis YaB signal peptide 融合至 proTGase 基因前端,於B. subtilis進行表現,但胞外培養液中並無 TGase 的存在。
URI: http://hdl.handle.net/11455/21750
其他識別: U0005-2408200604084200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2408200604084200
Appears in Collections:分子生物學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.