Please use this identifier to cite or link to this item:
標題: Ag473 蛋白質在 Neisseria spp. 差異表現之特性描述
Differential expression of Ag473 in Neisseria spp.
作者: 陳彗軒
Chen, Huey-Shian
關鍵字: Neisseria meningitidis
出版社: 分子生物學研究所
引用: Levinson, W. E. and Jawetz, E. 1997. 醫用微生物學。合記圖書,台北市。王瑞廷編譯。 蔡文城 (2002) 微生物學 (第四版)。藝軒圖書出版社,台北市。 詹哲豪、顏瑞鴻、池彩彤 (2007) 簡明微生物學(第七版)。華杏出版社,台灣。 郭雅音、謝素娥、羅雪霞 (2000) 微生物學。 藝軒圖書出版社,台灣。 許至安 (2003) 製備抗 B 群腦膜炎球菌之單株抗體及其特性之分析。國立中興大學分子生物學研究所,碩士論文 林瑋儒 (2005) 腫瘤相關抗原之搜尋及腦膜炎雙球菌非莢膜疫苗之研發。國立中興大學分子生物學研究所,碩士論文。 劉依倫 (2006) 腦膜炎雙球菌表面抗原 Ag473 之功能及免疫特性分析。國立中興大學分子生物學研究所,碩士論文。 張君銘 (2007) 腦膜炎雙球菌表面脂蛋白 Ag473 之功能分析及其抗原決定位之界定。國立中興大學分子生物學研究所,碩士論文。 Abraham JM, Freitag CS, Clements JR, Eisenstein BI. 1985. An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc Natl Acad Sci U S A. 82:5724-7. Aho EL, Dempsey JA, Hobbs MM, Klapper DG, Cannon JG. 1991. Characterization of the opa (class 5) gene family of Neisseria meningitidis. Mol Microbiol. 5:1429-37. Alcalá B, Salcedo C, Arreaza L, Abad R, Enríquez R, De La Fuente L, Uría MJ, Vázquez JA. 2004. Antigenic and/or phase variation of PorA protein in non-subtypable Neisseria meningitidis strains isolated in Spain. J Med Microbiol. 53:515-8. Alm RA, Guerry P, Power ME, Trust TJ. 1992. Variation in antigenicity and molecular weight of Campylobacter coli VC167 flagellin in different genetic backgrounds. J Bacteriol. 174:4230-8. Altuvia S, Weinstein-Fischer D, Zhang A, Postow L, Storz G. 1997. A small, stable RNA induced by oxidative stress: role as a pleiotropic regulator and antimutator. Cell. 90:43-53. Andrewes FW. 1922. Studies in group agglutination I. J Path Bacteriol. 22:505 Andersen J, Forst SA, Zhao K, Inouye M, Delihas N. 1989. The function of micF RNA. micF RNA is a major factor in the thermal regulation of OmpF protein in Escherichia coli. J Biol Chem. 264:17961-70. Arreaza L, Salcedo C, Alcalá B, Vázquez JA. 2002. What about antibiotic resistance in Neisseria lactamica? J Antimicrob Chemother. 49:545-7. Baranov PV, Hammer AW, Zhou J, Gesteland RF, Atkins JF. 2005. Transcriptional slippage in bacteria: distribution in sequenced genomes and utilization in IS element gene expression. Genome Biol. 6:R25. Bayliss CD, van de Ven T, Moxon ER. 2002. Mutations in poII but not mutSLH destabilize Haemophilus influenzae tetranucleotide repeats. EMBO J. 21:1465-76. Erratum in: EMBO J. 2002. 21:4391. Belland RJ. 1991. H-DNA formation by the coding repeat elements of neisserial opa genes. Mol Microbiol. 5:2351-60. Bennett JS, Griffiths DT, McCarthy ND, Sleeman KL, Jolley KA, Crook DW, Maiden MC. 2005. Genetic diversity and carriage dynamics of Neisseria lactamica in infants. Infect Immun. 73:2424-32 Bentley SD, Vernikos GS, Snyder LA, Churcher C, Arrowsmith C, Chillingworth T, Cronin A, Davis PH, Holroyd NE, Jagels K, Maddison M, Moule S, Rabbinowitsch E, Sharp S, Unwin L, Whitehead S, Quail MA, Achtman M, Barrell B, Saunders NJ, Parkhill J. 2007. Meningococcal genetic variation mechanisms viewed through comparative analysis of serogroup C strain FAM18. PLoS Genet. 3:e23. Benz I, Schmidt MA. 2002. Never say never again: protein glycosylation in pathogenic bacteria. Mol Microbiol. 45:267-76 Borst P, Greaves DR. 1987. Programmed gene rearrangements altering gene expression. Science. 235:658-67. Browning DF, Busby SJ. 2004. The regulation of bacterial transcription initiation. Nat Rev Microbiol. 2:57-65. Busby S, Ebright RH. 1994. Promoter structure, promoter recognition, and transcription activation in prokaryotes. Cell. 79:743-6. Chamberlin M, and Berg P. 1962 . Deoxyribonucleic acid-directed synthesis of ribonucleic acid by an enzyme from Escherichia coli. Proc Natl Acad SciU S A. 48:81-93 Chandler M, Fayet O. 1993. Translational frameshifting in the control of transposition in bacteria. Mol Microbiol. 7:497-503. Chen S, Zhang A, Blyn LB, Storz G. 2004. MicC, a second small-RNA regulator of Omp protein expression in Escherichia coli. J Bacteriol. 186:6689-97. Connell TD, Shaffer D, Cannon JG. 1990. Characterization of the repertoire of hypervariable regions in the Protein II (opa) gene family of Neisseria gonorrhoeae. Mol Microbiol. 4:439-49. Deitsch KW, Moxon ER, Wellems TE 1997. Shared themes of antigenic variation and virulence in bacterial, protozoal, and fungal infections. Microbiol Mol Biol Rev. 61:281-93. Delihas N. 1995. Regulation of gene expression by trans-encoded antisense RNAs. Mol Microbiol. 15:411-4. Review. DeVoe IW. 1982. The meningococcus and mechanisms of pathogenicity. Microbiol Rev. 46:162-90. Doig P, Kinsella N, Guerry P, Trust TJ. 1996. Characterization of a post-translational modification of Campylobacter flagellin: identification of a sero-specific glycosyl moiety. Mol Microbiol. 19:379-87. Dybvig K. 1933. DNA rearrangements and phenotypic switching in prokaryotes. Mol Microbiol. 10:465-71. Eddy SR. 2001. Non-coding RNA genes and the modern RNA world. Nat Rev Genet. 2:919-29. Fritz JH, Girardin SE, Philpott DJ. 2006. Innate immune defense through RNA interference. Sci STKE. 339: 2 Fischer W, Haas R. 2004. The RecA protein of Helicobacter pylori requires a posttranslational modification for full activity. J Bacteriol. 186:777-84. Gaal T, Bartlett MS, Ross W, Turnbough CL Jr, Gourse RL. 1997. Transcription regulation by initiating NTP concentration: rRNA synthesis in bacteria. Science. 278:2092-7. Good L. 2003. Translation repression by antisense sequences. Cell Mol Life Sci. 60:854-61. Granoff DM, Bartoloni A, Ricci S, Gallo E, Rosa D, Ravenscroft N, Guarnieri V, Seid RC, Shan A, Usinger WR, Tan S, McHugh YE, Moe GR. 1998. Bactericidal monoclonal antibodies that define unique meningococcal B polysaccharide epitopes that do not cross-react with human polysialic acid. J Immunol. 160: 5028-5036. Haneveld GT. 1979. The centenary of the gonococcus: the importance of its discovery and the acknowledgement of this in the Netherlands (Ludwig Sigesmund Albert Neisser). Ned Tijdschr Geneeskd. 123:1875-8 Henderson IR, Owen P, Nataro JP. 1999. Molecular switches--the ON and OFF of bacterial phase variation. Mol Microbiol. 33:919-32. Horton RE, Stuart J, Christensen H, Borrow R, Guthrie T, Davenport V, Finn A, Williams NA, Heyderman RS; The ALSPAC Study Team. 2005. Influence of age and carriage status on salivary IgA to Neisseria meningitidis. Epidemiol Infect. 133:883-9. Hsu CA, Lin WR, Li JC, Liu YL, Tseng YT, Chang CM, Lee YS, Yang CY. 2008. Immunoproteomic identification of the hypothetical protein NMB1468 as a novel lipoprotein ubiquitous in Neisseria meningitidis with vaccine potential. Proteomics. 8:2115-25. Ian R. Henderson, Peter Owen and James P. Nataro 1999. Molecular switches - the ON and OFF of bacterial phase variation. Molecular Microbiology. 33: 919-932 Jacob F, Monod J. 1961. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 3:318-56. Kawula TH, Aho EL, Barritt DS, Klapper DG, Cannon JG. 1988. Reversible phase variation of expression of Neisseria meningitidis class 5 outer membrane proteins and their relationship to gonococcal proteins II. Infect Immun. 56:380-6. Kline KA, Criss AK, Wallace A, Seifert HS. 2007. Transposon mutagenesis identifies sites upstream of the Neisseria gonorrhoeae pilE gene that modulate pilin antigenic variation. J Bacteriol. 189:3462-70. Knapp, J. S., Koumans, E. H. Neisseria and Branhamella. 1999. Manual of Clinical Microbiology.7th ed. Washington, D.C. ASM press: 586-560. Lafontaine ER, Wagner NJ, Hansen EJ. 2001. Expression of the Moraxella catarrhalis UspA1 protein undergoes phase variation and is regulated at the transcriptional level. J Bacteriol. 183:1540-51. Lambden PR, Robertson JN, Watt PJ. 1980. Biological properties of two distinct pilus types produced by isogenic variants of Neisseria gonorrhoeae P9. J Bacteriol. 141:393-6. Lavitola A, Bucci C, Salvatore P, Maresca G, Bruni CB, Alifano P. 1999. Intracistronic transcription termination in polysialyltransferase gene (siaD ) affects phase variation in Neisseria meningitidis. Mol Microbiol. 33:119-27 Lease RA, Belfort M. 2000. Riboregulation by DsrA RNA: trans-actions for global economy. Mol Microbiol. 38:667-72. Levinson G, Gutman GA. 1987. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol. 4:203-21. Liu C, Heath LS, Turnbough CL Jr. 1994. Regulation of pyrBI operon expression in Escherichia coli by UTP-sensitive reiterative RNA synthesis during transcriptional initiation. Genes Dev. 8:2904-12. Luo GX, Taylor J. 1990. Template switching by reverse transcriptase during DNA synthesis. J Virol. 64:4321-8. Martin P, van de Ven T, Mouchel N, Jeffries AC, Hood DW, Moxon ER. 2003. Experimentally revised repertoire of putative contingency loci in Neisseria meningitidis strain MC58: evidence for a novel mechanism of phase variation. Mol Microbiol. 50:245-57. Meyer TF, Gibbs CP, Haas R. 1990. Variation and control of protein expression in Neisseria. Annu Rev Microbiol. 44:451-77. Nassif, X. 1999. Interaction mechanism of encapsulated meningococci with eukaryotic cells: what doew this tell us about the crossing of blood-brain barrier by Neisseria meningitidis ? Curr Opin Microbiol. 2:71-77 Qi F, Turnbough CL Jr. 1995. Regulation of codBA operon expression in Escherichia coli by UTP-dependent reiterative transcription and UTP-sensitive transcriptional start site switching. J Mol Biol. 254:552-65. Olafson RW, McCarthy PJ, Bhatti AR, Dooley JS, Heckels JE, Trust TJ. 1985. Structural and antigenic analysis of meningococcal piliation. Infect Immun. 48:336-42. Plant L, Asp V, Lövkvist L, Sundqvist J, Jonsson AB. 2004. Epithelial cell responses induced upon adherence of pathogenic Neisseria. Cell Microbiol. 6:663-70. Power PM, Jennings MP. 2003. The genetics of glycosylation in Gram-negative bacteria. FEMS Microbiol Lett. 218:211-22. Ramani N, Hedeshian M, Freundlich M. 1994. micF antisense RNA has a major role in osmoregulation of OmpF in Escherichia coli. J Bacteriol. 176:5005-10. Ray S.K. 2004. Riboswitch: A new mechanism of gene regulation in bacteria. Current science. 87:1168-1169 Robertson BD, Meyer TF. 1992. Genetic variation in pathogenic bacteria. Trends Genet. 8:422-7. Sarkari J, Pandit N, Moxon ER, Achtman M. 1994. Variable expression of the Opc outer membrane protein in Neisseria meningitidis is caused by size variation of a promoter containing poly-cytidine. Mol Microbiol. 13:207-17. Saunders JR. 1986. The genetic basis of phase and antigenic variation in bacteria. In Antigenic Variation in Infectious. 57-76 Schmidt M, Zheng P, Delihas N. 1995. Secondary structures of Escherichia coli antisense micF RNA, the 5''-end of the target ompF mRNA, and the RNA/RNA duplex. Biochemistry. 34:3621-31 Sessa L, Breiling A, Lavorgna G, Silvestri L, Casari G, Orlando V. 2007. Noncoding RNA synthesis and loss of Polycomb group repression accompanies the colinear activation of the human HOXA cluster. RNA. 13:223-39. Silverman M, Zieg J, Hilmen M, Simon M. 1979 .Phase variation in Salmonella: genetic analysis of a recombinational switch. Proc Natl Acad Sci U S A. 76:391-5. Stibitz S. 1994. Mutations in the bvgA gene of Bordetella pertussis that differentially affect regulation of virulence determinants. J Bacteriol. 176:5615-21. Swanson J, Bergström S, Robbins K, Barrera O, Corwin D, Koomey JM. 1986. Gene conversion involving the pilin structural gene correlates with pilus+ in equilibrium with pilus- changes in Neisseria gonorrhoeae. Cell. 47:267-76. Takahashi H, Watanabe H. 2005. A gonococcal homologue of meningococcal gamma-glutamyl transpeptidase gene is a new type of bacterial pseudogene that is transcriptionally active but phenotypically silent. BMC Microbiol. 5:56. Tortschanoff M, Aurich C, Rosengarten R, Spergser J. 2005.Phase and size variable surface-exposed proteins in equine genital mycoplasmas. Vet Microbiol. 110:301-6. van Belkum A. 1999. Short sequence repeats in microbial pathogenesis and evolution. Cell Mol Life Sci. 56:729-34. van Belkum A, Scherer S, van Alphen L, Verbrugh H. 1998. Short-sequence DNA repeats in prokaryotic genomes. Microbiol Mol Biol Rev. 62:275-93. van der Ende A, Hopman CT, Dankert J. 2000. Multiple mechanisms of phase variation of PorA in Neisseria meningitidis. Infect Immun. 68:6685-90. van der Woude MW. 2006. Re-examining the role and random nature of phase variation. FEMS Microbiol Lett. 254:190-7. van der Woude MW, Bäumler AJ. 2004. Phase and antigenic variation in bacteria. Clin Microbiol Rev. 17:581-6 Verheul AF, Snippe H, Poolman JT. 1993. Meningococcal lipopolysaccharides: virulence factor and potential vaccine component. Microbiol Rev. 57: 34-49. Vicente M, Chater KF, De Lorenzo V. 1999. Bacterial transcription factors involved in global regulation. Mol Microbiol. 33:8-17. Wagner LA, Weiss RB, Driscoll R, Dunn DS, Gesteland RF. 1990. Transcriptional slippage occurs during elongation at runs of adenine or thymine in Escherichia coli. Nucleic Acids Res. 18:3529-35 Wagner EG, Altuvia S, Romby P. 2002 (A). Antisense RNAs in bacteria and their genetic elements. Adv Genet. 46:361-98. Wagner EG, Flärdh K. 2002 (B). Antisense RNAs everywhere? Trends Genet. 18:223-6. Wagner LA, Weiss RB, Driscoll R, Dunn DS, Gesteland RF. 1990. Transcriptional slippage occurs during elongation at runs of adenine or thymine in Escherichia coli. Nucleic Acids Res. 18:3529-35. Willems R, Paul A, van der Heide HG, ter Avest AR, Mooi FR. 1990. Fimbrial phase variation in Bordetella pertussis: a novel mechanism for transcriptional regulation. EMBO J. 9:2803-9. Winner F, Markovà I, Much P, Lugmair A, Siebert-Gulle K, Vogl G, Rosengarten R, Citti C. 2003. Phenotypic switching in Mycoplasma gallisepticum hemadsorption is governed by a high-frequency, reversible point mutation. Infect Immun. 71:1265-73. Winstanley C, Morgan JA. 1997. The bacterial flagellin gene as a biomarker for detection, population genetics and epidemiological analysis. Microbiology. 143:3071-84. Zhao H, Li X, Johnson DE, Blomfield I, Mobley HL. 1997. In vivo phase variation of MR/P fimbrial gene expression in Proteus mirabilis infecting the urinary tract. Mol Microbiol. 23:1009-19. Zieg J, Silverman M, Hilmen M, Simon M. 1977. Recombinational switch for gene expression. Science. 196:170-2.
摘要: 脂蛋白 Ag473 為本實驗室近來發現具有開發為腦膜癌疫苗潛力之蛋白質,其功能未明。Ag473 蛋白質表現於所有測試之 Nm 菌株,而以單株抗體 4-7-3 進行 ELISA 及西方墨點分析發現並非所有 Ng 菌株均可偵測到 Ag473 蛋白質。進一步以PCR 分析結果顯示在淋病雙球菌 (Neisseria gonorrhoeae, Ng) 中也有 ag473 基因存在,故本研究主要針對影響 Ag473 在 Nm 與 Ng 中差異表現之機制進行探討。 為確定 Nm 及Ng 中 Ag473蛋白質的表現情形,首先利用α-rAg473 抗血清進行西方墨點法分析,發現所有 Ng 實驗菌株均可偵測到 Ag473 蛋白,且其表現量皆低於 Nm,因此推測 Ng 中之啟動子功能缺失。故利用基因選殖技術將 Ng 及 Nm 之 ag473 及其啟動子基因片段選殖於 pGEM-T easy 載體並送入 E. coli ,發現 Ag473 蛋白質會表現,且兩者表現量相似,此結果顯示 Ag473 之表現量與其啟動子無關。此研究亦發現在重組蛋白質 rAg473-Ng 在SDS-PAGE 分析時移動速率比 Ng 原菌表現的 Ag473 蛋白質 (Ag473-Ng) 快,但Ag473-Nm 及 rAg473-Nm 卻無此差異現象,根據此結果推測 Ag473 蛋白質在 Ng 中所進行的後修飾作用 (post-modification)與 Nm 系統不同。此外,以單株抗體 4-7-3 對重組蛋白 rAg473-Ng 及 rAg473-Nm 進行西方墨點法分析發現單株抗體 4-7-3 對 rAg473-Ng 的辨識力較弱。由以上結果可推論 Ag473 在 Ng 表現量較低,且單株抗體 4-7-3 所辨識的抗原決定位 (epitope) 與 Ag473-Nm 相異。 另一方面,由於 Nm 之Ag473 蛋白質表現量高於 Ng,故利用 RT-PCR 觀察 Nm 與 Ng 中 Ag 473 之 RNA 表現量,發現 Ng 之 RNA 表現量高於 Nm,此結果與蛋白質的表現情形不相符。同步分析 RT-PCR 產物及 chromosome DNA 之 PCR 產物的序列發現 Ng 中 Ag473 表現會發生transcriptional slippage 及 slipped-strand mispairing,而 Nm 中僅發生後者。此外,已解序之 Ng 基因庫中顯示有一轉錄方向與 Ag473 相反之 hypothetical protein (NGO1042),其基因序列與 ag473 基因有重疊。故以 Ag473 蛋白質之 5’ 端之專一性引子分別對於 Nm 及 Ng 進行 RT-PCR,發現反股 RNA 僅存在於 Ng 中。故推論此段反股 RNA (anti-sense RNA) 或許具有抑制 Ag473 蛋白質表現的功能。
Ag473, a novel lipoprotein of N. meningitidis (Nm) recently identified in our laboratory, is a promising vaccine candidate for preventiing the development of disease caused by Nm infection. This protein is detectable by ELISA and Western blotting using monoclonal antibody (mAb) 4-7-3 as the primary antibody in all Nm strains tested but only in a few strains of N. gonorrhoeae (Ng), despite the presence of functional coding region on the chromosomes. The aim of this study was to investigate the molecular mechanism(s) involved in the differential expression of Ag473 in Nm and Ng. First, Western blotting with anti-rAg473 antiserum as the primary antibody was performed to examine the expression of Ag473. Ag473 was found to express in all Ng strains tested, although in significantly lower levels than those in Nm. However, comparable protein levels were expressed when DNA fragments containing the upstream and the coding regions of Ag473 from Nm and Ng were cloned in E. coli, indicating that the promoter is not responsible for the lower expression in Ng. Interestingly, the recombinant Ng Ag473 protein (rAg473-Ng) migrated slightly faster than the endogenous Ng Ag473 (Ag473-Ng), while the mobility was the same for both Nm proteins. Furthermore, rAg473-Ng is recognized by mAb4-7-3 but seems to exhibit lower antigenicity than that of rAg473-Nm. Together, these results suggest that Ng expresses lower amount of Ag473 and its epitope for 4-7-3 is slightly different from that in Ag473-Nm. To address the issue concerning the lower level of Ag473 protein in Ng, RT-PCR was performed to determine the levels of ag473 transcripts. Interestingly, more ag473 transcripts were detected in Ng. Sequencing of the RT-PCR products as well as the PCR products amplified from the chromosomes showed that both transcriptional slippage and slipped-strand mispairing may occur in Ng. In contrast, only the latter situation was found to occur in Nm. Furthermore, antisense RNA was detected in Ng but not in Nm suggesting that the existence of anti-sense RNA may be responsible, at least partly if not all, for the low expression of Ag473 in Ng.
其他識別: U0005-2508200813024200
Appears in Collections:分子生物學研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.