Please use this identifier to cite or link to this item:
標題: Xanthomonas albilineans 細菌素基因選殖及 Xanthomonascampestris pv. glycines 細菌素基因表現之探討
Cloning the bacteriocin genes of Xanthomonas albilineans and characterization of bacteriocin from Xanthomonas campestris pv. glycines
作者: 羅右瑋
Luo, You-Wei
關鍵字: glycinecin A
phage tail-like
出版社: 分子生物學研究所
引用: 廖珮鑾 (2006) Xanthomonase 細菌素基因的篩選及在 E. coli 中表現。 國立中興大學分子生物學研究所碩士論文。 郭乃瑜 (2007) Xanthomonas albilineans 及 Xanthomonas campestris pv. glycines 細菌素之探討。 國立中興大學分子生物學研究所碩士論文。 林平國 (2009) Xanthomonas fragariae 細菌素之純化與特性探討。國立中興大學分子生物學研究所碩士論文。 Baba, T., and O. Schneewind. (1996) Target cell specificity of a bacteriocin molecule: a C-terminal signal directs lysostaphin to the cell wall of Staphylococcus aureus. EMBO J 15:4789-97 Birch, R. G., and S. S. Patil. (1985) Preliminary characterization of an antibiotic produced by Xanthomonas albilineans which inhibits DNA synthesis in Escherichia coli. J Gen Microbiol 131:1069-1075 Bradley, D. E. (1967) Ultrastructure of bacteriophage and bacteriocin. Bateriol Rev 31:230-314 Braid, M. D., J. L. Silhavy, C. L. Kitts, R. J. Cano, and M. M. Howe. (2004) Complete genomic sequence of bacteriophage B3, a Mu-like phage of Pseudomonas aeruginosa. J Bacteriol 186: 6560–6574 Bryl, K., S. K. dzierska, M. Laskowska, and A. Taylor. (2000) Membrane fusion by proline-rich Rz1 lipoprotein, the bacteriophage l Rz1 gene product Eur. J Biochem 267:794-799 Davies, G., and B. Henrissat. (1995) Structures and mechanisms of glycosyl hydrolases. Structure 15:853-859 Daw, M. A., and F. R, Falkiner. (1996) Bacteriocins: nature, function and structure. Micron 27:467-479 Davies, J. K., and P. Reeves. (1975) Genetics of resistance to colicins in Escherichia coli K-12: cross-resistance among colicins of group B. J Bacteriol 123:96-101 Diep, D. B., M. Skaugen, Z. Salehian, H. Holo, and I. F. Nes. (2007) Common mechanisms of target cell recognition and immunity for class II bacteriocins. Proc. Natl Acad Sci U. S. A. 104:2384-2389 Fimland, G., L. Johnsen, B. Dalhus, and J. Nissen-Meyer. (2005) Pediocin-like antimicrobial peptides (class IIa bacteriocins) and their immunity proteins: biosynthesis, structure, and mode of action. J Pept Sci 11:688-696 Fredericq, P. (1957) Colicin. Ann Rev Microbiol 11:7-22 Gloor, G., and G. Chaconas. (1988) Sequence of bacteriophage Mu N and P genes. Nucleic Acids Research 16:5211-5212 Gram, H., and W. Ruger. (1985) Genes 55, αgt, 47 and 46 of bacteriophage T4: the genomic organization as deduced by sequence analysis. The EMBO Journal 4:257 -264 Grimaud, R., and T. Ariane. (1998) Assembly of both the head and tail of bacteriophage Mu is blocked in Escherichia coli groEL and groES mutants. J Bacteriol 180:1148-1153 Grundy, F. J., and M. M. Howe. (1984) Involvement of the invertible G segment in bacteriophage Mu tail fiber biosynthsis. Virology 134:296-317 Hashimi, S. M., M. K. Wall, A. B. Smith, A. Maxwell, and R. G. Birch. (2007) The phytotoxin albicidin is a novel inhibitor of DNA gyrase. Antimicrob Agents Chemother 51:181-187 Heu, S., J. Oh, Y. Kang, S. Ryu, S. K. Cho, Y. Cho, and M. Cho. (2001) gly gene cloning and expression and purification of glycinecin A, a bacteriocin produced by Xanthomonas campestris pv. glycines 8ra. Appl Environ Microbiol 67:4105-4110 Huang, G., L. Zhang, and R.G. Birch. (2001) A multifunctional polypeptide-peptide synthetase essential for albicidin biosynthesis in Xanthomonas albilineans. Microbiology 147:631-642 Ideno, A., Y. Takao, F. Masahiro, and M. Tadashi. (2000) The 28.3 kDa FK506 binding protein from a thermophilic archaeum, Methanobacterium thermoautotrophicum, protects the denaturation of proteins in vitro. Eur J Biochem 267:3139-3148 Jabeen, N., S. A. Rasool, S. Ahmad, M. Ajaz, and S. Saeed. (2004) Isolation, identification and bacteriocin production by indigenous diseased plant and soil associated bacteria. Pakistan Journal of Biological 7:1893-1897 Kim, Y., S. K. Cho, and M. J. Cho. (2001) Improvement in the stability of glycinecin A through protein fusion of the two structural components. J Microbiol 39:177-180 Kim, Y. M., H. K. Lim, S. K. Cho, Y. W. Kim, J. Hyun, B. H. Lee, B. J. Kim, K. Z. Riu, Y. J. Lee, and M. J. Cho. (2004) Cloning of the Xanthomonas campestris pv glycines 8ra gene for glycinecin A secretion. World J Microbiol Biotechnol 20:99-103 Kitazawa, D., S. Takeda, Y. Kageyama, M. Tomihara, and H. Fukada. (2005) Expression and characterization of a baseplate protein for bacteriophage Mu, gp44. J Biochem 137:601-606 Kleanthous, C., U. C. Kuhlmann, A. Pommer, N. Ferguson, S. E. Radford, G.R. Moore, R. James, and A. M.. Hemmings. (1999) Structural and mechanistic basis of immunity toward endonucleas colicin. Nat Sturct Biol 6:243-252 Klaenhammer, T. R. (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39-85 Kurzępa, A., K. Dąbrowska, K. Świtała-Jeleń, and A. Górski. (2009) Molecular modification of T4 bacteriophage proteins and its potential application – Review. Folia Microbiol 54:5-15 Lavermicocca, P., S. L. Lonigro, F. Valerio, A. Evidente, and A. Visconti. (2002) Reduction of olive knot disease by a bacteriocin from Pseudomonas syringae pv. ciccaronei. Appl Environ Microbiol 68:1403-1407 Mendel, S., J. M. Holbourn, J. A. Schouten and T. D. H. Bugg. (2006) Interaction of the transmembrane domain of lysis protein E from bacteriophage ΦX174 with bacterial translocase MraY and peptidyl-prolyl isomerase SlyD. Microbiology 152: 2959-2967 Michel-Briand, Y., and C. Baysse. (2002) The pyocins of Pseudomonas aeruginosa. Biochimie 84:499-510 Morgan, G. J., G. F. Hatfull, S. Casjens, and R. W. Hendrix. (2002) Bacteriophage Mu genome sequence: Analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus. J Mol Biol 317:337-359 Nakayama, K., K. Takashima, H. Ishihara, T. Shinomiya, M. Kageyama, S. Kanaya, M. Ohnishi, T. Murata, H. Mori, and T. Hayashi. (2000) The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol Microbiol 38:213-231 Nguyen, A. H., T. Tomita, M. Hirota, T. Sato, and Y. Kamio. (1999) A simple purification method and morphology and component analyses for carotovoricin Er, a phage-tail-like bacteriocin from the plant pathogen Erwinia carotovora Er. Biosci Biotechnol Biochem 63:1360-1369 Oganesyan, N., S. H. Kim, and R. Kim. (2005) On-column protein refolding for crystallization. J Struct Funct Genom 6:177-182 Pham, H. T., K. Z. Riu, K. M. Jang, S. K. Cho, and M. J. Cho. (2004) Bactericidal activity of glycinecin A, a bacteriocin derived from Xanthomonas campestris pv. glycines, on phytopathogenic Xanthomonas campestris pv. vesicatoria cells. Appl Environ Microbiol 70:4486-4490 Royer, M., L. Costet, E. Vivien, Ma. Bes, A. Cousin, A. Damais, I. Pieretti, A. Savin, S. Megessier, M. Viard, R. Frutos, D. W. Gabriel, and P. C. Rott1. (2004) Albicidin pathotoxin produced by Xanthomonas albilineans is encoded by three large PKS and NRPS genes present in a gene cluster also containing several putative modifying, regulatory, and resistance genes. Mol Plant Microbe Interact 17:414-27 Sakthivel, N., and T. W. Mew. (1991) Efficacy of bacteriocinogenic strains of Xanthomonas oryzae pv. oryzae on the incidence of bacterial blight disease of rice (Oryza sativa L.). Can J Microbiol 37:764-768 Sambrook, A., and W. D. Russell. (2001) Molecular Cloning: A laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Sandulache, R., P. Prehm, and D. Kamp. (1984) Cell wall receptor for bacteriophage Mu G(+). J Bacteriol 160:299-303 Shinomiya, T., and S. Ina. (1989) Genetic comparison of bacteriophage PS17 and Pseudomonas aeruginosa R-type pyocin. J Bacteriol. 171:2287-92 Strauch, E., H. Kaspar, C. Schaudinn, P. Dersch, K. Madela, C. Gewinner, S. Hertwig, J. Wecke, and B. Appel. (2001) Characterization of enterocoliticin, a phage tail-like bacteriocin, and its effect on pathogenic Yersinia enterocolitica strains. Appl Environ Microbiol 67:5634-5642 Sukchawalit, R., P. Vattanaviboon, R. Sallabhan, and S. Mongkolsuk. (1999) Construction and characterization of regulated L-arabinose-inducible broad host range expression vectors in Xanthomonas. FENS Microbiol Lett 181:217-223 Tagg, J. R., A. S. Dajani, and L. W. Wannamaker. (1976) Bacteriocin of gram-negative bacteria. Bacteriol Rev 40:722-756 Takeda, S., T. Sasaki, A. Ritani, M. M. Howe, and F. Arisaka. (1998) Discovery of the tail tube gene of bacteriophage Mu and sequence analysis of the sheath and tube genes. Biochimica et Biophysica Acta 1399:88-92 Thaler, J. O., S. Baghdiguian, and N. Boemare. (1995) Purification and characterization of xenorhabdicin, a phage tail-like bacteriocin, from the lysogenic strain F1 of Xenorhabdus nematophilus. Appl Environ Microbiol 61:2049-2052 Tudor-Nelson, S. M., G. V. Minsavage, R. E. Stall, and J. B. Jones. (2003) Bacteriocin-like substances from tomato race 3 strains of Xanthomonas campestris pv. vesicatoria. Phytopathology 93:1415-21 Vieira, J., and J. Messing. (1991) New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene 100: 189-194 Widjaja, R., A. Suwanto, and B. Tjahjono. (1999) Genome size and macrorestriction map of Xanthomonas campestris pv. glycines YR32 chromosome. FEMS Microbiol Lett 175:59-68 Wiedemann, I., E. Breukink, C. van Kraaij, O. P. Kuipers, G. Bierbaum, B. de Kruijff, and H. A. Sahl. (2001) Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem 276:1772-1779 Woo, J., S. Heu, and Y. S. Cho. (1998) Influence of growth conditions on the production of a bacteriocin, glycinecin, produced by Xanthomonas campestris pv. glycines 8ra. Korean J Plant Pathol 14:376-381 Yoichi, M., M. Abe, K. Miyanaga, H. Unno, and Y. Tanji. (2005) Alteration of tail fiber protein gp38 enables T2 phage to infect Escherichia coli O157:H7. J Biotech 115:101-107 Zarivach, R., E. Ben-Zeev, N. Wu, T. Auerbach, A. Bashan, K. Jake, K. Dichman, A. Kosmidis, F. Schluenzen, A. Yonath, M. Eisenstein, and M. Shohan. (2002) On the interaction of colicin E3 with the ribosome. Biochimie 84:447-454
摘要: 細菌素為細菌所分泌可以抑制親緣關係接近菌種的蛋白質,Xanthomonas campestris pv. glycines YR32 (XcgYR32) 與 Xanthomonas albilineans (Xa) 為過去經由實驗室篩選會抑制其他 Xanthomonas 菌種的菌株。其中 X. albilineans 所分泌的細菌素可以利用 polyethylene glycol 6000 沉澱及使用分子篩管柱進行純化,之後經由實驗確認 Xa 細菌素為 phage tail-like bacteriocin。本研究嘗試使用另一種純化步驟,改用蔗糖梯度離心進行純化並以二維電泳分析 Xa 細菌素的蛋白組成。二維電泳可分離出 9 個蛋白點,經 trypsin 切割後以質譜儀 (LC/MS/MS) 進行分析。這些蛋白的胺基酸序列經比對後,最接近 Pseudomonas syringae pv. syringae B728a 中的 prophage 蛋白。Xa 細菌素的基因組成本研究亦藉由構築 Xa 部分基因庫來進行分析。從構築的基因庫中所篩選出的 5.8-kb 及 4.6-kb DNA 片段總共有 14 個 ORFs 可以被辨識出來。這些 ORFs 也與存在於 Pseudomonas syringae pv. syringae B728a 中的 Mu phage 基因序列具有高度的相同性。 本研究的另一個部份是將 XcgYR32 的細菌素基因 glyA 及 glyB 利用不同的 pET 載體並於不同的 E. coli 菌株中進行表現。在 BL21(DE3) 中以低濃度的 IPTG 及低溫度的誘導條件,可以表現出少量具有抑菌活性的可溶性 GlyAB-His。之後使用 Ni2+-NTA 及 Hiprep 16/60 Sephacryl S-300 分子篩管柱純化 GlyAB-His 蛋白。每 100 ml 菌液可純化的 GlyAB-His 蛋白約 50 μg,比活性為 212 x 100 AU/ml。GlyAB-His 可耐受 70℃ 1 小時活性不下降,且可耐受 trypsin、chymotrypsin 的剪切。為了提升 Glycinecin A 的耐受度,構築了 chimeric Glycinecin A N. 5~7 (chimeric A5~A7)。結果顯示 chimeric A5、chimeric A6 表現量極大,但無法偵測到殺菌活性且都為不可溶蛋白,而 chimeric A7 的構築則為可溶性且具有殺菌活性。
Bacteriocin is known to be produced by bacteria and has bactericidal activity against the closely related species. Two Xanthomonas species, Xanthomonas albilineans (Xa) and Xanthomonas campestris pv. glycines YR32 (XcgYR32), have been identified in this laboratory and have antimicrobial activity toward several tested Xanthomonas strains. Moreover, bacteriocin produced by Xa had been purified from cultural broth by polyethylene glycol 6000 precipitation and gel filtration chromatography and characterized as a phage tail-like bacteriocin. An alternative purification procedure using sucrose gradient centrifugation was applied in this study and the components of the purified protein complex were then analyzed by two-dimensional gel electrophoresis. A total of nine protein spots were isolated, digested by trypsin and analyzed by LC/MS/MS. Results of the BLAST analysis revealed that most of these proteins are closely related to prophage proteins of Pseudomonas syringae pv. syringae B728a. The genes corresponding to the Xa bacteriocin were identified from the constructed Xa partial genomic library. DNA sequence analyses revealed that a total of 14 ORFs could be identified in the cloned 5.8-kb and 4.6-kb DNA fragments from the constructed libraries. These ORFs also show high sequence similarity to the Mu phage of Pseudomonas syringae pv. syringae B728a. In the second part of this study, the bacteriocin genes, glyA and glyB, of XcgYR32 were subcloned into various pET vectors and expressed in several E. coli strains. A very low amount of soluble GlyAB-His with bactericidal activity could be obtained from BL21(DE3) at a lower IPTG concentration and induction temperature. The GlyAB-His protein was purified through Ni2+-NTA column and Hiprep 16/60 Sephacryl S-300 column chromatography. A total of 50 μg purified GlyAB-His could be obtained from 100 ml of culture and with a specific activity of 212 x 100 AU/ml. The purified GlyAB-His was stable at temperature up to 70℃ for one hour and resistant to trypsin and chymotrypsin digestion. To promote the stability of GlyA and GlyB, chimeric proteins GlyA5 to A7 were constructed. Results showed that a very high level expression of chimeric A5 and A6 proteins could be achieved, however, most of the expressed proteins were insoluble and the chimeric protein expressed from A7 construct was found to be soluble and have bactericidal activity.
其他識別: U0005-0402201014310700
Appears in Collections:分子生物學研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.