Please use this identifier to cite or link to this item:
標題: Rhizopus oryzae NBRC 4749 新型Rhizopuspepsin的純化與特性分析及利用Bacillus subtilis表現Staphylococcus aureus BCRC 15205之Glutamyl Endopeptidase基因
Purification and Characterization of a New Rhizopuspepsin from Rhizopus oryzae NBRC 4749 and Expression of Staphylococcus aureus BCRC 15205 Glutamyl Endopeptidase Gene in Bacillus subtilis
作者: 陳俊彰
Chen, Chun-Chang
關鍵字: protease
cleavage specificity
出版社: 分子生物學研究所
引用: Rhizopus oryzae NBRC 4749 新型rhizopuspepsin 的純化與特性分析 1. Abe, A., Y. Oda, K. Asano, and T. Sone. 2007. Rhizopus delemar is the proper name for Rhizopus oryzae fumaric-malic acid producers. Mycologia 99:714-722. 2. Alves, V. S., D. C. Pimenta, E. Sattlegger, and B. A. Castilho. 2004. Biophysical characterization of Gir2, a highly acidic protein of Saccharomyces cerevisiae with anomalous electrophoretic behavior. Biochem. Biophys. Res. Commun. 314:229-234. 3. Arima, K., J. Yu, S. Iwasaki, and G. Tamura. 1968. Milk-clotting Enzyme from Microorganisms: V. Purification and Crystallization of Mucor Rennin from Mucor pusillus var. Lindt. Appl. Microbiol. 16:1727-1733. 4. Bagga, S., G. Hu, S. E. Screen, and R. J. St Leger. 2004. Reconstructing the diversification of subtilisins in the pathogenic fungus Metarhizium anisopliae. Gene 324:159-169. 5. Bailey, D., and J. B. Cooper. 1994. A structural comparison of 21 inhibitor complexes of the aspartic proteinase from Endothia parasitica. Protein Sci. 3:2129-2143. 6. Barett, A. J. 1994. Proteolytic enzymes: serine and cysteine peptidases. Methods Enzymol. 244:1-15. 7. Bendtsen, J. D., H. Nielsen, G. von Heijne, and S. Brunak. 2004. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340:783-795. 8. Blakeslee, A. F. 1906. Zygospores and Sexual Strains in the Common Bread Mould, Rhizopus Nigricans. Science 24:118-122. 9. Blundell, T. L., K. Guruprasad, A. Albert, M. Williams, B. L. Sibanda, and V. Dhanaraj. 1998. The aspartic proteinases. An historical overview. Adv. Exp. Med. Biol. 436:1-13. 10. Blundell, T. L., and M. S. Johnson. 1993. Catching a common fold. Protein Sci. 2:877-883. 11. Bornberg-Bauer, E., E. Rivals, and M. Vingron. 1998. Computational approaches to identify leucine zippers. Nucleic Acids Res. 26:2740-2746. 12. Borrelli, L., R. De Stasio, S. Filosa, E. Parisi, M. Riggio, R. Scudiero, and F. Trinchella. 2006. Evolutionary fate of duplicate genes encoding aspartic proteinases. Nothepsin case study. Gene 368:101-109. 13. Brooks, A. R., B. P. Nagy, S. Taylor, W. S. Simonet, J. M. Taylor, and B. Levy-Wilson. 1994. Sequences containing the second-intron enhancer are essential for transcription of the human apolipoprotein B gene in the livers of transgenic mice. Mol. Cell Biol. 14:2243-2256. 14. Burge, C., and S. Karlin. 1997. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268:78 - 94. 15. Buyukkileci, A. O., H. Hamamci, and M. Yucel. 2006. Lactate and ethanol productions by Rhizopus oryzae ATCC 9363 and activities of related pyruvate branch point enzymes. J. Biosci. Bioeng. 102:464-466. 16. Caddick, M. X., D. Peters, and A. Platt. 1994. Nitrogen regulation in fungi. Antonie Van Leeuwenhoek 65:169-77. 17. Carlson, A., G. G. Hill, and N. F. Olson. 1987. Kinetics of milk coagulation: II. Kinetics of the secondary phase. Micelle flocculation. Biotechnol. Bioeng. 29:590-600. 18. Cavalier-Smith, T. 1985. Selfish DNA and the origin of introns. Nature 315:283-284. 19. Chien, H. C., L. L. Lin, S. H. Chao, C. C. Chen, W. C. Wang, C. Y. Shaw, Y. C. Tsai, H. Y. Hu, and W. H. Hsu. 2002. Purification, characterization, and genetic analysis of a leucine aminopeptidase from Aspergillus sojae. Biochim. Biophys. Acta 1576:119-126. 20. Cho, G., and R. F. Doolittle. 1997. Intron distribution in ancient paralogs supports random insertion and not random loss. J. Mol. Evol. 44:573-584. 21. Clark, S. J., M. D. Templeton, and P. A. Sullivan. 1997. A secreted aspartic proteinase from Glomerella cingulata: purification of the enzyme and molecular cloning of the cDNA. Microbiology 143:1395-1403. 22. Coenen, T. M., P. Aughton, and H. Verhagen. 1997. Safety evaluation of lipase derived from Rhizopus oryzae: summary of toxicological data. Food Chem. Toxicol. 35:315-322. 23. Combet, C., C. Blanchet, C. Geourjon, and G. Deleage. 2000. NPS@: network protein sequence analysis. Trends Biochem. Sci. 25:147-150. 24. Delaney, R., R. N. Wong, G. Z. Meng, N. H. Wu, and J. Tang. 1987. Amino acid sequence of rhizopuspepsin isozyme pI 5. J. Biol. Chem. 262:1461-1467. 25. Delgado-Jarana, J., A. M. Rincon, and T. Benitez. 2002. Aspartyl protease from Trichoderma harzianum CECT 2413: cloning and characterization. Microbiology 148:1305-1315. 26. Diwakar, A., R. K. Dewan, A. Chowdhary, H. S. Randhawa, G. Khanna, and S. N. Gaur. 2007. Zygomycosis--a case report and overview of the disease in India. Mycoses 50:247-254. 27. Domon, C., and A. Steinmetz. 1994. Exon shuffling in anther-specific genes from sunflower. Mol. Gen. Genet. 244:312-317. 28. Duda, T. F., Jr., and S. R. Palumbi. 1999. Developmental shifts and species selection in gastropods. Proc. Natl. Acad. Sci. USA 96:10272-10277. 29. Dung, N. T., F. M. Rombouts, and M. J. Nout. 2006. Functionality of selected strains of moulds and yeasts from Vietnamese rice wine starters. Food Microbiol. 23:331-340. 30. Dunn, B. M., K. Oda, J. Kay, C. Rao-Naik, W. T. Lowther, B. M. Beyer, P. E. Scarborough, and M. Bukhtiyarova. 1998. Comparison of the specificity of the aspartic proteinases towards internally consistent sets of oligopeptide substrates. Adv. Exp. Med. Biol. 436:133-138. 31. Farley, P. C., and P. A. Sullivan. 1998. The Rhizopus oryzae secreted aspartic proteinase gene family: an analysis of gene expression. Microbiology 144:2355-2366. 32. Fedorova, L., and A. Fedorov. 2003. Introns in gene evolution. Genetica 118:123-131. 33. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783-791. 34. Fernandez-Lahore, H. M., R. M. Auday, E. R. Fraile, M. Biscoglio de Jimenez Bonino, L. Pirpignani, C. Machalinski, and O. Cascone. 1999. Purification and characterization of an acid proteinase from mesophilic Mucor sp. solid-state cultures. J. Pept. Res. 53:599-605. 35. Fitzpatrick, D. A., M. E. Logue, J. E. Stajich, and G. Butler. 2006. A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol. Biol. 6:99. 36. Fruton, J. S. 1976. The mechanism of the catalytic action of pepsin and related acid proteinases. Adv. Enzymol. Relat. Areas. Mol. Biol. 44:1-36. 37. Fruton, J. S. 1976. The mechanism of the catalytic action of pepsin and related acid proteinases. Adv. Enzymol. 44:1-36. 38. Fukumoto, J., D. Tsuru, and T. Yamamoto. 1967. Studies on mold protease Part I. Purification, crystallization and some enzymatic properties of acid protease of Rhizopus chinensis. Agric. Biol. Chem. 31:710-717. 39. Garcia-Ortega, L., V. De los Rios, A. Martinez-Ruiz, M. Onaderra, J. Lacadena, A. Martinez del Pozo, and J. G. Gavilanes. 2005. Anomalous electrophoretic behavior of a very acidic protein: ribonuclease U2. Electrophoresis 26:3407-3413. 40. Gharahdaghi, F., C. R. Weinberg, D. A. Meagher, B. S. Imai, and S. M. Mische. 1999. Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity. Electrophoresis 20:601-605. 41. Gilbert, W. 1978. Why genes in pieces? Nature 271:501. 42. Gill, I., R. Lopez-Fandino, X. Jorba, and E. N. Vulfson. 1996. Biologically active peptides and enzymatic approaches to their production. Enzyme Microb. Technol. 18:163-183. 43. Graur, D., and W. H. Li. 2000. Fundamentals of Molecular Evolution, 2nd ed. Sinauer Associates, Sunderland, MA. 44. Han, B. Z., F. M. Rombouts, and M. J. Nout. 2001. A Chinese fermented soybean food. Int. J. Food Microbiol. 65:1-10. 45. Hanger, D. P., J. P. Brion, J. M. Gallo, N. J. Cairns, P. J. Luthert, and B. H. Anderton. 1991. Tau in Alzheimer''s disease and Down''s syndrome is insoluble and abnormally phosphorylated. Biochem. J. 275:99-104. 46. Hartley, B. S. 1960. Proteolytic enzymes. Annu. Rev. Biochem. 29:45-72. 47. Heskamp, M. L., and W. Barz. 1998. Expression of proteases by Rhizopus species during Tempeh fermentation of soybeans. Nahrung 42:23-28. 48. Ho, H. C., L. Y. Chen, and T. H. Liao. 1996. Identification of a fungal protein of Syncephalastrum racemosum as aspartic proteinase. Arch. Biochem. Biophys. 334:97-103. 49. Ho, H. C., P. F. Shiau, and S. L. Wu. 1998. Single-column purification of syncephapepsin--an aspartic proteinase from Syncephalastrum racemosum. Protein Expr. Purif. 12:399-403. 50. Holm, I., R. Ollo, J. J. Panthier, and F. Rougeon. 1984. Evolution of aspartyl proteases by gene duplication: the mouse renin gene is organized in two homologous clusters of four exons. EMBO J. 3:557-562. 51. Holstege, F. C., E. G. Jennings, J. J. Wyrick, T. I. Lee, C. J. Hengartner, M. R. Green, T. R. Golub, E. S. Lander, and R. A. Young. 1998. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95:717-728. 52. Horiuchi, H., K. Yanai, T. Okazaki, M. Takagi, and K. Yano. 1988. Isolation and sequencing of a genomic clone encoding aspartic proteinase of Rhizopus niveus. J. Bacteriol. 170:272-278. 53. Hu, C. C., and S. A. Ghabrial. 1995. The conserved, hydrophilic and arginine-rich N-terminal domain of cucumovirus coat proteins contributes to their anomalous electrophoretic mobilities in sodium dodecylsulfate-polyacrylamide gels. J. Virol. Methods 55:367-379. 54. Hui, Y. H. 2005. Handbook of food science, technology, and engineering, Volume two. CRC Press: Taylor & Francis Group, NY. 55. Husain, S., B. D. Alexander, P. Munoz, R. K. Avery, S. Houston, T. Pruett, R. Jacobs, E. A. Dominguez, J. G. Tollemar, K. Baumgarten, C. M. Yu, M. M. Wagener, P. Linden, S. Kusne, and N. Singh. 2003. Opportunistic mycelial fungal infections in organ transplant recipients: emerging importance of non-Aspergillus mycelial fungi. Clin. Infect. Dis. 37:221-229. 56. Iakoucheva, L. M., A. L. Kimzey, C. D. Masselon, R. D. Smith, A. K. Dunker, and E. J. Ackerman. 2001. Aberrant mobility phenomena of the DNA repair protein XPA. Protein Sci. 10:1353-1362. 57. Ichishima, E., M. Ojima, Y. Yamagata, S. Hanzawa, and T. Nakamura. 1995. Molecular and enzymatic properties of an aspartic proteinase from Rhizopus hangchow. Phytochemistry 38:27-30. 58. James, T. Y., F. Kauff, C. L. Schoch, P. B. Matheny, V. Hofstetter, C. J. Cox, G. Celio, C. Gueidan, E. Fraker, J. Miadlikowska, H. T. Lumbsch, A. Rauhut, V. Reeb, A. E. Arnold, A. Amtoft, J. E. Stajich, K. Hosaka, G. H. Sung, D. Johnson, B. O''Rourke, M. Crockett, M. Binder, J. M. Curtis, J. C. Slot, Z. Wang, A. W. Wilson, A. Schussler, J. E. Longcore, K. O''Donnell, S. Mozley-Standridge, D. Porter, P. M. Letcher, M. J. Powell, J. W. Taylor, M. M. White, G. W. Griffith, D. R. Davies, R. A. Humber, J. B. Morton, J. Sugiyama, A. Y. Rossman, J. D. Rogers, D. H. Pfister, D. Hewitt, K. Hansen, S. Hambleton, R. A. Shoemaker, J. Kohlmeyer, B. Volkmann-Kohlmeyer, R. A. Spotts, M. Serdani, P. W. Crous, K. W. Hughes, K. Matsuura, E. Langer, G. Langer, W. A. Untereiner, R. Lucking, B. Budel, D. M. Geiser, A. Aptroot, P. Diederich, I. Schmitt, M. Schultz, R. Yahr, D. S. Hibbett, F. Lutzoni, D. J. McLaughlin, J. W. Spatafora, and R. Vilgalys. 2006. Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443:818-822. 59. Jean, L., M. Long, J. Young, P. Pery, and F. Tomley. 2001. Aspartyl proteinase genes from apicomplexan parasites: evidence for evolution of the gene structure. Trends Parasitol. 17:491-498. 60. John, M. E., and G. Keller. 1995. Characterization of mRNA for a proline-rich protein of cotton fiber. Plant Physiol. 108:669-676. 61. Johnson, S. M., K. M. Kerekes, C. R. Zimmermann, R. H. Williams, and D. Pappagianis. 2000. Identification and cloning of an aspartyl proteinase from Coccidioides immitis. Gene 241:213-222. 62. Jones, D. T., W. R. Taylor, and J. M. Thornton. 1992. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8:275-282. 63. Jousson, O., B. Lechenne, O. Bontems, B. Mignon, U. Reichard, J. Barblan, M. Quadroni, and M. Monod. 2004. Secreted subtilisin gene family in Trichophyton rubrum. Gene 339:79-88. 64. Kamei, K. 2001. Animal models of zygomycosis--Absidia, Rhizopus, Rhizomucor, and Cunninghamella. Mycopathologia 152:5-13. 65. Kay, J., and B. M. Dunn. 1992. Substrate specificity and inhibitors of aspartic proteinases. Scand. J. Clin. Lab. Invest. Suppl. 210:23-30. 66. Khan, A. R., and M. N. James. 1998. Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci. 7:815-836. 67. Kitts, D. D., and K. Weiler. 2003. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr. Pharm. Des. 9:1309-1323. 68. Koelsch, G., J. Tang, J. A. Loy, M. Monod, K. Jackson, S. I. Foundling, and X. Lin. 2000. Enzymic characteristics of secreted aspartic proteases of Candida albicans. Biochim. Biophys. Acta 1480:117-131. 69. Kondrashov, F. A., I. B. Rogozin, Y. I. Wolf, and E. V. Koonin. 2002. Selection in the evolution of gene duplications. Genome Biol. 3:RESEARCH0008. 70. Koski, P., H. Saarilahti, S. Sukupolvi, S. Taira, P. Riikonen, K. Osterlund, R. Hurme, and M. Rhen. 1992. A new alpha-helical coiled coil protein encoded by the Salmonella typhimurium virulence plasmid. J. Biol. Chem. 267:12258-12265. 71. Kumar, S., N. S. Sharma, M. R. Saharan, and R. Singh. 2005. Extracellular acid protease from Rhizopus oryzae: purification and characterization. Process biochemistry 40:1701-1705. 72. Lim, L. P., and C. B. Burge. 2001. A computational analysis of sequence features involved in recognition of short introns. Proc. Natl. Acad. Sci. USA 98:11193 -11198. 73. Lin, C. W., R. C. Yu, H. L. Chen, and S. L. Chen. 1997. Culture filtrates from a fermented rice product (Lao-Chao) and their effects on milk curd firmness. J. food sci. 62:1080-1082. 74. Lin, L. L., M. H. Chen, H. C. Chien, S. C. Kan, C. C. Chen, H. Y. Hu, and W. H. Hsu. 2007. Characterization of a bifunctional aminoacylase/carboxypeptidase from radioresistant bacterium Deinococcus radiodurans R1. J. Biotechnol. 128:322-334. 75. Linding, R., L. J. Jensen, F. Diella, P. Bork, T. J. Gibson, and R. B. Russell. 2003. Protein disorder prediction: implications for structural proteomics. Structure 11:1453-1459. 76. Liu, J., and E. S. Maxwell. 1990. Mouse U14 snRNA is encoded in an intron of the mouse cognate hsc70 heat shock gene. Nucleic Acids Res. 18:6565-6571. 77. Liu, Y. J., M. C. Hodson, and B. D. Hall. 2006. Loss of the flagellum happened only once in the fungal lineage: phylogenetic structure of kingdom Fungi inferred from RNA polymerase II subunit genes. BMC Evol. Biol. 6:74. 78. Lo, W. Y., M. H. Tsai, Y. Tsai, C. H. Hua, F. J. Tsai, S. Y. Huang, C. H. Tsai, and C. C. Lai. 2007. Identification of over-expressed proteins in oral squamous cell carcinoma (OSCC) patients by clinical proteomic analysis. Clin. Chim. Acta 376:101-107. 79. Long, M., C. Rosenberg, and W. Gilbert. 1995. Intron phase correlations and the evolution of the intron/exon structure of genes. Proc. Natl. Acad. Sci. USA 92:12495-12499. 80. Lopez, A. J. 1998. Alternative splicing of pre-mRNA: developmental consequences and mechanisms of regulation. Annu. Rev. Genet. 32:279-305. 81. Lothian, C., and U. Lendahl. 1997. An evolutionarily conserved region in the second intron of the human nestin gene directs gene expression to CNS progenitor cells and to early neural crest cells. Eur. J. Neurosci. 9:452-462. 82. Lowther, W. T., P. Majer, and B. M. Dunn. 1995. Engineering the substrate specificity of rhizopuspepsin: the role of Asp 77 of fungal aspartic proteinases in facilitating the cleavage of oligopeptide substrates with lysine in P1. Protein Sci. 4:689-702. 83. Lucey, J. A., M. E. Johnson, and D. S. Horne. 2003. Invited review: perspectives on the basis of the rheology and texture properties of cheese. J. Dairy Sci. 86:2725-2743. 84. Ma, L. J., A. S. Ibrahim, C. Skory, M. G. Grabherr, G. Burger, M. Butler, M. Elias, A. Idnurm, B. F. Lang, T. Sone, A. Abe, S. E. Calvo, L. M. Corrochano, R. Engels, J. Fu, W. Hansberg, J. M. Kim, C. D. Kodira, M. J. Koehrsen, B. Liu, D. Miranda-Saavedra, S. O''Leary, L. Ortiz-Castellanos, R. Poulter, J. Rodriguez-Romero, J. Ruiz-Herrera, Y. Q. Shen, Q. Zeng, J. Galagan, B. W. Birren, C. A. Cuomo, and B. L. Wickes. 2009. Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication. PLoS Genet. 5:e1000549. 85. Marciani, D. J., and J. D. Papamatheakis. 1978. Anomalous behavior of the major avian myeloblastosis virus glycoprotein in the presence of sodium dodecyl sulfate. J. Virol. 26:825-827. 86. Matthews, D. M. 1975. Intestinal absorption of peptides. Physiol. Rev. 55:537-608. 87. Maxwell, E. S., and M. J. Fournier. 1995. The small nucleolar RNAs. Annu. Rev. Biochem. 64:897-934. 88. McCormick, R. J., T. Badalian, and D. E. Fisher. 1996. The leucine zipper may induce electrophoretic mobility anomalies without DNA bending. Proc. Natl. Acad. Sci. USA 93:14434-14439. 89. Monod, M., S. Capoccia, B. Lechenne, C. Zaugg, M. Holdom, and O. Jousson. 2002. Secreted proteases from pathogenic fungi. Int. J. Med. Microbiol. 292:405-419. 90. Moussa, C. E., C. Wersinger, M. Rusnak, Y. Tomita, and A. Sidhu. 2004. Abnormal migration of human wild-type alpha-synuclein upon gel electrophoresis. Neurosci. Lett. 371:239-243. 91. Mugula, J. K. 1992. The nutritive quality of sorghum-commonbean tempe. Plant Foods Hum. Nutr. 42:247-256. 92. Musa, R., K. Yunoki, M. Kinoshita, Y. Oda, and M. Ohnishi. 2004. Increased levels of policosanol and very long-chain fatty acids in potato pulp fermented with Rhizopus oryzae. Biosci. Biotechnol. Biochem. 68:2401-2404. 93. Nei, M., and S. Kumar. 2000. Molecular Evolution and Phylogenetics, Oxford University Press, NY. 94. Nilsen, T. W. 2001. Evolutionary origin of SL-addition trans-splicing: still an enigma. Trends. Genet. 17:678-680. 95. Nishimura, T., and H. Kato. 1988. Taste of free amino acids and peptides Food Rev. Int. 4:175-194. 96. Nussinov, R. 1990. Sequence signals in eukaryotic upstream regions. Crit. Rev. Biochem. Mol. Biol. 25:185-224. 97. Oda, Y., K. Saito, H. Yamauchi, and M. Mori. 2002. Lactic acid fermentation of potato pulp by the fungus Rhizopus oryzae. Curr. Microbiol. 45:1-4. 98. Ohba, R., S. Ide, A. Yoshida, Z. Nagata, and S. Ueda. 1995. Effect of mixed enzyme preparations on the solubilization of proteins for separating egg yolk oil from a fresh yolk suspension. Biosci. Biotech. Biochem. 59:949-951 99. Ohler, U., G. Liao, H. Niemann, and G. M. Rubin. 2002. Computational analysis of core promoters in the Drosophila genome. Genome. Biol. 3:1-12. 100. Oikawa, T., A. Tauch, S. Schaffer, and T. Fujioka. 2006. Expression of alr gene from Corynebacterium glutamicum ATCC 13032 in Escherichia coli and molecular characterization of the recombinant alanine racemase. J. Biotechnol. 125:503-512. 101. Oka, T., and K. Morihara. 1973. Comparative specificity of microbial acid proteinases for synthetic peptides. I. Primary specificity. Arch. Biochem. Biophys. 156:543-551. 102. Oka, T., and K. Morihara. 1974. Comparative specificity of microbial acid proteinases for synthetic peptides. Primary specificity with Z-tetrapeptides. Arch. Biochem. Biophys. 165:65-71. 103. Onyeneho, S. N., J. A. Partridge, J. R. Brunner, and J. Guan. 1987. Manufacture and characterization of Gua-Nai: a new dairy food produced with an oriental-type culture. J. Dairy Sci. 70:2499-2503. 104. Pridgen, L. N., M. K. Mokhallalati, and M. A. McGuire. 1997. A stereospecific synthesis of both enantiomers of 2-(1`-Amino-2`-Methylpropyl) imidazole, a key synthon in the synthesis of SB 203386; a potent protease inhibitor. Tetrahedron Letters 38:1275-1278. 105. Prusky, D., and N. Yakoby. 2003. Pathogenic fungi: leading or led by ambient pH? Mol. Plant. Pathol. 4:509-516. 106. Rao, M. B., A. M. Tanksale, M. S. Ghatge, and V. V. Deshpande. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62:597-635. 107. Rawlings, N. D., and A. J. Barrett. 1995. Families of aspartic proteases, and those of unknown catalytic mechanisms. Methods Enzymol. 248:105-120. 108. Reed, R., and K. Magni. 2001. A new view of mRNA export: separating the wheat from the chaff. Nat. Cell Biol. 3:201-204. 109. Reichard, U., M. Monod, and R. Ruchel. 1995. Molecular cloning and sequencing of the gene encoding an extracellular aspartic proteinase from Aspergillus fumigatus. FEMS Microbiol. Lett. 130:69-74. 110. Ribes, J. A., C. L. Vanover-Sams, and D. J. Baker. 2000. Zygomycetes in human disease. Clin. Microbiol. Rev. 13:236-301. 111. Rogalski, J., J. Szczodrak, and Z. Ilczuk. 1983. Cellulolytic activity of moulds. II. Various methods of precipitating and concentrating enzymes and their influence on the activity of cellulolytic preparation and xylanase of Aspergillus terreus F-413. Acta. Microbiol. Pol. 32:363-372. 112. Rogozin, I. B., Y. I. Wolf, A. V. Sorokin, B. G. Mirkin, and E. V. Koonin. 2003. Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Curr. Biol. 13:1512-1517. 113. Ronne, H. 1995. Glucose repression in fungi. Trends. Genet. 11:12-7. 114. Roy, S. W., A. Fedorov, and W. Gilbert. 2003. Large-scale comparison of intron positions in mammalian genes shows intron loss but no gain. Proc. Natl. Acad. Sci. USA 100:7158-7162. 115. Rzhetsky, A., and M. Nei. 1994. METREE: a program package for inferring and testing minimum-evolution trees. Comput. Appl. Biosci. 10:409-412. 116. Saitou, N., and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425. 117. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed, Cold Spring Harbor Laboratory. NY. 118. Samso, M., J. R. Daban, S. Hansen, and G. R. Jones. 1995. Evidence for sodium dodecyl sulfate/protein complexes adopting a necklace structure. Eur. J. Biochem. 232:818-824. 119. Schoen, C., U. Reichard, M. Monod, H. D. Kratzin, and R. Ruchel. 2002. Molecular cloning of an extracellular aspartic proteinase from Rhizopus microsporus and evidence for its expression during infection. Med. Mycol. 40:61-71. 120. Sharp, P. A. 1981. Speculations on RNA splicing. Cell 23:643-646. 121. Shiell, B. J., M. Tachedjian, K. Bruce, G. Beddome, J. L. Farn, P. A. Hoyne, and W. P. Michalski. 2007. Expression, purification and characterization of recombinant phospholipase B from Moraxella bovis with anomalous electrophoretic behavior. Protein Expr. Purif. 55:262-272. 122. Smolenski, G., P. A. Sullivan, S. M. Cutfield, and J. F. Cutfield. 1997. Analysis of secreted aspartic proteinases from Candida albicans: purification and characterization of individual Sap1, Sap2 and Sap3 isoenzymes. Microbiology 143:349-356. 123. Stajich, J. E., F. S. Dietrich, and S. W. Roy. 2007. Comparative genomic analysis of fungal genomes reveals intron-rich ancestors. Genome Biol. 8:R223. 124. Stewart, K., and C. Abad-Zapatero. 2001. Candida proteases and their inhibition: prospects for antifungal therapy. Curr. Med. Chem. 8:941-948. 125. Subramanian, E., I. D. Swan, M. Liu, D. R. Davies, J. A. Jenkins, I. J. Tickle, and T. L. Blundell. 1977. Homology among acid proteases: comparison of crystal structures at 3A resolution of acid proteases from Rhizopus chinensis and Endothia parasitica. Proc. Natl. Acad. Sci. USA 74:556-559. 126. Sushil, K., N. S. Sharma, M. R. Saharan, and S. Randhir. 2004. Biochemical changes during ripening of Cheddar cheese prepared by milk clotting enzyme from Rhizopus oryzae. J. Food Sci. Tech. 41:279-283. 127. Takahashi, K. 1987. The amino acid sequence of rhizopuspepsin, an aspartic proteinase from Rhizopus chinensis. J. Biol. Chem. 262:1468-1478. 128. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599. 129. ten Have, A., E. Dekkers, J. Kay, L. H. Phylip, and J. A. van Kan. 2004. An aspartic proteinase gene family in the filamentous fungus Botrytis cinerea contains members with novel features. Microbiology 150:2475-2489. 130. Terry, D. E., E. Umstot, and D. M. Desiderio. 2004. Optimized sample-processing time and peptide recovery for the mass spectrometric analysis of protein digests. J. Am. Soc. Mass Spectrom. 15:784-794. 131. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680. 132. Tilburn, J., S. Sarkar, D. A. Widdick, E. A. Espeso, M. Orejas, J. Mungroo, M. A. Penalva, and H. N. Arst, Jr. 1995. The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J. 14:779-790. 133. Tunga, R., R. Banerjee, and B. C. Bhattacharyya. 2001. Optimization of some additives to improve protease production under SSF. Indian. J. Exp. Biol. 39:1144-1148. 134. Uchida, K., Y. Nishiyama, and H. Yamaguchi. 2004. In vitro antifungal activity of luliconazole (NND-502), a novel imidazole antifungal agent. J. Infect. Chemother. 10:216-219. 135. Vanden Bossche, H. 1997. Mechanisms of antifungal resistance. Rev. Iberoam. Micol. 14:44-49. 136. Vanden Bossche, H., L. Koymans, and H. Moereels. 1995. P450 inhibitors of use in medical treatment: focus on mechanisms of action. Pharmacol. Ther. 67:79-100. 137. Velegraki, A., M. Kambouris, A. Kostourou, G. Chalevelakis, and N. J. Legakis. 1999. Rapid extraction of fungal DNA from clinical samples for PCR amplification. Med. Mycol. 37:69-73. 138. Venter, H., G. Osthoff, and D. Litthauer. 1999. Purification and characterization of a metalloprotease from Chryseobacterium indologenes Ix9a and determination of the amino acid specificity with electrospray mass spectrometry. Protein Expr. Purif. 15:282-295. 139. Voigt, K., and J. Wostemeyer. 2001. Phylogeny and origin of 82 zygomycetes from all 54 genera of the Mucorales and Mortierellales based on combined analysis of actin and translation elongation factor EF-1alpha genes. Gene 270:113-120. 140. von Sengbusch, P., J. Hechler, and U. Muller. 1983. Molecular architecture of fungal cell walls. An approach by use of fluorescent markers. Eur. J. Cell. Biol. 30:305-312. 141. Walsh, M. K., and X. Li. 2000. Thermal stability of acid proteinases. J. Dairy Res. 67:637-640. 142. Walton, J. D. 1996. Host-selective toxins: agents of compatibility. Plant Cell 8:1723-1733. 143. Wang, H. L., D. I. Ruttle, and C. W. Hesseltine. 1969. Milk-clotting activity of proteinases produced by Rhizopus. Can. J. Microbiol. 15:99-104. 144. Wang, H. L., J. B. Vespa, and C. W. Hesseltine. 1974. Acid protease production by fungi used in soybean food fermentation. Appl Microbiol 27:906-911. 145. Ward, M., and G. Turner. 1986. The ATP synthase subunit 9 gene of Aspergillus nidulans: sequence and transcription. Mol. Gen. Genet. 205:331-338. 146. Weinstein, L. B., and J. A. Steitz. 1999. Guided tours: from precursor snoRNA to functional snoRNP. Curr. Opin. Cell Biol. 11:378-384. 147. Wildfeuer, A., H. P. Seidl, I. Paule, and A. Haberreiter. 1998. In vitro evaluation of voriconazole against clinical isolates of yeasts, moulds and dermatophytes in comparison with itraconazole, ketoconazole, amphotericin B and griseofulvin. Mycoses 41:309-319. 148. Wright, B. E., A. Longacre, and J. Reimers. 1996. Models of metabolism in Rhizopus oryzae. J. Theor. Biol. 182:453-457. 149. Yanisch-Perron, C., J. Vieira, and J. Messing. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103-119. 150. Zacharius, R. M., T. E. Zell, J. H. Morrison, and J. J. Woodlock. 1969. Glycoprotein staining following electrophoresis on acrylamide gels. Anal. Biochem. 30:148-152. 151. Zhao, J., L. Hyman, and C. Moore. 1999. Formation of mRNA 3'' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol. Mol. Biol. Rev. 63:405-445. 利用Bacillus subtilis表現Staphylococcus aureus BCRC 15205之 glutamyl endopeptidase基因 1. Brockmeier, U., M. Caspers, R. Freudl, A. Jockwer, T. Noll, and T. Eggert. 2006. Systematic screening of all signal peptides from Bacillus subtilis: a powerful strategy in optimizing heterologous protein secretion in Gram-positive bacteria. J. Mol. Biol. 362:393-402. 2. Bruckner, R. 1992. A series of shuttle vectors for Bacillus subtilis and Escherichia coli. Gene 122:187-92. 3. Cabrita, L. D., and S. P. Bottomley. 2004. Protein expression and refolding--a practical guide to getting the most out of inclusion bodies. Biotechnol. Annu. Rev. 10:31-50. 4. Doi, R. H. 1991. Proteolytic activities in Bacillus. Curr. Opin. Biotechnol. 2:682-4. 5. Dougherty, W. G., and B. L. Semler. 1993. Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes. Microbiol. Rev. 57:781-822. 6. Dubin, G., J. Stec-Niemczyk, M. Kisielewska, K. Pustelny, G. M. Popowicz, M. Bista, T. Kantyka, K. T. Boulware, H. R. Stennicke, A. Czarna, M. Phopaisarn, P. S. Daugherty, I. B. Thogersen, J. J. Enghild, N. Thornberry, A. Dubin, and J. Potempa. 2008. Enzymatic activity of the Staphylococcus aureus SplB serine protease is induced by substrates containing the sequence Trp-Glu-Leu-Gln. J. Mol. Biol. 379:343-56. 7. Hanakawa, Y., and J. R. Stanley. 2004. Mechanisms of blister formation by staphylococcal toxins. J. Biochem. 136:747-50. 8. Harwood, C. R. 1992. Bacillus subtilis and its relatives: molecular biological and industrial workhorses. Trends Biotechnol. 10:247-56. 9. Hedstrom, L., L. Szilagyi, and W. J. Rutter. 1992. Converting trypsin to chymotrypsin: the role of surface loops. Science 255:1249-53. 10. Houmard, J., and G. R. Drapeau. 1972. Staphylococcal protease: a proteolytic enzyme specific for glutamoyl bonds. Proc. Natl. Acad. Sci. USA 69:3506-9. 11. Kawalec, M., J. Potempa, J. L. Moon, J. Travis, and B. E. Murray. 2005. Molecular diversity of a putative virulence factor: purification and characterization of isoforms of an extracellular serine glutamyl endopeptidase of Enterococcus faecalis with different enzymatic activities. J. Bacteriol. 187:266-75. 12. Kim, L., A. Mogk, and W. Schumann. 1996. A xylose-inducible Bacillus subtilis integration vector and its application. Gene 181:71-6. 13. Lin, Y. C., Z. Beck, T. Lee, V. D. Le, G. M. Morris, A. J. Olson, C. H. Wong, and J. H. Elder. 2000. Alteration of substrate and inhibitor specificity of feline immunodeficiency virus protease. J. Virol. 74:4710-20. 14. Ling Lin, F., X. Zi Rong, L. Wei Fen, S. Jiang Bing, L. Ping, and H. Chun Xia. 2007. Protein secretion pathways in Bacillus subtilis: implication for optimization of heterologous protein secretion. Biotechnol. Adv. 25:1-12. 15. Nemoto, T. K., Y. Ohara-Nemoto, T. Ono, T. Kobayakawa, Y. Shimoyama, S. Kimura, and T. Takagi. 2008. Characterization of the glutamyl endopeptidase from Staphylococcus aureus expressed in Escherichia coli. FEBS J. 275:573-87. 16. Notani, N. K., and J. K. Setlow. 1974. Mechanism of bacterial transformation and transfection. Prog. Nucleic Acid Res. Mol. Biol. 14:39-100. 17. Ono, T., T. K. Nemoto, Y. Shimoyama, S. Kimura, and Y. Ohara-Nemoto. 2008. An Escherichia coli expression system for glutamyl endopeptidases optimized by complete suppression of autodegradation. Anal. Biochem. 381:74-80. 18. Park, C. H., S. J. Lee, S. G. Lee, W. S. Lee, and S. M. Byun. 2004. Hetero- and autoprocessing of the extracellular metalloprotease (Mpr) in Bacillus subtilis. J. Bacteriol. 186:6457-64. 19. Power, S. D., R. M. Adams, and J. A. Wells. 1986. Secretion and autoproteolytic maturation of subtilisin. Proc. Natl. Acad. Sci. USA 83:3096-100. 20. Prasad, L., Y. Leduc, K. Hayakawa, and L. T. Delbaere. 2004. The structure of a universally employed enzyme: V8 protease from Staphylococcus aureus. Acta Crystallogr. D Biol. Crystallogr. 60:256-9. 21. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual. 2nd ed.; Cold Spring Harbor Laboratory, NY. 22. Schumann, W. 2007. Production of recombinant proteins in Bacillus subtilis. Adv. Appl. Microbiol. 62:137-89. 23. Sharipova, M. R., E. I. Shagimardanova, I. B. Chastukhina, T. R. Shamsutdinov, N. P. Balaban, A. M. Mardanova, G. N. Rudenskaya, I. V. Demidyuk, and S. V. Kostrov. 2007. The expression of Bacillus intermedius glutamyl endopeptidase gene in Bacillus subtilis recombinant strains. Mol. Biol. Rep. 34:79-87. 24. Shaw, L., E. Golonka, J. Potempa, and S. J. Foster. 2004. The role and regulation of the extracellular proteases of Staphylococcus aureus. Microbiology 150:217-28. 25. Srinivasulu, S., and A. S. Acharya. 2002. Product-conformation-driven ligation of peptides by V8 protease.
摘要: 利用陰離子交換樹脂管柱,以快速蛋白液相色層分析的技術(FPLC),從Rhizopus oryzae NBRC 4749的胞外上清液中純化出分泌性的aspartic protease (又稱為 rhizopuspepsin),而純化率可達 45%。這個酵素經由SDS-PAGE的分析,可推估其分子量約為37 kDa;由醣蛋白染色的測定,則可判斷其並非為醣蛋白。 N端序列與LC-MS/MS分析的結果,發現本實驗所純化出的rhizopuspepsin與 R. oryzae 基因體序列資料庫內的hypothetical protein RO3G_12822.1 相符。比較RO3G_12822.1的genomic序列與cDNA 序列,可發現此基因帶有兩個 intron,然而之前所發表的rhizopuspepsin 基因都只帶有一個intron。物種演化的分析也指出本研究所純化出的rhizopuspepsin與之前所發表的rhizopuspepsin有所不同。 純化後的rhizopuspepsin其最適溫度與pH 各為 50 °C 與 pH 3.0;而其半衰期在40 °C的環境下約為3.5小時。此新型rhizopuspepsin對於受質P1位置的hydrophobic 與 positively charged amino acid具有高活性,但是對於Glu、 Pro、Trp、與帶有β-branch 支鏈的aliphatic amino acid則不具有活性。與P1位置的cleavage specificity相較,此酵素對於受質P1’位置上positively charged amino acid不具有活性,但卻對帶有β-branch 支鏈的aliphatic amino acid具有高活性。 本研究亦發現,此rhizopuspepsin在SDS-PAGE上會有不正常緩慢移動的現象。 將Staphylococcus aureus的glutamyl endopeptidase 基因(sspA)選殖於表現載體,並利用Bacillus subtilis來進行表現。當利用wild-type B. subtilis DB2為宿主進行表現時,其所表現出的glutamyl endopeptidase precursor會被活化,並可偵測到活性。可是當宿主換成protease-deficient B. subtilis DB104 (nprE- aprE-)時,其所表現出的glutamyl endopeptidase precursor則無法被活化。雖然B. subtilis DB2所表現出的glutamyl endopeptidase具活性。但在N端pro序列被切除的同時,其C端的His tag也被切除了。因此,利用B. subtilis DB2來表現glutamyl endopeptidase基因,會造成後續酵素純化的困難。本研究亦發現,將glutamyl endopeptidase第68個amino acid由Asp置換成Glu,此protease可在無其他protease的幫助下自行成熟,並且具有活性。
A secretory aspartic protease (also termed as rhizopuspepsin) was purified from Rhizopus oryzae NBRC 4749 by ion exchange chromatography with a yield of 45%. The enzyme was a non-glycoprotein with a molecular mass of 37 kDa as determined by SDS-PAGE analysis. N-terminal sequence and LC-MS/MS analyses revealed that this rhizopuspepsin corresponded to the hypothetical protein RO3G_12822.1 in the R. oryzae genome database. Comparison of genomic and cDNA genes demonstrated that the rhizopuspepsin gene contained two introns, whereas only one intron was reported in other rhizopuspepsin genes. Phylogenetic analysis also indicated that this rhizopuspepsin was distinct from other rhizopuspepsins. The temperature and pH optima for the purified rhizopuspepsin were 50 °C and pH 3.0, respectively, and a half-life of about 3.5 h was observed at 40 °C. This newly identified rhizopuspepsin preferentially cleaved the peptides with hydrophobic and positively charged amino acids in P1 site, but had no activity for the Glu, Pro, Trp, and aliphatic amino acids containing β-branch side chain. In contrast to P1 site, the P1' site did not accommodate positively charged amino acids for the enzyme. But, it preferentially cleaved the peptides with aliphatic amino acids containing β-branch side chain in P1' site. In this study, we also noticed that the rhizopuspepsin displayed aberrant mobility in SDS-PAGE analysis. Staphylococcus aureus glutamyl endopeptidase gene (sspA) was cloned into expressing vector, and expressed in Bacillus subtilis. Active glutamyl endopeptidase could be obtained from the wild-type B. subtilis DB2 expressing the sspA gene, whereas the enzyme remained in the precursor form from protease-deficient B. subtilis DB104 (nprE- aprE-). However, 6His tag was also deleted from the mature glutamyl endopeptidase produced by B. subtilis DB2, leading to difficulty in purification of recombinant glutamyl endopeptidase from culture supernatant. We also found that glutamyl endopeptidase variant with N68E mutation could form mature protein by autocatalysis.
其他識別: U0005-0508200914550700
Appears in Collections:分子生物學研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.