Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/21997
標題: T-DNA插入突變株之篩選與水稻基因功能之探討---株高突變株M82268之研究
Rice functional genomics study using T-DNA insertion mutants: characterization of plant height mutant M82268
作者: 黃麗燕
Wong, Lai-In
關鍵字: mutant line
突變株
plant height
rice
cold stress
germination
株高
水稻
低溫逆境
萌芽
出版社: 分子生物學研究所
引用: 羅舜芳 (2008) 利用T-DNA插入性突變株探討水稻中GA 2-oxidase, MADS14, MADS34 and Flavonoid 3’hydroxylase 之功能,中興大學分子生物學研究所博士論文。 Abbasi, F., Onodera, H., Toki, S., Tanaka, H., and Komatsu, S. (2004) OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath. Plant Mol Biol 55: 541–552. Achaed, P., Gong, F., Cheminant, S., Alioua, M., Hedden, P., and Genschik, P. (2008) The cold-inducible CBF1 factor–dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20: 2117–2129. An, G., Lee, S., Kim, S.H., and Kim, S.R. (2005) Molecular genetics using T-DNA in rice. Plant Cell Physiol 46: 14-22. Asano, T., Tanaka, N., Yang, G., Hayashi, N., and Komatsu, S. (2005) Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiol 46: 356–366. Azpiroz-Leehan, R., and Feldmann, K.A. (1997) T-DNA insertion mutagenesis in Arabidopsis: going back and forth. Trends Genet 13: 152-156. Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller, L., Eddy, S.R., Griffiths-Jones, S., Howe, K.L., Marshall, M., and Sonnhammer, E.L. (2002) The Pfam protein families database. Nucleic Acids Res 30: 276-280. Bouchez, D., and Hofte, H. (1998) Functional genomics in plants. Plant Physiol 118: 725-732. Bouquin, T., Meier, C., Foster, R., Nielsen, M.E., and Mundy, J. (2001) Control of specific gene expression by gibberellin and brassinosteroid. Plant Physiol 127: 450–458. Griffiths, J., Murase, K., Rieu, I., Zentella, R., Zhang, Z.L., Powers, S.J., Gong, F., Phillps, A.L., Hedden, P., Sun, T.P., and Thomas, S.G. (2006) Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant cell 18, 3399–3414. Hedden, P., and Phillips, A.L. (2002) Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5: 523-530. Hirano, K., Ueguchi-Tanaka M., and Matsuoka, M. (2008) GID1-mediated gibberellin signaling in Plants. Trends Plant Sci 13: 192-199. Hirochika, H., Sugimoto, K., Otsuki, Y., Tsugawa, H., and Kanda, M. (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci U S A 93: 7783-7788. Hsing, Y.I., Chern, C.G., Fan, M.J., Lu, P.C., Chen, K.T., Lo, S.F., Sun, P.K., Ho, S.L., Lee, K.W., Wang, Y.C., Huang, W.L., Ko, S.S., Chen, S., Chen, J.L., Chung, C.I., Lin, Y.C., Hour, A.L., Wang, Y.W., Chang, Y.C., Tsai, M.W., Lin, Y.S., Chen, Y.C., Yen, H.M., Li, C.P., Wey, C.K., Tseng, C.S., Lai, M.H., Huang, S.C., Chen, L.J., and Yu, S.M. (2007) A rice gene activation/Knockout mutant resource for high throughput functional genomics. Plant Mol Biol 63: 351-364. Ikeda, A., Ueguchi-Tanaka, M., Sonoda, Y., Kitano, H., Koshioka, M., Futsuhara, Y., Matsuoka, M., and Yamaguchi, J. (2001) Slender Rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13: 999-1010. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436: 793-800. Itoh, H., Ueguchi-Tanaka, M., Sato, Y., Ashikari, M., and Matsuoka, M. (2002) The gibberellin signaling pathway is regulated by the appearance and disappearance of Slender Rice1 in nuclei. Plant Cell 14: 57–70. Itoh, H., Ueguchi-Tanaka, M., Sentoku, N., Kitano, H., Matsuoka, M,. Kobayashi, M. (2001) Two differently expressed gibberellin 3β-hydroxylase genes are involved in the regulation of vegetative and reproductive growth of rice. Proc Natl Acad Sci U S A 98: 8909-8914. Itoh, J., Nonomura, K., Ikeda, K., Yamaki, S., Inukai, Y., Yamagishi, H., Kitano, H., and Nagato, Y. (2005) Rice plant development: from zygote to spikelet. Plant Cell Physiol 46: 23-47. Jeong, D.H., An, S., Kang, H.G., Moon, S., Han, J.J., Park, S., Lee, H.S., An, K., and An, G. (2002) T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol 130: 1636-1644. Jeong, D.H., An, S., Park, S., Kang, H.G., Park, G.G., Kim, S.R., Sim, J., Kim, Y.O., Kim, M.K., Kim, S.R., Kim, J., Shin, M., Jung, M., and An, G. (2006) Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J 45: 123-132. Jung, K.H., Hur, J., Ryu, C.H., Choi, Y., Chung, Y.Y., Miyao, A., Hirochika, H., and An, G. (2003) Characterization of a rice chlorophyll-dificient mutant using the T-DNA gene –trap system. Plant Cell Physiol 44: 463-472. Kaneko, M., Itoh, H., Ueguchi-Tanaka, M., Ashikari, M., and Matsuoka, M. (2002) The α-amylase induction in endosperm during rice seed germination is caused by gibberellins synthesized in epithelium. Plant Physiol 128: 1264-1270. Kasuga, K., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature 17: 287-291. Komatsu, S., Yang, G., Hayashi, N., Kaku, H., Umemura, K., and Iwasaki, Y. (2004) Alterations by a defect in a rice G protein α subunit in probenazol and pathogen-induced responses. Plant Cell Environ 27: 947–957. Koncz, C., Mayerhofer, R., Koncz-Kalman, Z., Nawrath, C., Reiss, B., Redei, G.P., and Schell, J. (1990) Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging in Arabidopsis thaliana. Embo J 9: 1337-1346. Krom, N., Recla, J., Ramakrishna, W. (2008) Analysis of genes associated with retrotransposons in the rice genome. Genetica 134:297–310. Kurata, N., Miyoshi, K., Nonomera, K., Yamazaki, Y., and Ito, Y. (2005) Rice mutants and genes related to organ development, morphogenesis and physiological traits. Plant Cell Physiol 46: 48-62. Lee, D.J., and Zeevaart, J.A. (2002) Differential regulation of RNA levels of gibberellin dioxygenases by photoperiod in spinach. Plant Physiol 130: 2085–2094. Lee, D.J., and Zeevaart, J.A. (2005) Molecular cloning of GA 2-oxidase3 from spinach and its ectopic expression in Nicotiana sylvestris. Plant Physiol 138: 243-254. Liu, Y.G., and Whittier, R.F. (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragment from P1and YAC clones for chromosome walking. Genomics 25: 674-681. Martin, C., and Zhang, Y. (2005) The diverse functions of histone lysine methylation. Molecular cell biology 6: 838-841. Miki, D., Itoh, R., and Shimamoto, K. (2005) RNA silencing of single and multiple members in a gene family of rice. Plant Physiol 138: 1903-1913. Murray, M.G., and Thompson, W.F. (1980) Rapid isolation of high molecular weight plan DNA. Nucleic Acid Res 8: 4321-4325. Novillo, F., Alonso, J.M., Ecker, J.R., and Salines, J. (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci U S A 101: 3985–3990. Novillo, F., Mesina, J., and Salines, J. (2007) Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc Natl Acad Sci U S A 104: 21002–21007. Olszewski, N., Sun, T.-p., and Gubler, F. (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14: S61–80. Richards, D.E., King, K.E., Ait-Ali, T., and Harberd, N.P. (2001) How gibberellins regulates plant growth and development: A molecular genetic analysis of gibberellin signaling. Annu. Rev. Plant Physiol. Plant Mol Biol 52: 67–88. Ross, J.J., O’Neill, D.P., Smith, J.J., Kerckhoffs, L.H.J., and Elliott, R.C. (2000) Evidence that auxin promotes gibberellin A1 biosynthesis in pea. Plant J 21: 547–552. Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K., and Izui, K. (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plant. Plant J 23: 319–327. Sakamoto, T., Miura, K., Itoh, H., Tatsumi, T., Ueguchi-Tanaka, M., Ishiyama, K., Kobayashi, M., Agrawal, G.K., Takeda, S., Abe, K., Miyao, A., Hirochika, H., Kitano, H., Ashikari, M., and Matsuoka, M. (2004) An overview of gibberellins metabolism enzyme genes and their related mutants in rice. Plant Physiol 134: 1642-1653. Sambrook, J., and Russell, D.W. (2001) Molecular Cloning. Sasaki, A., Itoh, H., Gomi, K., Ueguchi-Tanaka, M., Ishiyama, K., Kobayashi, M., Jeong, D.-H., An, G., Kitano, H., Ashikari, M., Matsuoka, M. (2003) Accumulation of Phosphorylated Repressor for Gibberellin Signaling in an F-box Mutant. Science 299: 1896-1898. Sasaki, T., and Burr, B. (2000) Interational Rice Genome Sequencing Project: the effort to completely sequence the rice genome. Curr Opin Plant Biol 3: 138-141. Schomburg, F.M., Bizzell, C.M., Lee, D.J., Zeevaart, J.A., and Amasino, R.M. (2003) Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 15, 151–163. Tanaka, N., Matsuoka, M., Kitano, H., Asano, T., Kaku, H., and Komatsu, S.(2006) gid1, a gibberellin-insensitive dwarf mutant, shows altered regulation of probenazole-inducible protein (PBZ1) in response to cold stress and pathogen attack. Plant Cell Environ 29: 619–631. Terada, R., Urawa, H., Inagaki, Y., Tsugane, K., and Iida, S. (2002) Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 20: 1030-1034. Thomashow, M.F. (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Plant Mol Biol 50: 571–599. Ueguchi-Tanaka, M., Ashikari, M., Nakajima, M., Itoh, H., Katoh, E., Kobayashi, M., Chow, T.-y., Hsing, Y.-iC., Kitano, H., Yamaguchi, I., and Matsuoka, M. (2005) Gibberellin insensitive dwarf1 encodes a soluble receptor for gibberellins. Nature 473: 693-698. Ueguchi-Tanaka, M., Nakajima, M., Katoh, E., Ohmiya, H., Asano, K., Saji, S., Hongyu, X., Ashikari, M., Kitano, H., Yamaguchi, I., and Matsuoka, M. (2007) Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. Plant Cell 19: 2140–2155. Ueguchi-Tanaka, M., Nakajima, M., Motoyuki, A., and Matsuoka, M. (2007) Gibberellin receptor and its role in gibberellin signaling in plants. Annu Rev Plant Biol 58:183–198. Wolbang, C.M., and Ross, J.J. (2001) Auxin promotes gibberellins biosynthesis in decapitated tobacco plants. Planta 214: 153–157. Xiong, L., Schumaker, K.S., and Zhu, J.-K. (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14: S165–S183. Yu, J., et al., and Yang, H. (200) A draft sequence of the rice genome (Oryza sativa L. ssp. Indica). Science 296: 79-92 Yamaguchi, S., Kamiya, Y. (2000) Gibberellin biosynthesis: its regulation by endogenous and environmental signals. Plant Cell Physiol 41: 251–257.
摘要: 本研究從T-DNA插入突變體庫中,根據外表性狀篩選出7個與株高相關之突變株系,其中株高較野生型TNG67高約20~30%之突變株M82268經plasmid rescue方法解讀T-DNA插入點兩側序列,得知T-DNA的插入位置在水稻第5對染色體BAC clone OJ1657_H11上的第80,783鹼基對,並藉由T-DNA上CaMV35S的加強子可活化插入點上游14.0 kb OsGID1以及下游16.9 kb OsLEC14B基因的表現。觀察T2~T4子代的基因型與農藝性狀間,呈現密切共分離現象,並由南方墨點法分析顯示只有單一T-DNA插入。OsGID1為植物賀爾蒙吉貝素 (Gibberellins, GAs) 之可溶性接受器,主要在細胞核內接受具有生物活性之GAs,經細胞訊息傳遞使之逹到調控植物生長的功能;而OsLEC14B在單子葉植物中之功能尚不明瞭,因此本研究將利用M82268突變株對於OsGID1進一步瞭解及OsLEC14B功能之探討。OsGID1主要表現於快速生長分化的組織,如6到12天幼根及幼芽,而OsLEC14B則在已成熟葉片表現量較高,此兩基因都會持續在稻穗中表現,因此推測OsGID1和OsLEC14B在營養生長時期和生殖生長時期都具有不可或缺之功能。過去研究指出大量表現OsGID1會造成水稻株高較高以及稔時率偏低現象,然而在觀察M82268稔時率卻是正常,因此推測活化OsLEC14B會影響水稻稔實情形。此外,觀察M82268突變株之種子萌芽速度較野生型TNG67慢,但在進入幼芽時期其株高逐漸高於TNG67,因此推測活化之OsLEC14B 可能影響萌芽速度。在本研究中野生型水稻TNG67受低溫逆境處理時,OsGID1基因表現量增加,而OsLEC14B表現量降低,且突變株對低溫逆境較具敏感性,但回復情況較TNG67佳,可能受OsGID1和OsLEC14B共同被活化所影響,推測OsLEC14B可能參與低溫逆境反應訊息之傳遞。進一步利用ubiquitin啟動子分別大量表現OsGID1和OsLEC14B基因於野生型TNG67植株中,在ubi::GID1轉殖株中能再現突變株較高的形態,且性狀更為明顯;而ubi::LEC14轉殖株則為株高較矮,且死亡率較高,顯示此二基因之功能大不相同,且對植物之生長發育頗具重要性,值得進一步經由轉殖株外表性狀、基因與生理功能之觀察分析,以探討OsGID1和OsLEC14B在水稻中扮演之功能。
Seven rice T-DNA insertion mutant lines with altered plant height were identified in this study. The plant height of M82268 was about 20~30% higher than that of the wild type TNG67. M82268 has its T-DNA inserted at 80,783 bp of BAC clone OJ1657_H11 on the chromosome number 5. The progeny assay from T2 to T4 generations demonstrated that the taller phenotype of M82268 was co-segregated with the T-DNA insertion and there is only one T-DNA insertion event in the genome. Two flanking genes, GID gibberellin receptor and putative LEC14B, located either 14.0 kb upstream or 16.9 kb downstream of the T-DNA insertion site were activated by this insertion event. OsGID1 is a soluble receptor of gibberellin that involved in regulation of plant development while OsLEC14B has not been studied. Therefore, further characterization of M82268 will allow us to know more about OsLEC14B and its interaction with OsGID1. RT-PCR analysis revealed that both genes expressed differentially in all tissues tested, OsGID1 expressed higher in young tissues while OsLEC14B expressed much less in 6 or 12-days young leaf tissues. It has been known that over-expression of OsGID1 will increase plant height but reduce its fertility significantly. However, activation of OsGID1 did not affect the fertility in M82268. It was therefore suggested that the activation of OsLEC14B may overcome the effect of OsGID1 in the reproductive stage in M82268. We also suggested that expression of OsLEC14B may affect germination due to slowing germination in M82268 was observed. Moreover, different response of M82268 and TNG67, and differential regulation of OsGID1 and OsLEC14B genes to cold stress suggested that the interactions of these two genes were involved in cold stess response and recovery. In order to understand the function of individual gene, transgenic rice over-expression either OsGID1 or OsLEC14B genes by ubiquitin promoter were obtained. The ubi::GID1 transgenic rice showed much taller phenotype than M82268 but with low fertility which revealed the same phenotype as previous results. The ubi::LEC14B transgenic rice, however, was more difficult to obtain and the survived transgenic plants showed sereval distinct phenotype. Therefore, to understand the possible function of OsLEC14B, further study on more stable transgenic lines are required.
URI: http://hdl.handle.net/11455/21997
其他識別: U0005-1008200917532800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1008200917532800
Appears in Collections:分子生物學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.