Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22037
DC FieldValueLanguage
dc.contributor周德源zh_TW
dc.contributor曾義雄zh_TW
dc.contributor.advisor翁淑芬zh_TW
dc.contributor.author陳巨威zh_TW
dc.contributor.authorChen, Jyu-Weien_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T07:17:03Z-
dc.date.available2014-06-06T07:17:03Z-
dc.identifierU0005-1708200918271700zh_TW
dc.identifier.citation1. Bartowsky E, Normark S. 1991. Purification and mutant analysis of Citrobacter freundii AmpR, the regulator for chromosomal AmpC beta-lactamase. Mol.Microbiol 5(7):1715-25. . 2. Bishop RE, Weiner JH. 1993. Overproduction, solubilization, purification and DNA-binding properties of AmpR from Citrobacter freundii. Eur. J. Biochem 213(1):405-12. . 3. Busby S, Ebright RH. 1997. Transcription activation at class II CAP-dependent promoters. Mol Microbiol 23(5):853-9. . 4. Chan JW, Goodwin PH. 1999. The molecular genetics of virulence of Xanthomonas campestris. Biotechnol Adv. 17(6):489-508. . 5. Garcia DL, Dillard JP. 2008. Mutations in ampG or ampD affect peptidoglycan fragment release from Neisseria gonorrhoeae. J Bacteriol. 190(11):3799-807. . 6. Da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM, do Amaral AM, Bertolini MC, Camargo LE, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RM, Coutinho LL, Cursino-Santos JR, El-Dorry H, Faria JB, Ferreira AJ, Ferreira RC, Ferro MI, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EG, Lemos MV, Locali EC, Machado MA, Madeira AM, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CF, Miyaki CY, Moon DH, Moreira LM, Novo MT, Okura VK, Oliveira MC, Oliveira VR, Pereira HA, Rossi A, Sena JA, Silva C, de Souza RF, Spinola LA, Takita MA, Tamura RE, Teixeira EC, Tezza RI, Trindade dos Santos M, Truffi D, Tsai SM, White FF, Setubal JC, Kitajima JP. 2002. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. nature. 417(6887):459-63. . 7. Datz M, Joris B, Azab EA, Galleni M, Van Beeumen J, Frère JM, Martin HH. 1994. A common system controls the induction of very different genes. The class-A beta-lactamase of Proteus vulgaris and the enterobacterial class-C beta-lactamase. Eur J Biochem. 226(1):149-57. . 8. De Crecy-Lagard V, Glaser P, Lejeune P, Sismeiro O, Barber CE, Daniels MJ, Danchin A. 1990. A Xanthomonas campestris pv. campestris protein similar to catabolite activation factor is involved in regulation of phytopathogenicity. J Bacteriol 172(10):5877-83. . 9.Dietz H, Pfeifle D, Wiedemann B. 1996. Location of N-acetylmuramyl-L-alanyl-D-glutamylmesodiaminopimelic acid, presumed signal molecule for beta-lactamase induction, in the bacterial cell. Antimicrob. Agents Chemother 40(9):2173-7. . 10. Dietz H, Pfeifle D, Wiedemann B. 1997. The signal molecule for beta-lactamase induction in Enterobacter cloacae is the anhydromuramylpentapeptide. Antimicrob. Agents Chemother 41(10):2113-20. . 11.Fournier B, Aras R, Hooper DC. 2000 Expression of the multidrug resistance transporter NorA from Staphylococcus aureus is modified by a two-component regulatory system. J Bacteriol 182(3):664-71. . 12.Goodell, EW. 1985. Recycling of murein by Escherichia coli. J. Bacteriol. 163:305-10. . 13.He YW, Ng AY, Xu M, Lin K, Wang LH, Dong YH, Zhang LH. 2007. Xanthomonas campestris cell-cell communication involves a putative nucleotide receptor protein Clp and a hierarchical signalling network. Mol Microbiol 64(2):281-92. . 14.Henikoff S, Haughn GW, Calvo JM, Wallace JC. 1988. A large family of bacterial activator proteins. Proc Natl Acad Sci U S A 85(18):6602-6. . 15.Höltje JV, Kopp U, Ursinus A, Wiedemann B. 1994. The negative regulator of beta-lactamase induction AmpD is a N-acetyl-anhydromuramyl- L-alanine amidase. FEMS Microbiol. Lett. 122(1-2):159-64. . 16.Honoré N, Nicolas MH, Cole ST. 1986. Inducible cephalosporinase production in clinical isolates of Enterobacter cloacae is controlled by a regulatory gene that has been deleted from Escherichia coli. EMBO J. 5(13):3709-14. . 17. Hutsul JA, Worobec E. 1997. Molecular characterization of the Serratia marcescens OmpF porin, and analysis of S. marcescens OmpF and OmpC osmoregulation. Microbiol. 143(Pt 8):2797-806. . 18.Jacobs C, Joris B, Jamin M, Klarsov K, Van Beeumen J, Mengin-Lecreulx D, van Heijenoort J, Park JT, Normark S, Frère JM. 1995. AmpD, essential for both beta-lactamase regulation and cell wall recycling, is a novel cytosolic N-acetylmuramyl-L-alanine amidase. Mol. Microbiol. 15(3):553-9. . 19.Jacobs C, Huang LJ, Bartowsky E, Normark S, Park JT. 1994. Bacterial cell wall recycling provides cytosolic muropeptides as effectors for beta-lactamase induction. EMBO J. 13(19):4684-94. . 20.Jacobs C, Frère JM, Normark S. 1997. Cytosolic intermediates for cell wall biosynthesis and degradation control inducible beta-lactam resistance in gram-negative bacteria. Cell 88(6):823-32. . 21.Kopp U, Wiedemann B, Lindquist S, Normark S. 1993. Sequences of wild-type and mutant ampD genes of Citrobacter freundii and Enterobacter cloacae. Antimicrob. Agents Chemother 37(2):224-8. . 22.Korfmann G, Sanders CC. 1989. ampG is essential for high-level expression of AmpC beta-lactamase in Enterobacter cloacae. Antimicrob. Agents Chemother. 33(11):1946-51. . 23.Kuga A, Okamoto R, Inoue M. 2000. ampR gene mutations that greatly increase class C beta-lactamase activity in Enterobacter cloacae. Antimicrob. Agents Chemother 44(3):561-7. . 24.Lee TC, Chen ST, Lee MC, Chang CM, Chen CH, Weng SF, Tseng YH. 2001. The early stages of filamentous phage phiLf infection require the host transcription factor, Clp. J Mol Microbiol Biotechnol 3(3):471-81 . 25.Lindberg F, Lindquist S, Normark S. 1987. Inactivation of the ampD gene causes semiconstitutive overproduction of the inducible Citrobacter freundii beta-lactamase. J. Bacteriol. 169(5):1923-8. . 26.Lindberg F, Westman L, Normark S. 1985. Regulatory components in Citrobacter freundii ampC beta-lactamase induction. Proc.Natl.Acad.Sci.U.S.A 82(14):4620-4. . 27.Lindberg F, Normark S. 1987. Common mechanism of ampC beta-lactamase induction in enterobacteria: regulation of the cloned Enterobacter cloacae P99 beta-lactamase gene. J Bacteriol 169(2):758-63 . 28.Lindquist S, Lindberg F, Normark S. 1989. Binding of the Citrobacter freundii AmpR regulator to a single DNA site provides both autoregulation and activation of the inducible ampC beta-lactamase gene. J. Bacteriol. 171(7):3746-53. . 29.Lindquist S, Galleni M, Lindberg F, Normark S. 1989. Signalling proteins in enterobacterial AmpC beta-lactamase regulation. Mol.Microbiol. 3(8):1091-1102. . 30.Lodge JM, Minchin SD, Piddock LJ, Busby JW. 1990. Cloning, sequencing and analysis of the structural gene and regulatory region of the Pseudomonas aeruginosa chromosomal ampC beta-lactamase. Biochem J. 272(3):627-31. . 31.Miller, J. H. 1972. Experiments in Molecular Genetics. New York:352-5. 32.Moya B, Juan C, Albertí S, Pérez JL, Oliver A. 2008. Benefit of having multiple ampD genes for acquiring beta-lactam resistance without losing fitness and virulence in Pseudomonas aeruginosa. Antimicrob Agents Chemother 52(10):3694-700. . 33.Murayama SY, Yamamoto T, Suzuki I, Sawai T. 1989. Mutation of Escherichia coli capable of expressing gene(s) for beta-lactamase production of Citrobacter freundii. Antimicrob. Agents Chemother. 29(4):707-9. . 34.Normark, S. 1995. Beta-Lactamase induction in gram-negative bacteria is intimately linked to peptidoglycan recycling. Microb.Drug Resist. 1(2):111-4. . 35.Paetzel M, Karla A, Strynadka NC, Dalbey RE.. 2002. Signal peptidases. Chem Rev 102(12):4549-80. . 36.Park, JT. 1996. The convergence of murein recycling research with beta-lactamase research. Microb.Drug Resist. 2(1):105-12. . 37.Peter K, Korfmann G, Wiedemann B. 1988. Impact of the ampD gene and its product on beta-lactamase production in Enterobacter cloacae. Rev. Infect. Dis. 10(4):800-5. . 38.Pitout JD, Sanders CC, Sanders WE Jr.1997. Antimicrobial resistance with focus on beta-lactam resistance in gram-negative bacilli. Am J Med 103(1):51-9 . 39. Sanders, CC. 1992. Beta-Lactamases of gram-negative bacteria: new challenges for new drugs. Clin Infect Dis. 14(5):1089-99. . 40.Schmidt H, Korfmann G, Barth H, Martin HH. 1995. The signal transducer encoded by ampG is essential for induction of chromosomal AmpC beta-lactamase in Escherichia coli by beta-lactam antibiotics and ''unspecific'' inducers. Microbiology 141(5):1085-92. . 41.Schmidtke AJ, Hanson ND. 2008. Role of ampD homologs in overproduction of AmpC in clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 52(11):3922-7. . 42.Tuomanen E, Lindquist S, Sande S, Galleni M, Light K, Gage D, Normark S. 1991. Coordinate regulation of beta-lactamase induction and peptidoglycan composition by the amp operon. Science 251(4990):201-4. . 43.Walsh TR, MacGowan AP, Bennett PM. 1997. Sequence analysis and enzyme kinetics of the L2 serine beta-lactamase from Stenotrophomonas maltophilia. Antimicrob Agents Chemother 41(7):1460-4 . 44.Wang LH, He Y, Gao Y, Wu JE, Dong YH, He C, Wang SX, Weng LX, Xu JL, Tay L, Fang RX, Zhang LH. 2004. A bacterial cell-cell communication signal with cross-kingdom structural analogues. Mol Microbiol. 51(3):903-12 45.Weng SF, Lin JW, Chen CH, Chen YY, Tseng YH, Tseng YH. 2004. Constitutive expression of a chromosomal class A (BJM group 2) beta-lactamase in Xanthomonas campestris. Antimicrob Agents Chemother. 48(1) : 209-15 . 46.Yang, BY, Tseng YH. 1988. Production of exopolysaccharide and levels of protease activity in pathogenic and non-pathogenic strains of Xanthomonas campestris pv. campestris Bot. Bull. Academia Sinica 29:93-99. .en_US
dc.identifier.urihttp://hdl.handle.net/11455/22037-
dc.description.abstract格蘭氏陰性的 Xanthomonas camprstris pv. campestris 為十字花科蔬菜黑腐病菌,大多的 XCC 都有抵抗 β-lactam 類抗生素的能力,其抵抗的方式是表現出 β-lactamase 去分解 β-lactam 類抗生素。在許多格蘭氏陰性菌 genome 中,大多都有 ampR-bla system並且此系統為當接受到抗生素時才會誘導表現 β-lactamase,但已知在 Xc17 中此系統會持續表現 β-lactamase(XCC3039)。目前了解 Clp (cAMP receptor protein-like protein) 為 global transcription factor,而前人利用蛋白質二維電泳分析 P20H 及 P20H clp 突變株的胞外蛋白,觀察到 wild type 的 β-lactamase (XCC3039) 蛋白量多於 clp 突變株;而 He. Y. W. 在 2007 年發表利用生物晶片分析在 Xc1 中受 Clp 調控的基因,其中有 β-lactamase 受到正向調控,但其調控的基因和前人證實的不同。在 β-lactamase activity 測試中觀察到 TC817 (Xc17 clp mutant 株) 在無 ampicillin 的環境下,其活性近乎喪失;而在 TC817 培養基中添加 ampicillin,其活性提高約30倍,但其提高的活性仍只有 Xc17 β-lactamase activity 的 0.3 倍;而在 MIC 的結果中指出 TC817 對 beta-lactame 類抗生素抗性下降,因此更為確定 Clp 會去影響到 beta-lactamase 的表現量並且令原本為持續表現型轉變為誘導型。在 ampR-bla 之間的啟動子區域,發現到 60% 相似度的 CBS (Clp-Binding Site),在 gel retardation 的實驗中證實 Clp 結合在此啟動子區域 ; 而在TC817的 ampR 及 bla 啟動子活性上,在培養基中含有 ampicillin 其ampR 啟動子活性稍微提高在未含 ampicillin 的培養基中所測得的活性,但其 bla 的啟動子活性無差異。而在 Western blotting 結果中,觀察在Xc17中 Bla 蛋白表現不論是否在培養基中含有 ampicillin,其蛋白均會表現,並在生長速率上也無差異;而在 TC817 中當培養基含有 ampicillin 才會被誘導表現beta-lactamase,並在生長上 ampicillin 會造成 TC817 生長減緩。證實 Clp 會直接影響bla的表現,但是否有其它因子參與在之中仍尚探討。 .zh_TW
dc.description.abstractMost of Xanthomonas camprstris pv. campestris(Xcc) have ability that they resisted beta-latam antibiotic. Most of Xcc destroyed beta-latam antibiotic by beta-lactamase. In genome of many germ negative bacteria, they existed ampR-bla system genes. When ampicillin existed in environment, the system is only induced and produced beta-lactamase. Although, Genome of Xc17 exist the system, but the system expressed beta-lactamase(XCC3039) continuously. Clp(cAMP receptor protein-like protein) is global transcription factor. Extracellular protein between P20H and P20H clp mutant analyzed by protein 2-D electrophoresis. The result express more Bla(XCC3039)protein of P20h than Bla protein of P20h clp mutant. However, in 2007 He. published the Bla protein(XCC2873) was regulated positively by Clp in XC1. But He's result is different with result of predecessor's experiment. In beta-lactamase activity, TC817 (Xc17 clp mutant) loss activity in medium without ampicillin. however, when medium include ampicillin, the beta-lactamse activity is induced in TC817.The activity is enhance 30 folds approximately when medium is added ampicillin. In MIC test, resistance of beta-lactam antibiotic of TC817 reduced. Therefore, Clp effected continuous expression of Bla protein in Xc17.Promoter region between bla and ampR excite 60 percents of Clp-Binding Site(CBS).In gel retardation, tre result that Clp can bind this region is confirmed. In promoter activity assay, when medium included ampicillin, the activity of promoter region of ampR in TC817 was enhanced slightly. But the activity of promoter region of bla in TC817 was not different. In Western blotting assay, when medium included ampicillin in Xc17, Bla protein was still monitored and growth rate was also not different. However, when medium only included ampicillin in TC817, Bla protein was just monitored and growth rate was suppressed.en_US
dc.description.tableofcontents中文摘要 ………………………………………………………………ⅰ Abstrate..................................................ⅱ 目錄……………………………………………………………………ⅲ 壹、前言………………………………………………………1 貳、材料與方法…………………………………………………………6 Ⅰ.材料……………………………………………………………………7 一、 菌種及質體………………………………………………7 二、 藥品…………………………………………………………7 三、 酵素…………………………………………………………7 四、 引子………………………………………………………8 五、 抗生素作用濃度……………………………………………8 六、培養基及緩衝溶液…………………………………………………8 Ⅱ. 實驗方法……………………………………………………………8 一、 細菌之培養之保存…………………………………………8 二、 小量質體 DNA 之抽取………………………………………9 (1)傳統抽取質體 DNA 的方法………………………………9 (2)染色體 DNA 抽取法…………………………………………9 三、 質體之選殖…………………………………………………10 (1) PCR 增幅片段之選殖……………………………………………10 (2) DNA 片段回收…………………………………………………..10 (3) DNA 之黏接反應 (Ligation)…………………………………11 四、 電泳分析……………………………………………………11 (一)洋菜膠體電泳分析 (agarose gel eletrophoresis)…………11 (二)蛋白質凝膠電泳分析………………………………………………12 (1)SDS-PAGE 之配製………………………………………………12 (2)蛋白樣本之製備…………………………………………………12 (3)電泳分析及染色………………………………………………..12 五、 聚合脢連鎖反應……………………………………………13 六、 轉型作用 (transformation)……………………………13 (一)E. coli. 之轉型………………………………………………13 1. E. coli 之勝任細胞 (competent cell) 製備…………13 2. E. coli 之轉型作用 (Transformation)………………14 (二) X. campestris 之轉型……………………………………….14 七、 β-lactamase 活性試驗 (β-lactamase activity assay)…15 八、最小抑制濃度試驗 (Minimal Inhibitory Concentration)…16 九、Gel retardation …………………………………………………16 (一) DNA 模板之生物標定…………………………………………16 (二) 結合反應………………………………………………………..16 (三)電泳分析與轉漬……………………………………………….…17 (四)偵測...............................................17 十、β-galactosidase 活性測定……………………………………17 (一) 培養方式…………………………………………………………17zh_TW
dc.language.isoen_USzh_TW
dc.publisher分子生物學研究所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1708200918271700en_US
dc.subjectXanthomonas camprstris pv. campestrisen_US
dc.subject十字花科黑腐病菌zh_TW
dc.subjectClpen_US
dc.subjectβ-lactamaseen_US
dc.subject調控zh_TW
dc.title十字花科黑腐病菌的β-lactamase 表現之調控zh_TW
dc.titleRegulation of β-lactamase of Xanthomonas campestris pv. campestris 17en_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:分子生物學研究所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.