Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22048
標題: 腦膜炎雙球菌脂蛋白 Ag473 之功能探討
Characterization of meningococcal lipoprotein Ag473
作者: 陳宜君
Chen, Yi-Chun
關鍵字: Ag473
脂蛋白
出版社: 分子生物學研究所
引用: Abdillahi, H. and Poolman, J. T. Typing of group-B Neisseria meningitidis with monoclonal antibodies in the whole-cell ELISA. J Med Microbiol. 1998; 26: 177-180. Aho, E. L., Dempsey, J. A., Hobbs, M. M., Klapper, D. G., and Cannon, J. G. Characterization of the opa (class 5) gene family of Neisseria meningitidis. Mol microbol. 1991; 5: 1429-1437. Berrón, S., De La Fuente, L., Martín, E., and Vázquez, J. A. Increasing incidence of meningococcal disease in Spain associated with a new variant of serogroup C. Eur J Clin Microbiol Infect Dis. 1998;2: 85-89. Brandtzaeg, P. and van Deuren, M. Current concepts in the role of the host response in neisseria meningitidis septic shock. Curr Opin Infect Dis. 2002; 15: 247-252. Bos, M. P., Kuroki, M., Krop-Watorek, A., Hogan, D., and Belland, R. J. CD66 receptor specificity exhibited by neisserial Opa variants is controlled by protein determinants in CD66 N-domains. Proc Natl Acad Sci U S A. 1998; 16: 9584-9589. Cartwright, K. A., Stuart, J. M., Jones, D. M., and Noah, N. D. The stonehouse survey: nasopharyngeal carriage of meningococci and Neisseria lactamica. Epidemiol Infect. 1987; 99: 591-601. Craig, L., Pique, M. E., and Tainer, J. A. Type IV pilus structure and bacterial pathogenicity. Nat Rev Microbiol. 2004; 5:363-378. Deghmane, A.E., Giorgini, D., Larribe, M., Alonso, J.M., and Taha, M.K. Down-regulation of pili and capsule of Neisseria meningitidis upon contact with epithelial cells is mediated by CrgA regulatory protein. Mol Microbiol. 2002; 43: 1555-1564. Frosch, M. and Maiden, M. C. J. Handbook of meningococcal disease : infection biology, vaccination, clinical management. Wiley-VCH Verlag GmbH & Co. KGaA, USA. 2006. Girard, M. P., Preziosi, M. P., Aguado, M. T., and Kieny, M. P. A review of vaccine research and development: meningococcal disease. Vaccine. 2006; 22: 4692-4700. Gray-Owen, S. D., Lorenzen, D. R., Haude, A., Meyer, T. F., and Dehio, C. Differential Opa specificities for CD66 receptors influence tissue interactions and cellular response to Neisseria gonorrhoeae. Mol Microbiol. 1997; 26: 971-980. Hammerschmidt, S., Hilse, R., van Putten, J.P., Gerardy-Schahn, R., Unkmeir, A., and Frosch, M. Modulation of cell surface sialic acid expression in Neisseria meningitidis via a transposable genetic element. EMBO J. 1996; 15: 192-198. Hardy, S.J., Christodoulides, M., Weller, R.O., and Heckels, J.E. Interactions of Neisseria meningitidis with cells of the human meningitis. Mol Microbiol. 2000; 36: 817-829. Hong, C.S., Yamada, T., Hashimoto, W., Fialho, A.M., Das Gupta, T.K., and Chakrabarty, A.M. Disrupting the entry barrier and attacking brain tumors: the role of the Neisseria H.8 epitope and the Laz protein. Cell Cycle. 2006; 5: 1633-1641. Howie, H. L., Glogauer, M., and So, M. The N. gonorrhoeae type IV pilus stimulates mechanosensitive pathways and cytoprotection through a pilT-dependent mechanism. PLoS Biol. 2005; 4: 627-637. Hsu, C. A., Lin, W. R., Li, J. C., Liu, Y. L., Tseng, Y. T., Chang, C. M., Lee, Y. S., and Yang, C. Y. Immunoproteomic identification of the hypothetical protein NMB1468 as a novel lipoprotein ubiquitous in Neisseria meningitidis with vaccine potential. Proteomics. 2008; 8: 2115-2125. Jarvis, G.A. and Vedros, N.A. Sialic acid of group B Neisseria meningitidis regulates alternative complement pathway activation. Infect Immun. 1987; 55:174-180. Kawula, T.H., Spinola, S.M., Klapper, D.G., and Cannon, J.G. Localization of a conserved epitope and an azurin-like domain in the H.8 protein of pathogenic Neisseria. Mol Microbiol. 1987; 1: 179-185. Källström, H., Islam, M. S., Berggren, P. O., and Jonsson, A. B. Cell signaling by the type IV pili of pathogenic Neisseria. J Biol Chem. 1998; 34: 21777-21782. Klugman, K. P., Gotschlich, E. C., and Blake, M. S. Sequence of the structural gene (rmpM) for the class 4 outer membrane protein of Neisseria meningitidis, homology of the protein to gonococcal protein III and Escherichia coli OmpA, and construction of meningococcal strains that lack class 4 protein. Infect Immun. 1989; 7: 2066-2071. Kuespert, K., Pils, S., and Hauck, C. R. CEACAMs: their role in physiology and pathophysiology. Curr Opin Cell Biol. 2006; 5: 565-571. Kugelberg, E., Gollan, B., and Tang, C. M. Mechanisms in Neisseria meningitidis for resistance against complement-mediated killing. Vaccine. 2008; 26: 134-139. Lee, H. S., Ostrowski, M. A., and Gray-Owen, S. D. CEACAM1 dynamic during Neisseria gonorrhoeae suppression of CD4+ T lymphocyte activation. J. Immunol. 2008; 180: 6827-6835. Merker, P., Tommassen, J., Kusecek, B., Virji, M., Sesardic, D., and Achtman, M. Two-dimensional structure of the Opc invasin from Neisseria meningitidis. Mol Microbiol. 1997; 23: 281-293. Merz, A. J., Enns, C. A., and So, M. Type IV pili of pathogenic Neisseriae elicit cortical plaque formation in epithelial cells. Mol Microbiol. 1999; 6:1316-1332. Merz, A. J. and So, M. Interaction of pathogenic neisseriae with epithelial cell membrane. Annu Rev Cell Dev Biol. 2000;16: 423-457. Meyer, T. F. Pathogenic neisseriae--a model of bacterial virulence and genetic flexibility. Zentralbl Bakteriol. 1990; 2: 135-154. Nassif, X., Beretti, J. L., Lowy, J., Stenberg, P., O''Gaora, P., Pfeifer, J., Normark, S., and So, M. Roles of pilin and PilC in adhesion of Neisseria meningitidis to human epithelial and endothelial cells. Proc Natl Acad Sci U S A. 1994; 9: 3769-3773. Nassif, X. Interactions between encapsulated Neisseria meningitidis and host cells. Int Microbiol. 1999; 2: 133-136. Perry, A. C., Hart, C. A., Nicolson, I. J., Heckels, J. E., and Saunders, J. R. Inter-strain homology of pilin gene sequences in Neisseria meningitidis isolates that express markedly different antigenic pilus types. J Gen Microbiol. 1987; 133: 1409-1418. Pollard, A. J. Global epidemiology of meningococcal disease and vaccine efficacy. Pediatr Infect Dis J. 2004; 23: 274-279. Prinz, T. and Tommassen, J. Association of iron-regulated outer membrane proteins of Neisseria meningitidis with the RmpM (class 4) protein. FEMS Microbiol Lett. 2000; 183: 49-53. Rudel, T., Facius, D., Barten, R., Scheuerpflug, I., Nonnenmacher, E., and Meyer TF. Role of pili and the phase-variable PilC protein in natural competence for transformation of Neisseria gonorrhoeae. Proc Natl Acad Sci U S A. 1995; 17: 7986-7990. Sarkari, J., Pandit, N., Moxon, E.R., and Achtman, M. Variable expression of the Opc outer membrane protein in Neisseria meningitidis is caused by size variation of a promoter containing poly-cytidine. Mol Microbiol. 1994; 13: 207-217. Scheuerpflug, I., Rudel, T., Ryll, R., Pandit, J., and Meyer, T. F. Roles of PilC and PilE proteins in pilus-mediated adherence of Neisseria gonorrhoeae and Neisseria meningitidis to human erythrocytes and endothelial and epithelial cells. Infect Immun. 1999; 2: 834-843. Seiler, A., Reinhardt, R., Sarkari, J., Caugant, D. A., and Achtman, M. Allelic polymorphism and site-specific recombination in the opc locus of Neisseria meningitidis. Mol Microbiol. 1996; 19: 841-856. Spinosa, M. R., Progida, C., Talà, A., Cogli, L., Alifano, P., and Bucci, C. The Neisseria meningitidis capsule is important for intracellular survival in human cells. Infect Immun. 2007; 7: 3594-3603. Strom, M. S. and Lory, S. Structure-function and biogenesis of the type IV pili. Annu Rev Microbiol. 1993; 47: 565-596. Tsai, C.M., Frasch, C.E., and Mocca, L.F. Five structural classes of major outer membrane proteins in Neisseria meningitidis. J Bacteriol. 1981; 146: 69-78. Tzeng, Y. L. and Stephens, D. S. Epidemiology and pathogenesis of Neisseria meningitidis. Microbes Infect. 2000: 6: 687-700. van Putten, J. P. Phase variation of lipopolysaccharide directs interconversion of invasive and immuno-resistant phenotypes of Neisseria gonorrhoeae. EMBO J. 1993; 11: 4043-4051. Virji, M., Makepeace, K., Ferguson, D. J., Achtman, M., Sarkari, J., and Moxon, E. R. Expression of the Opc protein correlates with invasion of epithelial cells by Neisseria meningitidis. Mol Microbiol. 1992;19: 2785-2795. Virji, M., Makepeace, K., Ferguson, D. J., Achtman, M., and Moxon, E. R. Meningococcal Opa and Opc proteins: their role in colonization and invasion of human epithelial cells. Mol Microbiol. 1993; 10: 499-510. Virji, M., Makepeace, K., and Moxon, E. R. Distinct mechanisms of interactions of Opc-expressing meningococci at apical and basolateral surfaces of human endothelial cells; the role of integrins in apical interactions. Mol Microbiol. 1994; 14: 173-184. Wang, J. F., Caugant, D. A., Li, X., Hu, X., Poolman, J. T., Crowe, B. A., and Achtman, M. Clonal and antigenic analysis of serogroup A Neisseria meningitidis with particular reference to epidemiological features of epidemic meningitis in the People''s Republic of China. Infect Immun. 1992; 12: 5267-5282. Wood, J.P., Black, J. R., Barritt, D. S., Connell, T. D., and Cannon, J. G. Resistance to meningococcemia apparently conferred by anti-H.8 monoclonal antibody is due to contaminating endotoxin and not to specific immunoprotection. Infect Immun. 1987; 55: 1927-1928. Wu, H.J., Seib, K.L., Edwards, J.L., Apicella, M.A., McEwan, A.G., and Jennings, M.P. Azurin of pathogenic Neisseria spp. is involved in defense against hydrogen peroxide and survival within cervical epithelial cells. Infect Immun. 2005; 73: 8444-8448. Xavier S. Death! A passage of life. Servir. 1999; 47: 75-78. Zak, K., Diaz, J. L., Jackson, D., and Heckels, J. E. Antigenic variation during infection with Neisseria gonorrhoeae: detection of antibodies to surface proteins in sera of patients with gonorrhea. J Infect Dis. 1984; 149: 166-174. 張嘉茹 (1998) T7 RNA 聚合酶與 13C/15N 同位素標定核甘酸之純化。國立中興大學生物化學研究所,碩士論文。 李振誠 (2004) 奈瑟式腦膜炎球菌之全新脂蛋白 Ag473 之特性分析。國立中興大學生命科學系,學士論文。 江秋敏 (2007) 腦膜炎雙球菌抗原之基因選殖、表現以及其抗體之製備。國立中興大學生命科學研究所,碩士論文。 譚美珍 (2008) 腦膜炎雙球菌脂蛋白 Ag473 功能之初步探討。國立中興大學分子生物學研究所,碩士論文。
摘要: Neisseria meningitidis (NM) 是一種帶有莢膜多醣 (capsular polysaccharide;CPS) 的革蘭氏陰性雙球菌,依 CPS 組成可分成不同的血清群,其中以血清群 A、B、C、Y 和 W135 為人類主要致病菌。菌體在感染過程中首先藉由 adhesins 貼附到宿主細胞上,進一步入侵到宿主細胞內,造成腦膜炎以及敗血症。Ag473 為本實驗室以 NM 全菌免疫小鼠後得到的單株抗體 4-7-3 所辨認的相對應抗原,已知它是一種脂蛋白表現在菌體的表面,但功能未知。前人研究血清群 B 菌體 (NMB) 之野生株 (wild-type;WT) 和 Ag473 缺失株 (Ag473 mutant;MT473),發現 NMB-MT473 貼附至宿主細胞上的能力比 NMB-WT 稍強,顯示 Ag473 的表現可能與菌體的貼附能力有關。所以本研究主要探討脂蛋白 Ag473 在感染宿主細胞過程中扮演的角色。為了觀察貼附能力的改變是否與 CPS 的組成有關,本研究首先分析 NMA 和 NMW135 等菌體的貼附能力,結果發現不同血清群之 NM 其 MT473 貼附至宿主細胞的能力都比 WT 強。先前實驗室發現以單株抗體 4-7-3 阻斷 Ag473 的作用後再進行貼附能力試驗,結果發現不影響菌體與宿主細胞的貼附作用,顯示 Ag473 對於菌體貼附作用影響是間接的。由於菌體很多 adhesins 都參與貼附至宿主細胞上的作用,為了探討 Ag473 的表現是否會影響 NM 與貼附能力有關的表面抗原,分析各種血清群的 NM 之 WT 和 MT473 之貼附因子序列,並以西方墨點法偵測 WT 與 MT473 各種表面抗原的表現情形,結果發現 WT 和 MT473 等菌體其 pilus 的序列都相同,與貼附力有關蛋白之表現量都沒有顯著差異,但發現第五類外膜蛋白 Opa 的序列不同,顯示Ag473 的表現的確會影響到菌體的貼附因子。為了找出 Ag473 在菌體感染宿主時所扮演的角色,本研究以免疫沉澱 (Immunoprecipitation) 找尋與 Ag473 有交互作用的蛋白,結果發現第五類主要外膜蛋白 Opa 與 Ag473 有交互作用,顯示 Ag473 的存在可能會遮蔽 Opa 與宿主細胞之間的交互作用,造成菌體貼附至宿主細胞的能力下降。另外已知 CPS 的存在會影響 NM 與宿主細胞的交互作用,以流式細胞儀和免疫螢光染色的方式觀察 WT 和 MT473 之 CPS 表現情形,結果顯示 WT 菌體都會偵測到一明顯的高峰,但在 MT473 菌體都會偵測到不規則的分佈狀,此結果意味著在 MT473 菌體的 CPS 較 WT 菌體鬆散。本論文研究顯示 Ag473 在菌體與宿主細胞之貼附作用中為一種負調控因子,可能在菌體貼附至宿主細胞時,遮蔽了 Opa 與宿主細胞的交互作用;並穩定菌體表面 CPS 之表現,阻礙了菌體表面 adhesins 的作用,導致菌體貼附至宿主細胞的能力下降。
URI: http://hdl.handle.net/11455/22048
其他識別: U0005-2008200915281100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2008200915281100
Appears in Collections:分子生物學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.