Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22061
DC FieldValueLanguage
dc.contributor胡小婷zh_TW
dc.contributor陳健尉zh_TW
dc.contributor周寬基zh_TW
dc.contributor沈光漢zh_TW
dc.contributor.advisor陳建華zh_TW
dc.contributor.author許哲瑋zh_TW
dc.contributor.authorHsu, Che-Weien_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T07:17:06Z-
dc.date.available2014-06-06T07:17:06Z-
dc.identifierU0005-2108200912393300zh_TW
dc.identifier.citation1. 鄭焯隆。2003。台灣南投地區痢疾桿菌菌株ipaB基因表現與致病性相關性之研究。國立中興大學分子生物學研究所碩士論文. 2. 顏珮詩。2006。台灣志賀氏桿菌的ipaB基因及其蛋白產物功能分析。國立中興大學分子生物學研究所碩士論文. 3. Bernardini, M. L., J. Mounier, H. d’Hauteville, M. Coquis-Rondon, and P. J. Sansonetti. 1989. Identification of icsA, a plasmid locus of Shigella flexneri which governs bacterial intra- and intercellular spread through interaction with F-actin. Proc. Natl. Acad. Sci. USA. 86: 3867–3871. 4. Bernardini, M.L., J .Mounier., H. d''Hauteville ., M .Coquis-Rondon ., and P.J. Sansonetti .1989. Identification of icsA, a plasmid locus of Shigella flexneri which governs bacterial intra- and intercellular spread through interaction with F-actin. Proc Natl Acad Sci USA. 86:3867–3871. 5. Black, R. A., S.R. Kronheim, and M.Cantrell. 1988. Generation of biologically active interleukin-1β by proteolytic cleavage of the inactive precursor. J. Biol. Chem. 263: 9437-9442. 6. Buchrieser, C., P. Glaser, C. Rusniok, H. D’Hauteville, F. Kunst, P. Sansonetti, and C. Parsot. 2000. The virulence plasmid pWR100 and the repertoire of proteins secreted by the Type III secretion apparatus of shigella flexneri. Mol. Microbial. 38: 760-771. 7. Buchrieser, C., P. Glaser. , C. Rusniok. , H .Nedjari ., H .D''Hauteville ., F .Kunst. , P . Sansonetti ., and C. Parsot . 2000. The virulence plasmid pWR100 and the repertoire of proteins secreted by the type III secretion apparatus of Shigella flexneri. Mol. Microbiol. 38:760-771. 8. Chen,Y., M. R.Smith., K. Thirumalai., and A. Zychlinsky.1996. A bacterial invasin induces macrophage apoptosis by binding directly to ICE. EMBO 5:3853-3860 9. Chen, J. J., Lin Y.C., Yao P.L., et al. 2005.Tumor-associated macrophages: the double-edged sword in cancer progression. J Clin Oncol. 23:953-964. 10. Cookson, B. T., and M. A. Brennan. 2001. Pro-inflammatory programmed cell death. Trends Microbiol. 9:113–114. 11. De Geyter, C., B. Vogt., Z .Benjelloun-Touimi., P.J. Sansonetti, J.M .Ruysschaert., C. Parsot., and V .Cabiaux.1997. Purification of IpaC, a protein involved in entry of Shigella flexneri into epithelial cells and characterization of its interaction with lipid membranes. FEBS Lett. 400:149-54. 12. De Geyter, C., R. Wattiez , P. Sansonetti ., P. Falmagne , J.M. Ruysschaert ., C. Parsot. , and V .Cabiaux . 2000. Characterization of the interaction of IpaB and IpaD, proteins required for entry of Shigella flexneri into epithelial cells, with a lipid membrane. Eur J Biochem. 267:5769-76. 13. Espina, M., A. J. Olive., R. Kenjale., D. S. Moore. , S. F .Ausar., R. W. Kaminski., E. V. Oaks., C. R. Middaugh., W. D.Picking, and W. L. Picking. 2006. IpaD localizes to the tip of the type III secretion system needle of Shigella flexneri. Infect Immun 74:4391–4400. 14. Fink, S.L., and B.T. Cookson .2005. Apoptosis, pyroptosis, and necrosis: Mechanistic description of dead and dying eukaryotic cells. Infect Immun 73: 1907–1916. 15. Francois, M., V. L. Cabec, M. Dupont, P. J. Sansonetti, and I. Maridonneau-Parrini. 2000. Induction of Necrosis in Human Neutrophils by Shigella flexneri Requires Type III Secretion, IpaB and IpaC Invasins, and Actin Polymerization. Infect. Immun. 68:1289-1296. 16. Gold, R., M. Schmied., G. Rothe., H. Zischler., H. Breitschopf., H. Wekerle., and H. Lassmann. 1993. Detection of DNA fragmentation in apoptosis: application of in situ nick translation to cell culture systems and tissue sections. J. Histochem. Cytochem. 41:1023-30. 17. Guichon, A., D. Hersh, M. R. Smith, and A. Zychlinsky. 2001. Structure-Function Analysis of the Shigella Virulence Factor IpaB. J. Bacteriol. 183: 1269-1276. 18. Haimovich, B. and M.M.Venkatesan. 2006. Shigella and Salmonella:death as a means of survival. Microbes Infect 8: 568–577 19. Hayward, R. D., R. J.Cain. , E. J. McGhie., N. Phillips., M. J.Garner., and V.Koronakis. 2005. Cholesterol binding by the bacterial type III translocon is essential for virulence effector delivery into mammalian cells. Mol Microbiol 56: 590–603. 20. Hilbi , H., J.E Moss., D .Hersh., Y. Chen., and J.Arondel. 1998. Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J Biol Chem 273:32895–32900. 21. Hoffman, P.C., A.M. Mauer.,and E.E. Vokes.2000. Lung cancer. Lancet, 355: 479-485 22. Iwai .H., M. Kim. , Y . Yoshikawa. , H. Ashida , M. Ogawa ., Y .Fujita ., D.Muller ., T. Kirikae., P.K. Jackson ., S. Kotani ., and C .Sasakawa . 2007 . A Bacterial Effector Targets Mad2L2, an APC Inhibitor, to Modulate Host Cell Cycling. Cell. 24;130: 611-23. 23. Jennison, A. V., and N. K. Verma. 2004. Shigella flexneri infection: pathogenesis and vaccine development. FEMS Microbiol. Rev. 28:43–58. 24. Jin, Q., Z. Yuan. , J. Xu ., Y. Wang ., et al. 2002. Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K12 and O157. Nucleic Acids Res. 30:4432-41. 25. LaBerc, E. H., H. Schneider, T. J. Magnani, and S. B. Formal. 1964. Epithelial cell penetration as an essential step in pathogenesis of bacillary dysentery. J. Bacteriol. 88:1508-1518. 26. Martinon, F., K. Burns., and J. Tschopp. 2002. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 10:417–426. 27. Martinon, F., and J.Tschopp. 2005. NLRs join TLRs as innate sensors of pathogens. Trends Immunol. 26: 447–454. 28. Me′ nard, R., P. J. Sansonetti., C.Parsot., and T.Vasselon. 1994.Extracellular association and cytoplasmic partitioning of the IpaB and IpaC invasins of S. flexneri. Cell 79: 515–n525. 29. Sansonetti, P. J. 1992. Molecular and cellular biology of Shigella flexneri invasiveness: from cell assay systems to shigellosis. Curr. Top. Microbiol. Immunol. 180:1-19. 30. Sansonetti, P. J. 2001. Microbes and microbial toxins: paradigms for microbial-mucosal interactions III. Shigellosis: from symptoms to molecular pathogenesis. Am. J. Physiol. Gastrointest. Liver Physiol. 280:G319-G323. 31. Sansonetti, P. J., D. J. Kopecko, and S. B. Formal. 1982. Involvement of a plasmid in the invasive ability of Shigella flexneri. Infect. Immun. 35:852–860. 32. Schroeder, G. N. and H.Hilbi. 2006. Cholesterol is required to triggercaspase-1 activation and macrophage apoptosis after phagosomal escape of Shigella. Cell Microbiol 9, 265–278. 33. Schroeder, G. N., N.J. Jann., and H .Hilbi.2007. Intracellular type III secretion by cytoplasmic Shigella flexneri promotes caspase-1-dependent macrophage cell death. Microbiol UK 153:2862-2876. 34. Schroeder , G.N., and H. Hilbi. 2008. Molecular pathogenesis of Shigella spp.:controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol . 21:134-156. 35. Suzuki, T., L. Franchi., C. Toma., H.Ashida., M.Ogawa., Y .Yoshikawa., H .Mimuro., N. Inohara, C .Sasakawa., and G.Nuñez. 2007.Differential Regulation of Caspase-1 Activation,Pyroptosis, and Autophagy via Ipaf and ASC in Shigella-Infected Macrophages. PLoS Pathog 3(8): e111. 36. Tran Van Nhieu, G., and P. J. Sansonetti. 1999. Mechanism of Shigella entry into epithelial cells. Curr. Opin. Microbiol. 2:51-55. 37. Venkatesan, M. M., M. B. Goldberg, D. J. Rose, E. J. Grotbeck, V. Burland, and F. R. Blattner. 2001. Complete DNA Sequence and Analysis of the Large Virulence Plasmid of Shigella flexneri. Infect. Immun. 69:3271-3285. 38. Wei, J., M.B. Goldberg. , V. Burland., et al. 2003. Complete Genome Sequence and Comparative Genomics of Shigella flexneri Serotype 2a Strain 2457T. Infect. Immun.71:2775-86 39.Whyte, M. 1996. ICE/CED-3 proteases in apoptosis. Trends cell Biol. 6:245-248. 40. Zychlinsky, A., M. C. Prevost, and P. J. Sansonetti. 1992. Shigella flexneri induces apoptosis in infected macrophages. Nature 358:167-169.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/22061-
dc.description.abstract痢疾桿菌Shigella flexneri 的毒性質體上帶有許多致病基因,已知其中的 ipaB 基因能夠引起巨噬細胞程序性凋亡 (apoptosis)。實驗室之前已構築一個帶有ipaB基因前803 bp片段 (ipaB803基因) 的質體,並於大腸桿菌中表現及純化出IpaB803蛋白。本研究構築另一有ipaB基因前738 bp片段 (ipaB738基因) 的質體,探討二質體所負責做出的IpaB803蛋白、IpaB738蛋白,是否對肺癌細胞有毒殺作用。 首先構築ipaB803 基因的表現載體,再將質體轉殖入四株肺癌細胞 (A549、CL1-0、CL 1-5、H460) 及一株支氣管上皮細胞株 (BEAS2B) 中,進行MTT assay以測量細胞存活率,及免疫螢光染色以觀察 IpaB803 蛋白在細胞中的表現。MTT assay的結果顯示:五株細胞的存活率皆與僅轉殖入載體的控制組相似;而免疫螢光染色的結果顯示:僅有低於 5% 的CL1-0、CL1-5細胞有IpaB803蛋白的表現;而A549、H460、BEAS2B細胞,皆沒有觀察到任何細胞有IpaB803蛋白的表現。進行免疫螢光染色實驗的同時也進行DAPI(4'',6-diamidino-2-phenylindole) 以及tubulin 的染色,發現:有IpaB803蛋白表現的CL1-0細胞,細胞tubulin的表現有減弱的情形,細胞核型態也有改變;而有IpaB803蛋白表現的CL1-5細胞,有些細胞tubulin表現正常,有些細胞tubulin則完全消失,細胞核型態則皆沒有明顯的改變。 利用大腸桿菌的表現系統,大量表現純化IpaB803蛋白與IpaB738蛋白。將純化出的IpaB803與IpaB738蛋白,以 lipofectamine包裹後,分別同樣送入四株肺癌細胞 (A549、CL1-0、CL1-5、H460) 及一株支氣管上皮細胞株 (BEAS2B)。西方雜配顯示:IpaB803、IpaB738蛋白的確有進入這些細胞株中。MTT assay結果顯示:IpaB803和IpaB738蛋白對這些細胞皆有毒殺作用,而對CL1-5的毒殺作用最強。將IpaB803蛋白以 lipofectamine包裹後,送入CL1-5細胞中,利用倒立式雷射全內反射顯微鏡,追蹤細胞型態的改變,發現有類似凋亡小泡的構造出現。 以臨床上治療肺癌之藥物 cisplatin及 etopside處理CL1-5細胞,比較不同劑量 IpaB803蛋白、IpaB738蛋白、cisplatin及 etopside毒殺細胞的效果。結果顯示:25μM etoposide可毒殺約 40% 的細胞,10μM cisplatin可毒殺約80% 細胞。 0.166μM的IpaB803蛋白即可毒殺 70%的細胞;0.178μM 的IpaB738蛋白即可毒殺 85%的細胞。zh_TW
dc.description.abstractThe virulence plasmid of Shigella flexneri contains many virulence genes and ipaB is one of them. The gene product of ipaB has been demonstrated to be capable of inducing apoptosis in macrophage. Previously, our laboratory constructed a truncated ipaB gene, called ipaB803, that encodes a protein of the first 268 amino acid residues of IpaB. In this study, another truncated ipaB gene, called ipaB738, that encodes a protein of the first 246 amino acid residues of IpaB was constructed. Effects of ipaB803 and ipaB738 and their gene products on lung cancer cells were investigated. The ipaB803 expression plasmid was also constructed and transfected into four lung cancer cell lines, A549, CL1-0, CL1-5, and H460, and one bronchial cell line, BEAS2B. MTT assay that measures viability of the cell and immunofluorescence staining that detects cells with expressed protein were performed. The results indicated that viability of the cells transfected with the ipaB803 expression plasmid was about the same as those transfected with the control plasmid. Immunofluorescence staining indicated that less than 5% of the transfected CL1-0 and CL1-5 cells expressed IpaB803 protein, and none of the transfected A549, H460, and BEAS2B cells expressed IpaB803 protein. Further DAPI and α-tubulin staining indicated that the amount of α-tubulin was low in the IpaB803-expressed CL1-0 cells with an altered nuclei morphology. While some of the expressed CL1-5 cells had a normal level of α-tubulin, others had only a very little amount of α-tubulin. The nuclei morphology of the expressed CL1-5 cells, however, was the same as the unexpressed CL1-5 cells. IpaB803 and IpaB738 proteins were over-expressed and purified in E. coli. The purified proteins were transfected into A549, CL1-0, CL1-5, H460, and BEAS2B by lipofectamine. Western analysis confirmed the existence of IpaB803 and IpaB738 in all of the transfected cells. MTT assay was then performed with the transfected cells. The results indicated that IpaB803 and IpaB738 proteins in five transfected cells reduced cell viability differently. CL1-5 cells were affected mostly. Some apoptotic body-like structures could be observed with the IpaB803-transfected CL1-5 cells under microscopic examination. Different dosages of lung cancer therapeutic drugs such as cisplatin and etopside as well as IpaB803 and IpaB738 proteins were used to treat CL1-5 cells. The results showed that 25 μM etoposide and 10 μM cisplatin reduced 40% and 80% of the cell viability, respectively. 0.166 μM IpaB803 protein reduced 70% of the cell viability, whereas 0.178 μM IpaB738 protein reduced 85% of the cell viability.en_US
dc.description.tableofcontents縮寫字對照表 i 中文摘要 ii 英文摘要 iii 前言 1 研究目的 5 材料 6 1. 細胞株與培養基 6 2. 細菌與培養基 6 3. 質體 6 4. 藥品與溶液 6 方法 6 1.細胞培養 6 2.細胞冷凍保存及解凍 6 3.細胞計數 6 4.少量細菌質體DNA抽取 7 5.DNA剪切反應 7 6.DNA純化回收 8 7.DNA黏接反應 8 8.勝任細胞製備 8 9.DNA 轉殖 8 10.DNA濃度測定 9 11.PCR 反應 9 12.15% SDS-PAGE electrophoresis 9 13.Coomassie blue stain 9 14.2D gel analysis 10 15.Silver stain 11 16.Western blot蛋白質轉印 11 17.Western blot 雜配反應 11 18.以AKTA EXPLORER 純化IpaB803、IpaB738蛋白 12 19.Protein dialysis 12 20.蛋白質定量 12 21.蛋白質轉殖 13 22.MTT assay 13 23.DNA transfection 13 24.免疫螢光染色 14 結果 15 1. 構築能表現IpaB、IpaB803、IpaB738及IpaB803- EGFP的載體 15 2. IpaB、IpaB803在四株肺癌細胞與一株支氣管上皮細胞中的表現 16 3. IpaB803-GFP在四株肺癌細胞與一株支氣管上皮細胞中的表現 16 4. 構築能在E.coli表現IpaB738蛋白的載體 17 5. 在E. coli中大量表現與純化IpaB803、IpaB738蛋白 17 6. 將純化好的IpaB803、IpaB738蛋白送入細胞內並測細胞存活率 18 7. 以IpaB803處理CL1-5細胞後,觀察細胞型態變化 18 8. 以不同濃度藥物處理癌細胞後存活率比較 19 討論 19 圖一、pFLAG-CMV2-ipaB803-His的構築 22 圖二、pFLAG-CMV2-ipaB738-His的構築 23 圖三、pFLAG-CMV2-ipaB-His的構築 24 圖四、pEGFP-N2-ipaB803的構築 25 圖五、IpaB蛋白及IpaB蛋白做突變後的蛋白的結構圖 26 圖六、以pFLAG-CMV2-ipaB803-His 轉殖至A549後細胞存活率 27 圖七、以pFLAG-CMV2-ipaB803-His轉殖至BEAS2B後細胞存活率 28 圖八、以pFLAG-CMV2-ipaB803-His轉殖至CL1-0後細胞存活率 29 圖九、以pFLAG-CMV2-ipaB803-His轉殖至CL1-5後細胞存活率 30 圖十、以pFLAG-CMV2-ipaB803-His轉殖至H460後細胞存活率 31 圖十一、以Anti-His抗體對轉殖 pFLAG-CMV2-ipaB803-His 後的細胞做Western blot 32 圖十二、以明視野或免疫螢光染色在100X視野下觀測轉殖 pFLAG-CMV2-ipaB803-His 的CL1-0細胞 33 圖十三、以明視野 或免疫螢光染色在100X視野下觀測轉殖 pFLAG-CMV2-ipaB803-His 的CL1-5細胞 34 圖十四、以免疫螢光在400X視野下觀測轉殖 pFLAG-CMV2-ipaB803-His 的CL1-0細胞 35 圖十五、以免疫螢光在1000X視野下觀測轉殖pFLAG-CMV2-ipaB803-His 的CL1-0細胞 36 圖十六、以免疫螢光在400X視野下觀測轉殖pFLAG-CMV2-ipaB803-His 的CL1-5細胞 37 圖十七、以免疫螢光在1000X視野下觀測轉殖pFLAG-CMV2-ipaB803-His 的CL1-5細胞 38 圖十八、pET-21b-ipaB803質體 39 圖十九、pET-21b-ipaB738載體的構築 40 圖二十、誘導表現IpaB803蛋白、IpaB738蛋白 41 圖二十一、破菌後IpaB803上清液通過 Ni-NTA Agarose column後, 以AKTA 及50 mM- 300 mM 梯度immidazole 液,沖出 IpaB803蛋白的沖出圖 42 圖二十二、通過Ni-NTA agarose column純化出的IpaB803蛋白, SDS-PAGE的結果圖 43 圖二十三、通 過Ni-NTA agarose column 所純化出的IpaB738蛋白, SDS-PAGE的結果圖 44 圖二十四、以Anti-ipaB803 抗體以及Anti-His 抗體對純化出的 IpaB803蛋白做western blot圖 45 圖二十五、將純化後的蛋白跑2D gel後的銀染圖 46 圖二十六、IpaB803不同分子量的2個點進行 LC/MS/MS 身分鑑定結果 47 圖二十七、將IpaB803蛋白以lipofectamine送入細胞,細胞蛋白之 western blot 48 圖二十八、IpaB803蛋白或IpaB738蛋白於96孔盤中轉殖 A549並測其存活率 49 圖二十九、IpaB803蛋白或IpaB738蛋白於96孔盤中轉殖 BEAS2B並測其存活率 50 圖三十、IpaB803蛋白或IpaB738蛋白於96孔盤中轉殖 CL1-0並測其存活率 51 圖三十一、IpaB803蛋白或IpaB738蛋白於96孔盤中轉殖 CL1-5並測其存活率 52 圖三十二、IpaB803蛋白或IpaB738蛋白於96孔盤中轉殖 H460並測其存活率 53 圖三十三、IpaB803蛋白或IpaB738蛋白轉殖A549後, 細胞型態觀察 54 圖三十四、IpaB803蛋白或IpaB738蛋白轉殖BEAS2B後, 細胞型態觀察 55 圖三十五、IpaB803蛋白或IpaB738蛋白轉殖CL1-0 後, 細胞型態觀察 56 圖三十六、IpaB803蛋白或IpaB738蛋白轉殖CL1-5 後, 細胞型態觀察 57 圖三十七、IpaB803蛋白或IpaB738蛋白轉殖H460後, 細胞型態觀察 58 圖三十八、以不同濃度etopside、cisplatin、IpaB803、IpaB738處理 A549、CL1-0、 CL1-5,48 Hr後存活率比較 59 圖三十九、利用純化出的IpaB803 ( 1μg)處理肺癌細胞株 CL1-5後細胞 型態的改變 60 圖四十、以不同濃度Etoposide處理A549、CL1-0、CL1-5細胞, 48小時後的細胞存活率 61 圖四十一、 以不同濃度cisplatin處理A549、CL1-0、CL1-5細胞, 48小時後的細胞存活率 62 圖四十二、實驗室S. flexneri菌株SH2308 的 ipaB基因序列與ATCC 發表之序列比較 63 圖四十三、實驗室S. flexneri菌株SH2308 的 ipaB基因序列與ATCC 發表之序列以及其轉譯出的胺基酸序列比較 64 參考文獻 65 附錄 69zh_TW
dc.language.isoen_USzh_TW
dc.publisher分子生物學研究所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2108200912393300en_US
dc.subjectipaBen_US
dc.subject肺癌zh_TW
dc.subjectshigellaen_US
dc.subjectapoptosisen_US
dc.subjectlung canceren_US
dc.subject細胞凋亡zh_TW
dc.subject志賀氏桿菌zh_TW
dc.title志賀氏桿菌 ipaB 基因及其衍生蛋白對肺癌細胞的影響zh_TW
dc.titleEffects of Shigella flexneri ipaB gene and its protein product on lung cancer cellsen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:分子生物學研究所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.