請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/22066
標題: 1. TCP theta 類泛素後修飾研究2. PAX3 配對結構域突變蛋白的轉錄調控機制
1. The study on TCP theta NEDDylation 2. The studies on transcription activity of PAX3 PD mutants
作者: 陽森
關鍵字: NEDDylation
轉譯後修飾
出版社: 分子生物學研究所
引用: PART 1: References Behrends, C., Langer, C. A., Boteva, R., Bottcher, U. M., Stemp, M. J., Schaffar, G., Rao, B. V., Giese, A., Kretzschmar, H., Siegers, K., and Hartl, F. U. (2006). Chaperonin TRiC promotes the assembly of polyQ expansion proteins into nontoxic oligomers. Mol Cell 23, 887-897. Chairatvit, K., and Ngamkitidechakul, C. (2007). Control of cell proliferation via elevated NEDD8 conjugation in oral squamous cell carcinoma. Mol Cell Biochem 306, 163-169. Ou, Chen and Chien (2008). Distinct protein degradation mechanisms mediated by Cul1 and eye development Drosophila Cul3 controlling Ci stability in Drosphila eye development. Genes & Dev 16, 2403-2414. Dekker, C. (2010). On the role of the chaperonin CCT in the just-in-time assembly process of APC/CCdc20. FEBS Lett 584, 477-481. Doerks, T., Copley, R. R., Schultz, J., Ponting, C. P., and Bork, P. (2002). Systematic identification of novel protein domain families associated with nuclear functions. Genome Res 12, 47-56. Ferro, A., Carvalho, A. L., Teixeira-Castro, A., Almeida, C., Tome, R. J., Cortes, L., Rodrigues, A. J., Logarinho, E., Sequeiros, J., Macedo-Ribeiro, S., and Maciel, P. (2007). NEDD8: a new ataxin-3 interactor. Biochim Biophys Acta 1773, 1619-1627. Gao, F., Cheng, J., Shi, T., and Yeh, E. T. (2006). NEDDylation of a breast cancer-associated protein recruits a class III histone deacetylase that represses NFkappaB-dependent transcription. Nat Cell Biol 8, 1171-1177. Goldenberg, S. J., Cascio, T. C., Shumway, S. D., Garbutt, K. C., Liu, J., Xiong, Y., and Zheng, N. (2004). Structure of the Cand1-Cul1-Roc1 Complex Reveals Regulatory Mechanisms for the Assembly of the Multisubunit Cullin-Dependent Ubiquitin Ligases. Cell, 119, 517-528, Gong, L., and Yeh, E. T. H. (1999). Identification of the Activating and Conjugating Enzymes of the NEDD8 Conjugation Pathway. J Biol Chem 274, No. 17, pp. 12036 -12042. Wada and Kamitani. Identification of NEDD8-Conjugation Site in Human Cullin-2. Biochemical and Biophysical Research Communications 257, 100 -105. Hochstrasser, M. (1998). There's the Rub: a novel ubiquitin-like modification linked to cell-cycle regulation. Genes & Dev Huang, D. T., Zhuang, M., Ayrault, O., and Schulman, B. A. (2008). Identification of conjugation specificity determinants unmasks vestigial preference for ubiquitin within the NEDD8 E2. Nat Struct Mol Biol 15, 280-287. Jones, J., Wu, K., Yang, Y., Guerrero, C., Nillegoda, N., Pan, Z. Q., and Huang, L. (2008). A targeted proteomic analysis of the ubiquitin-like modifier NEDD8 and associated proteins. J Proteome Res 7, 1274-1287. Kurz, T., Chou, Y. C., Willems, A. R., Meyer-Schaller, N., Hecht, M. L., Tyers, M., Peter, M., and Sicheri, F. (2008). Dcn1 functions as a scaffold-type E3 ligase for cullin NEDDylation. Mol Cell 29, 23-35. Lee, M. R., Lee, D., Shin, S. K., Kim, Y. H., and Choi, C. Y. (2008). Inhibition of APP intracellular domain (AICD) transcriptional activity via covalent conjugation with NEDD8. Biochem Biophys Res Commun 366, 976-981. Liakopoulos, D., Alexander Brychzy, Stefan Jentsch, and Arnim Pause (1999). Conjugation of the ubiquitin-like protein NEDD8 to cullin-2 is linked to von Hippel-Lindau tumor suppressor function. Proc. Natl. Acad. Sci. USA Vol. 96, 5510 -5515. Mendoza, H. M., Shen, L. N., Botting, C., Lewis, A., Chen, J., Ink, B., and Hay, R. T. (2003). NEDP1, a highly conserved cysteine protease that deNEDDylates Cullins. J Biol Chem 278, 25637-25643. Meyer-Schallera, N., Choub, Y.-C., c, Sumaraa, I., Martind, D. D. O., Kurza, T., Kathedera, N., Hofmanne, K., Berthiaumed, L. G., Sicherib, F., c, Petera, M. (2008). The human Dcn1-like protein DCNL3 promotes Cul3 NEDDylation at membranes. Norman, J. A., and Shiekhattar, R. (2006). Analysis of NEDD8-associated polypeptides: a model for deciphering the pathway for ubiquitin-like modifications. Biochemistry 45, 3014-3019. Osaka, F., Saeki, M., Katayama, S., Aida, N., Toh-e, A., Kominami, K.-i., Toda, T., Suzuki, T., Chiba, T., Tanaka, K., and Kato, S. (2000). Covalent modiRer NEDD8 is essential for SCF ubiquitin-ligase in Rssion yeast. The EMBO Journal 19 No. 13 pp. 3475±3484. Osaka, S. K. F., Kawasaki, H., Aida, N., Saeki, M., Chiba, T., Kawashima, S., and Tanaka, K. (1998). A new NEDD8-ligating system for cullin-4A. Genes & Dev 12: 2263-2268. Pichler, A. (2009). A second E2 for NEDD8ylation expands substrate selection. Structure 17, 321-322. Rabut, G., and Peter, M. (2008). Function and regulation of protein NEDDylation. ‘Protein modifications: beyond the usual suspects' review series. EMBO Rep 9, 969-976. Schmidtke, G., Kalveram, B., and Groettrup, M. (2009). Degradation of FAT10 by the 26S proteasome is independent of ubiquitylation but relies on NUB1L. FEBS Lett 583, 591-594. Singleton, K. D., and Wischmeyer, P. E. (2008). Glutamine attenuates inflammation and NF-kappaB activation via Cullin-1 deNEDDylation. Biochem Biophys Res Commun 373, 445-449. Tam, S., Geller, R., Spiess, C., and Frydman, J. (2006). The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions. Nat Cell Biol 8, 1155-1162. Tateishi, K., Omata, M., Tanaka, K., and Chiba, T. (2001). The NEDD8 system is essential for cell cycle progression and morphogenetic pathway in mice. J Cell Biol 155, 571-579. Watson, I. R., Blanch, A., Lin, D. C., Ohh, M., and Irwin, M. S. (2006). Mdm2-mediated NEDD8 modification of TAp73 regulates its transactivation function. J Biol Chem 281, 34096-34103. Xirodimas, D. P., Saville, M. K., Bourdon, J.-C., Hay, R. T., and Lane, D. P. (2004). Mdm2-Mediated NEDD8 Conjugation of p53 Inhibits Its Transcriptional Activity. 118, 83-97. Zhang, Y., Wolf, G. W., Bhat, K., Jin, A., Allio, T., Burkhart, W. A., and Xiong, Y. (2003). Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Molecular and cellular biology 23, 8902. PART II: References. Apuzzo, S., Abdelhakim, A., Fortin, A. S., and Gros, P. (2004). Cross-talk between the paired domain and the homeodomain of Pax3: DNA binding by each domain causes a structural change in the other domain, supporting interdependence for DNA Binding. J Biol Chem 279, 33601-33612. Apuzzo, S., and Gros, P. (2002). Site-Specific Modification of Single Cysteine Pax 3 Mutants Reveals Reciprocal Regulation of DNA Binding Activity of the Paired and Homeo Domain†. Biochemistry 41, 12076-12085. Apuzzo, S., and Gros, P. (2006). The paired domain of Pax3 contains a putative homeodomain interaction pocket defined by cysteine scanning mutagenesis. Biochemistry 45, 7154-7161. Apuzzo, S., and Gros, P. (2007). Cooperative interactions between the two DNA binding domains of Pax3: helix 2 of the paired domain is in the proximity of the amino terminus of the homeodomain. Biochemistry 46, 2984-2993. Birrane, G., Soni, A., and Ladias, J. A. (2009). Structural basis for DNA recognition by the human PAX3 homeodomain. Biochemistry 48, 1148-1155. Blake, J. A., and Ziman, M. R. (2005). Pax3 transcripts in melanoblast development. Develop. Growth Differ 47, 627-635 . Chalepakis Georges, Gouldingt Martyn, Read Andrew, Strachant Tom., and Gruss Peter. (1994). Molecular basis of splotch and Waardenburg Pax-3 mutations. Proc. Nat! Acad. Sci. USA 91, 3685-3689. Chalepakis, G., and Gruss, P. (1995). Identification of DNA recognition sequences for the Pax3 paired domain. 162, 267 270 . Corry, G. N., Hendzel, M. J., and Underhill, D. A. (2008). Subnuclear localization and mobility are key indicators of PAX3 dysfunction in Waardenburg syndrome. Hum Mol Genet 17, 1825-1837. Corry, G. N., and Underhill, D. A. (2005). Pax3 target gene recognition occurs through distinct modes that are differentially affected by disease-associated mutations. Pigment Cell Res 18, 427-438. Corry, G. N., and Underhill, D. A. (2005). Pax3 target gene recognition occurs through distinct modes that are differentially affected by disease-associated mutations. Pigment Cell Res 18, 427-438. Engleka, K. A., Gitler, A. D., Zhang, M., Zhou, D. D., High, F. A., and Epstein, J. A. (2005). Insertion of Cre into the Pax3 locus creates a new allele of Splotch and identifies unexpected Pax3 derivatives. Dev Biol 280, 396-406. Friedman JR, Fredricks WJ, Jensen DE, Speicher DW, Huang XP, Neilson EG, Rauscher FJ. (1996) KAP-1 , a novel corepressor for the highly conserved KRAB repression domain. Genes Dev 10: 2067-2078 Galibert, M.-D., Yavuzer, U., Dexter, T. J., and Goding, C. R. (1999). Pax3 and Regulation of the Melanocyte-specific Tyrosinase-related Protein-1 Promoter. J Biol Chem 274, 26894 -26900. Goding, C. R. (2000). Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage. Genes & development 14, 1712. Greive, S. J., and von Hippel, P. H. (2005). Thinking quantitatively about transcriptional regulation. Nat Rev Mol Cell Biol 6, 221-232. Kao, H. Y., Lee, C. H., Komarov, A., Han, C. C., and Evans, R. M. (2002). Isolation and characterization of mammalian HDAC10, a novel histone deacetylase. J Biol Chem 277, 187-193. Lang, D., Lu, M. M., Huang, L., Engleka, K. A., Zhang, M., Chu, E. Y., Lipner, S., Skoultchi, A., and Epstein, S. Emja(2005). Pax3 functions at a nodal point in melanocyte stem cell differentiation. Nature Letters 433, 884-887. Lai, I. L., Lin, T. P., Yao, Y. L., Lin, C. Y., Hsieh, M. J., and Yang, W. M. (2010). Histone deacetylase 10 relieves repression on the melanogenic program by maintaining the deacetylation status of repressors. J Biol Chem 285, 7187-7196. Mayanil, C. S., George, D., Freilich, L., Miljan, E. J., Mania-Farnell, B., McLone, D. G., and Bremer, E. G. (2001). Microarray analysis detects novel Pax3 downstream target genes. J Biol Chem 276, 49299-49309. Moriyama, M., Osawa, M., Mak, S. S., Ohtsuka, T., Yamamoto, N., Han, H., Delmas, V., Kageyama, R., Beermann, F., Larue, L., and Nishikawa, S. (2006). Notch signaling via Hes1 transcription factor maintains survival of melanoblasts and melanocyte stem cells. J Cell Biol 173, 333-339. Moustakas, A. (2008). TGF-beta targets PAX3 to control melanocyte differentiation. Dev Cell 15, 797-799. Ryu, B., Kim, D. S., Deluca, A. M., and Alani, R. M. (2007). Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression. PLoS One 2, e594. Schultz DC, Friedman JR, Rauscher FJ. (2001) Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-1 forms a cooperative unit that recruits a novel isoform of the Mi-2alpha subunit of Nurd. Genes Dev 15:428-443. Schultz DC, Ayyanathan K, Negrorev D, Maul GG, Rauscher. (2002) SETDB1: a novel KAP-1 associated histone H3, lysine 9-specific methytransferase that contribute to HP-1 mediatead silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev 16: 919-932 Tachibana, Masayoshi, Kobayashi, Yashuito, and Matshushima Yoshibumi (2003). Mouse Models for Four Types of Waardenburg Syndrome. PIGMENT CELL RES 16: 448-454. Underhill, Dalan, Vogan, Kyle. J., and Philippe (1995). Analysis of the mouse Splotch-delayed mutation indicates that the Pax-3 paired domain can influence homeodomain DNA-binding activity. Proc. Natl. Acad. Sci. USA 92, 3692-3696. Wang, Q., Fang, W. H., Krupinski, J., Kumar, S., Slevin, M., and Kumar, P. (2008). Pax genes in embryogenesis and oncogenesis. J Cell Mol Med 12, 2281-2294. Wiggan, O. N., and Hamel, M. P. F. P. A. Pax3 induces cell aggregation and regulates phenotypic mesenchymal-epithelial interconversion. Journal of Cell Science 115, 517-529. Yang, G., Li, Y., Nishimura, E. K., Xin, H., Zhou, A., Guo, Y., Dong, L., Denning, M. F., Nickoloff, B. J., and Cui, R. (2008). Inhibition of PAX3 by TGF-beta modulates melanocyte viability. Mol Cell 32, 554-5
摘要: PART 1: Post-translational modifications (PTM) play a major role in regulating various cellular processes like cell cycle regulation, protein trafficking and signal transduction. NEDD8 is one such post-translational modifier involved in cell cycle regulation and cell proliferation. NEDD8 modifies its target proteins by conjugation to their lysine amino acid. This process is called NEDDylation. Until now the knowledge of NEDD8 target proteins and how NEDD8 conjugation regulates them is very little. We aimed to identify more NEDD8 conjugated proteins and identify the role of NEDDylation on them. NEDD8 stable complex was purified and stably associated proteins were identified by proteomic analysis. Of the many proteins found in the complex, TCP theta, a subunit of TCP-1 chaperonin drew our attention since it is critical for regulating the folding of many ingredients needed for normal cell cycle regulation and cell proliferation. We show that NEDD8 can conjugate to TCP theta. And we further found that TCP theta was NEDDylated at K459. To confirm that TCP theta is NEDDylated at K459, a lysine to arginine mutant was generated by site-directed mutagenesis. Surprisingly, the TCP theta (K459R) mutant was still conjugated by NEDD8. This suggests that TCP theta might have other lysines that can be conjugated by NEDD8. Hence, we pursued to identify NEDDylation sites in TCP theta K459R. TCP theta (K459R) overexpressed with NEDD8 was affinity purified and the NEDDylation site of TCP theta (K459R) was identified as K509 by LC-MS/MS. Over-expression of NEDD8 with TCP theta did not affect TCP theta's poly-glutamine folding function. This suggests that NEDDylation may not affect TCP theta's chaperonin ability . Our study has found TCP theta as a novel target of NEDD8 and TCP theta is conjugated by NEDD8 at K459 and K509. The function of NEDDylation on TCP theta still remains unknown. PART II: PAX3 is a transcription factor essential for normal development of mammals. PAX3's PD and HD domains are DNA binding domains important for normal functioning of PAX3. Mutation in these domains results in Warrdenburg syndrome. Little is known about the role of PD domain mutants in transcription regulation. Hence, we sought to understand the mechanism of transcription regulation by PAX3 PD mutants. Transcription regulation assays showed that all PAX3 PD mutants repressed Gal4 promoter more strongly than wild type PAX3, but derepressed MITF and TRP1, two genes controlling the melanocyte lineage. We proposed that PAX3 PD mutants lost their ability to bind native promoters, and their interaction with co-factors and histone modifiers kept them from accessing the native promoters. In order to prove this model, PAX3 PD mutants' interaction with co-factors and recruitment of PAX3 PD mutants to PAX3 native promoters was determined. Indeed, all PAX3 PD mutants interacted with co-factors like KAP1 and HDAC10. These interactions suggest that the cofactors may quench all of the PD mutants from the promoter region, thereby derepressing the native promoters. Interestingly, PAX3 PD mutant were recruited to MITF promoter. To conclude, our study shows that PAX3 PD mutants derepress MITF and TRP-1 promoters. Also they can interact with HDAC10 and KAP1, which are previously known to help PAX3 derepress MITF and TRP-1. Interestingly PAX3 PD mutants were still recruited to MITF promoter. Our study has made a preliminary analysis of mechanism of PAX3 PD mutants' transcription and shown that they derepress MITF and TRP-1. More studies are needed to understand the PAX3 PD mutants' mechanism of transcription regulation.
URI: http://hdl.handle.net/11455/22066
其他識別: U0005-0708201015243300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0708201015243300
顯示於類別:分子生物學研究所

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。