Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22147
標題: 福氏志賀菌 IpaB 衍生蛋白之純化及其對哺乳動物細胞的影響
Purification of a derivative of a Shigella flexneri antigenic protein, IpaB, and its effects on mammalian cells
作者: 張瑋倫
Chung, Wei-Lun
關鍵字: shigella flexneri
福氏志賀菌
IpaB
PBMC
癌細胞
免疫螢光
蛋白純化
出版社: 分子生物學研究所
引用: 鄭焯隆。2003。台灣南投地區痢疾桿菌菌株ipaB基因表現與致病性相關性之研究。國立中興 大學分子生物學研究所碩士論文。 顏佩詩。2006。台灣志賀氏桿菌的 ipaB 基因及其蛋白產物功能分析。國立中興大學分子生物學研究所碩士論文。 許哲瑋。2009。志賀氏桿菌 ipaB 基因及其衍生蛋白對肺癌細胞的影響。國立中興大學分子生 物學研究所碩士論文。 A. K. Haque. 1991. Pathology of carcinoma of lung : an update on current concepts. J Thorac Imaging. 7. 9 – 20 A. Guichon, D. Hersh, M. R. Smith, and A. Zychlinsky. 2001. Structure-function analysis of the Shigella virulence factor IpaB. J Bacteriol. 183. 1269 – 1276 A. I. Haq, J. Scheeweiss, V. Kalsi, and M. Arya. 2009. The Dukes staging system: a cornerstone in the clinical management of colorectal cancer. Lancet Oncol. 10. 1128 A. Zychlinsky, M. C. Prevost, and P. J. Sansonetti. 1992. Shigella flexneri induces apoptosis in infected macrophages. Nature. 358. 167 – 169. A. Harrington, N. Darboe, R. Kenjale, W. L. Picking, C. R. Middaugh, S. Birket, and W. D. Picking. 2006. Characterization of the interaction of single tryptophan containing mutants of IpaC from Shigella flexneri with phospholipid membranes. Biochemistry. 45. 626 – 636 A. V. Jennison, and N. K. Verma. 2004. Shigella flexneri infection: pathogenesis and vaccine development. FEMS Microbiol Rev. 28. 43 – 58 B. S. Castaigne, C. Chomienne, M. T. Daniel, P. Ballerini, R. Berger, P. Fenaux, and L. Degos. 1990. All-Trean Rerinoic Acid as a Differentiation Therapy for Acute Promyelocytic Leukemia. I. Clinical Results. Blood. 76. 1074 – 1709 B. T. Cookson, and M. A. Brennan. 2001. Pro-inflammatory programmed cell death. Trends Microbiol. 9. 113 – 114 B. Haimovich, and M. M. Venkatesan. 2006. Shigella and Salmonella : death as a means of survival. Microbes Infect. 8. 568 – 577 C. Dukes. 1932. The classification of cancer of the rectum. J. Pathol. Bacteriol. 35. 323–332 C. S. Clark, and A. T. Maurelli. 2007. Shigella flexneri inhibits staurosporine-induced apoptosis in epithelial cells. Infect Immun. 75. 2531 – 2539 C. Buchrieser, P. Glaser, C. Rusniok, H. D’Hauteville, F. Kunst, P. J. Sansonetti, and C. Parsot. 2000. The virulence plasmid pWR100 and the repertoire of proteins secreted by the Type III secretion apparatus of shigella flexneri. Mol Microbiol. 38. 760 – 771 C. De Geyter, R. Wattiez, P. J. Sansonetti, P. Falmagne, J. M. Ruysschaert, C. Parsot, and V .Cabiaux. 2000. Characterization of the interaction of IpaB and IpaD, proteins required for entry of Shigella flexneri into epithelial cells, with a lipid membrane. Eur J Biochem. 267. 5769 – 76 F. Martinon, and J. Tschopp. 2005. NLRs join TLRs as innate sensors of pathogens. Trends Immunol. 26. 447 – 454 G. R. Cornelis. 2006. The type III secretion injectisome. Nat Rev Microbiol. 4. 811 – 825 G. S. Lee, D. M. Kochhar, and M. D. Collins. 2004. Retinoid-induced limb malformations. Curr Pharm Des. 10. 2657 – 2699 G. N. Schroeder, and H. Hilbi. 2007. Cholesterol is required to trigger caspase-1 activation and macrophage apoptosis after phagosomal escape of Shigella. Cell Microbiol. 9. 265 – 278 G. N. Schroeder, and H. Hilbi. 2008. Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol Rev. 21. 134 – 156 G. N. Schroeder, J. J. Naja, and H. Hilbi. 2007. Intracellular type III sectrtion by cytoplasmic Shigella flexneri promotes caspase-1-dependent macrophage cell death. Microbiology. 153. 2862 – 2876 G. T. Nhieu, and P. J. Sansonetti. 1999. Mechanism of Shigella entry into epithelial cells. Curr Opin Microbiol. 2. 51 – 55 H. Hilbi, J. E. Moss, D. Hersh, Y. Chen, J. Arondel, S. Banerjee, R. A. Flavell, J. Yuan, P. J. Sansonetti, and A. Zychlinsky. 1998. Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J Biol Chem. 273. 32895 – 32900 H. Tsutsui, M. Imamure, J. Fujiimoto, and K. Nakanishi. 2010. The TLR4/TRIF-Mediated Activation of NLRP3 Inflammasome Underlies Endotoxin-Induced Liver Injury in Mice. Gastroenterology Research and Practice. 64. H. L. DuPont, M. M. Levine, R. B. Hornick, and S. B. Formal. 1989. Inoculum size in shigellosis and implications for expected mode of transmission. J Infect Dis. 159. 1126 – 1128 J. M. Miano, and B. C. Berk. 2000. Retinoids: versatile biological response modifiers of vascular smooth muscle phenotype. Circ Res. 87. 355 – 362 J. Wei, M. B. Goldberg, V. Burland, M. M. Venkatesan, W. Deng, G. Fournier, G. F. Mayhew, G. Plunkett, D. J. Tose, A. Darling, B. Mau, N. T. Perna, S. M. Payne, L. J. Runyen-Janecky, S. Zhou, D. C. Schwartz, and F. R. Blattner. 2003. Complete Genome Sequence and Comparative Genomics of Shigella flexneri Serotype 2a Strain 2457T. Infect Immun.71. 2775 – 2786 J. J. Chen, Y. C. Lin, P. L. Yao, A. Yuan, H. Y. Chen, C. T. Shun, M. F. Tsai, C. H. Chen, and P. C. Yang. 2005. Tumor-associated macrophages: the double-edged sword in cancer progression. J Clin Oncol. 23. 953 – 964 K. L. Kotloff, J. P. Winickoff, B. Ivanoff, J. D. Clemens, D. L. Swerdlow, P. J. Sansonetti, G. K. Adak, and M. M. Levine. 1999. Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull World Health Organ. 77. 651 – 666. K. Le-Barillec, J. G. Magalhaes, E. Corcuff, A. Thuizat, P. J. Sansonetti, A. Phalipon, and J. P. Di Santo. 2005. Roles for T and NK cells in the innate immune response to Shigella flexneri. J Immunol. 175. 1735 – 1740 K. F. Stensrud, P. R. Adam, C. D. La Mar, A. J. Olive, G. H. Lushington, R. Sudharsan, N. L. Shelton, R. S. Givens, W. L. Picking, and W. D. Picking. 2008. Deoxycholate interacts with IpaD of Shigella flexneri in inducing the recruitment of IpaB to the type III secretion apparatus needle tip. J Biol Chem. 283. 18646 – 18654 L. Ade`s, A. Guerci, E. Raffoux, M. Sanz, P. Chevallier, S. Lapusan, C. Recher, X. Thomas, C. Rayon, S. Castaigne, O. Tournilhac, S. de Botton, N. Ifrah, J. Y. Cahn, E. Solary, C. Gardin, N. Fegeux, D. Bordessoule, A. Ferrant, S. M. Monard, N. Vey, H. Dombret, L. Degos, S. Chevret, and P. Fenaux. 2010. Very long-term outcome of acute promyelocytic leukemia after treatment with all-trans retinoic acid and chemotherapy: the EuropeanAPL Group experience. Blood. 115. 1690 – 1696 M. Espina, A. J. Olive, R. Kenjale, D. S. Moore, S. F. Ausar, R. W. Kaminski, E. V. Oaks, C. R. Middaugh, W. D. Picking, and W. L. Picking. 2006. IpaD localizes to the tip of the type III secretion system needle of Shigella flexneri. Infect Immun. 74. 4391 – 4400 M. L. Bernardini, J. Mounier, H. d’Hauteville, M. Coquis-Rondon, and P. J. Sansonetti. 1989. Identification of icsA, a plasmid locus of Shigella flexneri which governs bacterial intra- and intercellular spread through interaction with F-actin. Proc Natl Acad Sci U S A. 86. 3867 – 3871 M. Francois, V. Le Cabec, M. A. Dupont, P. J. Sansonetti, and I. Maridonneau-Parini. 2000. Induction of Necrosis in Human Neutrophils by Shigella flexneri Requires Type III Secretion, IpaB and IpaC Invasins, and Actin Polymerization. Infect Immun. 68. 1289 – 1296 P. J. Sansonetti. 2001. Microbes and microbial toxins: paradigms for microbial-mucosal interactions III. Shigellosis: from symptoms to molecular pathogenesis. Am J Physiol Gastrointest Liver Physiol. 280. G319 – G323 P. J. Sansonetti, A. Phalipon, J. Arondel, K. Thirumalai, S.Banerjee, S. Akira, K. Takeda, and A. Zychlinsky. 2000. Caspase-1 activation of IL-1beta and IL-18 are essential for Shigella flexneri-induced inflammation. Immunity. 12. 581 – 590 P. Cossart, and P. J. Sansonetti. 2004. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science. 304. 242 – 248 R. A. Black, S. R. Kronheim, and M. Cantrell. 1988. Generation of biologically active interleukin-1β by proteolytic cleavage of the inactive precursor. J Biol Chem. 263. 9437 – 9442 R. D. Hayward, R. J. Cain, E. J. McGhie, N. Phillips, M. J. Garner, and V. Koronakis. 2005. Cholesterol binding by the bacterial type III translocon is essential for virulence effector delivery into mammalian cells. Mol Microbiol. 56. 590 – 603 S. L. Fink, and B.T. Cookson .2005. Apoptosis, pyroptosis, and necrosis: Mechanistic description of dead and dying eukaryotic cells. Infect Immun. 73. 1907 – 1916 S. Paetzold, S. Lourido, B. Raupach, and A. Zychlinsky. 2007. Shigella flexneri phagosomal escape is independent of invasion. Infect Immun. 75. 4826 – 4830 T. Hashimoto, Y. Tokuchi, M. Hayashi, Y. Kobayashi, K. Nishida, S. Hayashi, Y. Ishikawa, K. Nakagawa, J. Hayashi, and E. Tsuchiya. 2000. Different subtypes of human lung adenocarcinoma caused by different etiological factors. Evidence from p53 mutational spectra. Am J Pathol. 157. 2133 – 2141 Y. Chen, M. R. Smith, K. Thirumalai, and A. Zychlinsky. 1996. A bacterial invasin induces macrophage apoptosis by binding directly to ICE. EMBO. 5. 3853 – 3860 Y. C. Chen, C. K. Yu, Y. F. Wang, C. C. Liu, I. J. Su, and H. Y. Lei. 2004. A murine oral enterovirus 71 infection model with central nervous system involvement. J Gen Virol. 85. 69 – 77
摘要: 福氏志賀菌 (Shigella flexneri) 入侵人類結腸的表皮細胞後,會引發嚴重的發炎反應,大量破壞腸道組織,造成桿菌性痢疾 (Shigellosis) ,於臨床上的症狀有腹瀉、腹痛和血便等。福氏志賀菌帶有一毒性質體,含有許多致病基因,其中的 IpaB 基因所負責產生的 Invasion plasmid antigens B (IpaB) 蛋白能使自腸道 M 細胞侵入的福氏志賀菌,順利進入腸道下層的巨噬細胞中,並活化巨噬細胞中的 caspase-1 ,進而造成巨噬細胞進行細胞凋亡 (apoptosis)。實驗室已構築一個帶有 IpaB 基因前 803 bp 片段 (IpaB803 基因) 的質體,並使蛋白 C 端帶有 6 個組胺酸 (Histidine,His),並利用大腸桿菌大量表現及純化重組蛋白IpaB803-His。本研究主要是將 IpaB803-His 蛋白經過二次純化,探討二次純化的 IpaB803-His 蛋白對於人類不同組織的癌細胞株及非癌細胞株是否會有不同影響。 實驗室曾將 1996 年分離自南投縣臨床菌株 SH2308 中的 IpaB 基因前 803 bp 構築到表現載體 pET-21b (+) ;利用此重組質體 pET-21b-IpaB803-His ,於大腸桿菌中藉 IPTG 誘導大量表現後,經由親和性管柱 (Ni-NTA resin) 進行一次純化,但純化後的 IpaB803-His 蛋白內仍有許多雜質蛋白。為了降低雜質蛋白的存在,一開始藉由重新摺疊 (refolding) 大腸桿菌內的 IpaB803-His 包涵體 (inclusion body) 的方式,希望可得到水溶性的IpaB803-His變性蛋白 (denature protein)。根據 SDS-PAGE 結果發現 : 當利用含有 4 M urea 的 50 mM imidazol lysis buffer 回溶 IpaB803-His包涵體,可擁有最大量的水溶性但可能變性 (denature) 的IpaB803-His包涵體蛋白。將可溶性的 IpaB803 變性體蛋白以 1 μg 或 2 μg的劑量,用 lipofectamine 包裹後轉殖到人類血癌細胞株 U-937 中,均無法讓 U-937 細胞死亡。接著將純化方式改為將原本已一次純化過的水溶性 IpaB803-His 蛋白,多通過一支疏水性管柱 (Butyl-S sepharose 6 FF column);發現一次或是二次純化後的 IpaB803-His 蛋白,均可對人類血癌細胞株 U-937 以及 HL-60 有毒殺能力。故將二次純化後的 IpaB803-His 蛋白分別轉殖到人類的非小細胞肺腺癌細胞株 (CL1-0、CL1-5、A 549),大細胞肺癌細胞株 (H 460),肺非癌細胞株 (BEAS-2B、WI-38),腎臟胚胎細胞株 (HEK-293),肝癌細胞株 (HepG2),結腸癌細胞株 (CaCo-2、COLO 205),血癌細胞株 (HL-60、U-937),周邊血液單核球細胞 (PBMC)。結果發現,IpaB803-His對於 A-549、CL1-0、CL1-5、H 460、BEAS-2B 和 HEK 293,無明顯毒殺細胞作用,甚至A-549有增生現象。但是對於 WI-38、HepG2、CaCo-2、COLO 205、U-937、HL-60和PBMC 而言,則發現都有 20 % 以上毒殺細胞的作用,其中對於 HL-60 和 HepG2 有最大的毒殺效果 (轉殖 24 小時後,毒殺結果大於 50 %)。而將IpaB803-His 蛋白分別被轉殖到 A-549 和HepG2 16 小時後進行免疫螢光染色;結果發現不論是 A-549 或是 HepG2 細胞,可以看得到大部分的 IpaB803-His 蛋白是呈現聚合體 (aggregate) 之型態,並且都黏在細胞的細胞膜上,推測 IpaB803-His 蛋白有可能是和細胞膜上的受體 (receptor) 有交互作用。其中,在 HepG2 細胞中甚至可以看到 IpaB803-His 蛋白與α-tubulin 有重疊之現象。
Shigella flexneri caused diarrhea or dysentery in human (shigellosis). It carries a virulence plasmid on which mant virulence genes reside. One such gene, IpaB, encoded invasion plasmid antigens B (IpaB) had been demonstrated to enable S. flexneri to enter macrophages underneath the M cells of intestine, activate pro-caspase-1 into caspase-1 in macrophages, and cause apopotosis of macrophages. Previously, the 5’ 803 bp of IpaB was cloned in to E. coli expression vector and IpaB803-His protein was over-expressed by IPTG induction. The protein was purified by Ni-NTA affinity chromatography. The purpose of this study was to further purify the protein and investigate the effects of the purified protein on human cancer and non-cancer cells. Initially, the IpaB803-His protein in inclusion body of the over-expressed E. coli was harvested and soluble IpaB803-His protein was obtained by solubilization in 4 M urea in 50 mM imidazol lysis buffer. However, the protein disn’t show ant cytotoxic actibity against hrman leukemia cell U-937. On the other hand, when the soluble IpaB803-His protein was first purified by affinity chromatography through nickel-NTA column followed by hydrophobic interaction chromatography through Butyl-S sepharose 6 FF column, the purified protein did demonstrated cytotoxic activity against human leukemia cells U-937 and HL-60. The purified protein was then tested for its activity against lung cancer cell (CL1-0、CL1-5、A-549、H 460), lung non-cancer cells (BEAS-2B、WI-38), kidney non-cancer cell (HEK 293), liver cancer cell (HepG2), colon cancer cell (CaCo-2、COLO 205), leukemia cell (HL-60、U-937) and peripheral blood mononuclear cell (PBMC). The results showed that the protein didn’t show cytotoxic activity against A-549、CL1-0、CL1-5、H 460、BEAS-2B and HEK 293, but show significant (greater then 20 %) cytotoxic activity against WI-38、HepG2、CaCo-2、COLO 205、U-937、HL-60 and PBMC. Immunostaining of the IpaB803-His protein-containing A-549 and HepG2 indicated that the protein was located the cell membrane of the two cells.
URI: http://hdl.handle.net/11455/22147
其他識別: U0005-2008201012362200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2008201012362200
Appears in Collections:分子生物學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.