Please use this identifier to cite or link to this item:
標題: Xanthomonas campestris pv. campestris 與 Stenotrophomonas maltophilia 的主要外膜蛋白 MopB 之特性探討
Characterization of the major outer membrane protein MopB from Xanthomonas campestris pv. campestris and Stenotrophomonas maltophilia
作者: 陳義元
Chen, Yih-Yuan
關鍵字: Xanthomonas campestris pv. campestris
Xanthomonas campestris pv. campestris
Stenotrophomonas maltophilia
Outer membrane protein
Stenotrophomonas maltophilia
出版社: 分子生物學研究所
引用: 吳杰浩 (2005). Xanthomonas campestris pv. campestris 溶裂型噬菌體 phi-L7 的寄主吸附座膜蛋白質之尋找與探討. 國立中興大學分子生物學研究所碩士論文. 吳漢強 (2010). Stenotrophomonas maltophilia MopB 外膜蛋白之分析. 國立中興大學生命科學研究所碩士論文. 黃証鴻 (2007). Stenotrophomonas maltophilia 染色體外 DNA 之探討. 國立中興大學分子生物學研究所碩士論文. 陳芝融 (2007). Stenotrophomonas maltophilia 噬菌體 Smp14 的基因體與蛋白體之探討. 國立中興大學分子生物學研究所博士論文. 張凌倫 (2002). Xanthomonas campestris pv. campestris 受噬菌體phi-Lf 及phi-L7 感染後基因表現之探討. 國立中興大學分子生物學研究所碩士論文. 張曉娟 (2004). Stenotrophomonas maltophilia 噬菌體 phi-SMA5 及 phi-SMT13 之分離與分析. 國立中興大學分子生物學研究所碩士論文. 楊奇凡 (1997). 噬菌體 phi-Lf 與 phi-L7 感染寄主 Xanthomonas campestris pv. campestris 初期所需之寄主基因. 國立中興大學分子生物學研究所碩士論文. 蔡哲豪 (2009). Xanthomonas campestris pv.campestris 17 mopB 突變株的菌體集結現象之探討. 國立中興大學分子生物學研究所碩士論文. Afkar, E., Reguera, G., Schiffer, M. & Lovley, D. R. (2005). A novel Geobacteraceae-specific outer membrane protein J (OmpJ) is essential for electron transport to Fe(III) and Mn(IV) oxides in Geobacter sulfurreducens. BMC Microbiol 5, 41. Arlat, M., Gough, C. L., Barber, C. E., Boucher, C. & Daniels, M. J. (1991). Xanthomonas campestris contains a cluster of hrp genes related to the larger hrp cluster of Pseudomonas solanacearum. Mol Plant Microbe Interact 4, 593-601. Azghani, A. O., Idell, S., Bains, M. & Hancock, R. E. (2002). Pseudomonas aeruginosa outer membrane protein F is an adhesin in bacterial binding to lung epithelial cells in culture. Microb Pathog 33, 109-114. Barabote, R. D., Johnson, O. L., Zetina, E., San Francisco, S. K., Fralick, J. A. & San Francisco, M. J. (2003). Erwinia chrysanthemi tolC is involved in resistance to antimicrobial plant chemicals and is essential for phytopathogenesis. J Bacteriol 185, 5772-5778. Barber, C. E., Tang, J. L., Feng, J. X., Pan, M. Q., Wilson, T. J., Slater, H., Dow, J. M., Williams, P. & Daniels, M. J. (1997). A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol Microbiol 24, 555-566. Baumann, U., Wu, S., Flaherty, K. M. & McKay, D. B. (1993). Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two-domain protein with a calcium binding parallel beta roll motif. Embo J 12, 3357-3364. Becker, A., Katzen, F., Puhler, A. & Ielpi, L. (1998). Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Appl Microbiol Biotechnol 50, 145-152. Beguin, P. (1990). Molecular biology of cellulose degradation. Annu Rev Microbiol 44, 219-248. Bishop, R. E. (2008). Structural biology of membrane-intrinsic beta-barrel enzymes: sentinels of the bacterial outer membrane. Biochim Biophys Acta 1778, 1881-1896. Chan, J. W. & Goodwin, P. H. (1999). The molecular genetics of virulence of Xanthomonas campestris. Biotechnol Adv 17, 489-508. Chao, N. X., Wei, K., Chen, Q., Meng, Q. L., Tang, D. J., He, Y. Q., Lu, G. T., Jiang, B. L., Liang, X. X., Feng, J. X., Chen, B. & Tang, J. L. (2008). The rsmA-like gene rsmA(Xcc) of Xanthomonas campestris pv. campestris is involved in the control of various cellular processes, including pathogenesis. Mol Plant Microbe Interact 21, 411-423. Chen, X., Schauder, S., Potier, N., Van Dorsselaer, A., Pelczer, I., Bassler, B. L. & Hughson, F. M. (2002). Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415, 545-549. Choi, C. H., Lee, J. S., Lee, Y. C., Park, T. I. & Lee, J. C. (2008). Acinetobacter baumannii invades epithelial cells and outer membrane protein A mediates interactions with epithelial cells. BMC Microbiol 8, 216. Chou, F. L., Chou, H. C., Lin, Y. S., Yang, B. Y., Lin, N. T., Weng, S. F. & Tseng, Y. H. (1997). The Xanthomonas campestris gumD gene required for synthesis of xanthan gum is involved in normal pigmentation and virulence in causing black rot. Biochem Biophys Res Commun 233, 265-269. Chung, W. J., Shu, H. Y., Lu, C. Y., Wu, C. Y., Tseng, Y. H., Tsai, S. F. & Lin, C. H. (2007). Qualitative and comparative proteomic analysis of Xanthomonas campestris pv. campestris 17. Proteomics 7, 2047-2058. da Silva, A. C., Ferro, J. A., Reinach, F. C., Farah, C. S., Furlan, L. R., Quaggio, R. B., Monteiro-Vitorello, C. B., Van Sluys, M. A., Almeida, N. F., Alves, L. M., do Amaral, A. M., Bertolini, M. C., Camargo, L. E., Camarotte, G., Cannavan, F., Cardozo, J., Chambergo, F., Ciapina, L. P., Cicarelli, R. M., Coutinho, L. L., Cursino-Santos, J. R., El-Dorry, H., Faria, J. B., Ferreira, A. J., Ferreira, R. C., Ferro, M. I., Formighieri, E. F., Franco, M. C., Greggio, C. C., Gruber, A., Katsuyama, A. M., Kishi, L. T., Leite, R. P., Lemos, E. G., Lemos, M. V., Locali, E. C., Machado, M. A., Madeira, A. M., Martinez-Rossi, N. M., Martins, E. C., Meidanis, J., Menck, C. F., Miyaki, C. Y., Moon, D. H., Moreira, L. M., Novo, M. T., Okura, V. K., Oliveira, M. C., Oliveira, V. R., Pereira, H. A., Rossi, A., Sena, J. A., Silva, C., de Souza, R. F., Spinola, L. A., Takita, M. A., Tamura, R. E., Teixeira, E. C., Tezza, R. I., Trindade dos Santos, M., Truffi, D., Tsai, S. M., White, F. F., Setubal, J. C. & Kitajima, J. P. (2002). Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417, 459-463. Daniels, M. J. (1984). Molecular biology of bacterial plant pathogens. Microbiol Sci 1, 33-36. Daniels, M. J., Barber, C. E., Turner, P. C., Sawczyc, M. K., Byrde, R. J. & Fielding, A. H. (1984). Cloning of genes involved in pathogenicity of Xanthomonas campestris pv. campestris using the broad host range cosmid pLAFR1. Embo J 3, 3323-3328. Das, M., Chopra, A. K., Cantu, J. M. & Peterson, J. W. (1998). Antisera to selected outer membrane proteins of Vibrio cholerae protect against challenge with homologous and heterologous strains of V. cholerae. FEMS Immunol Med Microbiol 22, 303-308. de Crecy-Lagard, V., Glaser, P., Lejeune, P., Sismeiro, O., Barber, C. E., Daniels, M. J. & Danchin, A. (1990). A Xanthomonas campestris pv. campestris protein similar to catabolite activation factor is involved in regulation of phytopathogenicity. J Bacteriol 172, 5877-5883. De Mot, R. & Vanderleyden, J. (1994a). The C-terminal sequence conservation between OmpA-related outer membrane proteins and MotB suggests a common function in both gram-positive and gram-negative bacteria, possibly in the interaction of these domains with peptidoglycan. Mol Microbiol 12, 333-334. de Mot, R. & Vanderleyden, J. (1994b). A conserved surface-exposed domain in major outer membrane proteins of pathogenic Pseudomonas and Branhamella species shares sequence homology with the calcium-binding repeats of the eukaryotic extracellular matrix protein thrombospondin. Mol Microbiol 13, 379-380. Denton, M. & Kerr, K. G. (1998). Microbiological and clinical aspects of infection associated with Stenotrophomonas maltophilia. Clin Microbiol Rev 11, 57-80. Dow, J. M., Clarke, B. R., Milligan, D. E., Tang, J. L. & Daniels, M. J. (1990). Extracellular proteases from Xanthomonas campestris pv. campestris, the black rot pathogen. Appl Environ Microbiol 56, 2994-2998. Dow, J. M., Fan, M. J., Newman, M. A. & Daniels, M. J. (1993). Differential expression of conserved protease genes in crucifer-attacking pathovars of Xanthomonas campestris. Appl Environ Microbiol 59, 3996-4003. Dow, J. M., Davies, H. A. & Daniels, M. J. (1998). A metalloprotease from Xanthomonas campestris that specifically degrades proline/hydroxyproline-rich glycoproteins of the plant extracellular matrix. Mol Plant Microbe Interact 11, 1085-1093. Dow, J. M., Feng, J. X., Barber, C. E., Tang, J. L. & Daniels, M. J. (2000). Novel genes involved in the regulation of pathogenicity factor production within the rpf gene cluster of Xanthomonas campestris. Microbiology 146 ( Pt 4), 885-891. Dow, J. M., Crossman, L., Findlay, K., He, Y. Q., Feng, J. X. & Tang, J. L. (2003). Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc Natl Acad Sci U S A 100, 10995-11000. Dow, M. (2008). Diversification of the function of cell-to-cell signaling in regulation of virulence within plant pathogenic xanthomonads. Sci Signal 1, pe23. Dums, F., Dow, J. M. & Daniels, M. J. (1991). Structural characterization of protein secretion genes of the bacterial phytopathogen Xanthomonas campestris pathovar campestris: relatedness to secretion systems of other gram-negative bacteria. Mol Gen Genet 229, 357-364. Dunger, G., Relling, V. M., Tondo, M. L., Barreras, M., Ielpi, L., Orellano, E. G. & Ottado, J. (2007). Xanthan is not essential for pathogenicity in citrus canker but contributes to Xanthomonas epiphytic survival. Arch Microbiol 188, 127-135. Feng, H. M., Whitworth, T., Olano, J. P., Popov, V. L. & Walker, D. H. (2004). Fc-dependent polyclonal antibodies and antibodies to outer membrane proteins A and B, but not to lipopolysaccharide, protect SCID mice against fatal Rickettsia conorii infection. Infect Immun 72, 2222-2228. Fuqua, C., Parsek, M. R. & Greenberg, E. P. (2001). Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35, 439-468. Gotoh, N., Wakebe, H., Yoshihara, E., Nakae, T. & Nishino, T. (1989). Role of protein F in maintaining structural integrity of the Pseudomonas aeruginosa outer membrane. J Bacteriol 171, 983-990. Gough, C. L., Dow, J. M., Keen, J., Henrissat, B. & Daniels, M. J. (1990). Nucleotide sequence of the engXCA gene encoding the major endoglucanase of Xanthomonas campestris pv. campestris. Gene 89, 53-59. Grizot, S. & Buchanan, S. K. (2004). Structure of the OmpA-like domain of RmpM from Neisseria meningitidis. Mol Microbiol 51, 1027-1037. Hall-Stoodley, L. & Stoodley, P. (2005). Biofilm formation and dispersal and the transmission of human pathogens. Trends Microbiol 13, 7-10. He, Y. W., Wang, C., Zhou, L., Song, H., Dow, J. M. & Zhang, L. H. (2006a). Dual signaling functions of the hybrid sensor kinase RpfC of Xanthomonas campestris involve either phosphorelay or receiver domain-protein interaction. J Biol Chem 281, 33414-33421. He, Y. W., Xu, M., Lin, K., Ng, Y. J., Wen, C. M., Wang, L. H., Liu, Z. D., Zhang, H. B., Dong, Y. H., Dow, J. M. & Zhang, L. H. (2006b). Genome scale analysis of diffusible signal factor regulon in Xanthomonas campestris pv. campestris: identification of novel cell-cell communication-dependent genes and functions. Mol Microbiol 59, 610-622. He, Y. W., Ng, A. Y., Xu, M., Lin, K., Wang, L. H., Dong, Y. H. & Zhang, L. H. (2007). Xanthomonas campestris cell-cell communication involves a putative nucleotide receptor protein Clp and a hierarchical signalling network. Mol Microbiol 64, 281-292. He, Y. W. & Zhang, L. H. (2008). Quorum sensing and virulence regulation in Xanthomonas campestris. FEMS Microbiol Rev 32, 842-857. Hooper, N. M. (1994). Families of zinc metalloproteases. FEBS Lett 354, 1-6. Hsiao, Y. M., Fang, M. C., Sun, P. F. & Tseng, Y. H. (2009). Clp and RpfF up-regulate transcription of pelA1 gene encoding the major pectate lyase in Xanthomonas campestris pv. campestris. J Agric Food Chem 57, 6207-6215. Hu, R. M., Yang, T. C., Yang, S. H. & Tseng, Y. H. (2005). Deduction of upstream sequences of Xanthomonas campestris flagellar genes responding to transcription activation by FleQ. Biochem Biophys Res Commun 335, 1035-1043. Hwang, I., Lim, S. M. & Shaw, P. D. (1992). Cloning and characterization of pathogenicity genes from Xanthomonas campestris pv. glycines. J Bacteriol 174, 1923-1931. Jalajakumari, M. B. & Manning, P. A. (1990). Nucleotide sequence of the gene, ompW, encoding a 22kDa immunogenic outer membrane protein of Vibrio cholerae. Nucleic Acids Res 18, 2180. Jeannin, P., Magistrelli, G., Goetsch, L., Haeuw, J. F., Thieblemont, N., Bonnefoy, J. Y. & Delneste, Y. (2002). Outer membrane protein A (OmpA): a new pathogen-associated molecular pattern that interacts with antigen presenting cells-impact on vaccine strategies. Vaccine 20 Suppl 4, A23-27. Kaeriyama, M., Machida, K., Kitakaze, A., Wang, H., Lao, Q., Fukamachi, T., Saito, H. & Kobayashi, H. (2006). OmpC and OmpF are required for growth under hyperosmotic stress above pH 8 in Escherichia coli. Lett Appl Microbiol 42, 195-201. Karch, H. & Nixdorff, K. (1981). Antibody-producing cell responses to an isolated outer membrane protein and to complexes of this antigen with lipopolysaccharide or with vesicles of phospholipids from Proteus mirabilis. Infect Immun 31, 862-867. Khan, N. A., Shin, S., Chung, J. W., Kim, K. J., Elliott, S., Wang, Y. & Kim, K. S. (2003). Outer membrane protein A and cytotoxic necrotizing factor-1 use diverse signaling mechanisms for Escherichia coli K1 invasion of human brain microvascular endothelial cells. Microb Pathog 35, 35-42. Koebnik, R., Locher, K. P. & Van Gelder, P. (2000). Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol 37, 239-253. Kostakioti, M., Newman, C. L., Thanassi, D. G. & Stathopoulos, C. (2005). Mechanisms of protein export across the bacterial outer membrane. J Bacteriol 187, 4306-4314. Lee, J. S., Kim, J. W., Choi, C. H., Lee, W. K., Chung, H. Y. & Lee, J. C. (2008). Anti-tumor activity of Acinetobacter baumannii outer membrane protein A on dendritic cell-based immunotherapy against murine melanoma. J Microbiol 46, 221-227. Liu, Y. N., Tang, J. L., Clarke, B. R., Dow, J. M. & Daniels, M. J. (1990). A multipurpose broad host range cloning vector and its use to characterise an extracellular protease gene of Xanthomonas campestris pathovar campestris. Mol Gen Genet 220, 433-440. March, J. C. & Bentley, W. E. (2004). Quorum sensing and bacterial cross-talk in biotechnology. Curr Opin Biotechnol 15, 495-502. Marzocca, M. P., Harding, N. E., Petroni, E. A., Cleary, J. M. & Ielpi, L. (1991). Location and cloning of the ketal pyruvate transferase gene of Xanthomonas campestris. J Bacteriol 173, 7519-7524. McKay, G.A., Woods, D.E., MacDonald, K.L., Poole, K., (2003). Role of phosphoglucomutase of Stenotrophomonas maltophilia in lipopolysaccharide biosynthesis, virulence, and antibiotic resistance. Infect Immun 71, 3068-3075 Merritt, J., Qi, F., Goodman, S. D., Anderson, M. H. & Shi, W. (2003). Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect Immun 71, 1972-1979. Miller, J.H., (1972). Experiments in Molecular Genetics. Cold Spring Habor Laboratory Press., Cold Spring Habor, New York. Miller, V. L., Farmer, J. J., 3rd, Hill, W. E. & Falkow, S. (1989). The ail locus is found uniquely in Yersinia enterocolitica serotypes commonly associated with disease. Infect Immun 57, 121-131. Miller, V. L., Bliska, J. B. & Falkow, S. (1990). Nucleotide sequence of the Yersinia enterocolitica ail gene and characterization of the Ail protein product. J Bacteriol 172, 1062-1069. Miller, V. L., Beer, K. B., Loomis, W. P., Olson, J. A. & Miller, S. I. (1992). An unusual pagC::TnphoA mutation leads to an invasion- and virulence-defective phenotype in Salmonellae. Infect Immun 60, 3763-3770. Mondino, A., Khoruts, A. & Jenkins, M. K. (1996). The anatomy of T-cell activation and tolerance. Proc Natl Acad Sci U S A 93, 2245-2252. Moore, J., Bailey, S. E., Benmechernene, Z., Tzitzilonis, C., Griffiths, N. J., Virji, M. & Derrick, J. P. (2005). Recognition of saccharides by the OpcA, OpaD, and OpaB outer membrane proteins from Neisseria meningitidis. J Biol Chem 280, 31489-31497. Morona, R., Klose, M. & Henning, U. (1984). Escherichia coli K-12 outer membrane protein (OmpA) as a bacteriophage receptor: analysis of mutant genes expressing altered proteins. J Bacteriol 159, 570-578. Muder, R. R., Harris, A. P., Muller, S., Edmond, M., Chow, J. W., Papadakis, K., Wagener, M. W., Bodey, G. P. & Steckelberg, J. M. (1996). Bacteremia due to Stenotrophomonas (Xanthomonas) maltophilia: a prospective, multicenter study of 91 episodes. Clin Infect Dis 22, 508-512. Newman, M. A., Conrads-Strauch, J., Scofield, G., Daniels, M. J. & Dow, J. M. (1994). Defense-related gene induction in Brassica campestris in response to defined mutants of Xanthomonas campestris with altered pathogenicity. Mol Plant Microbe Interact 7, 553-563. Nishio, M., Okada, N., Miki, T., Haneda, T. & Danbara, H. (2005). Identification of the outer-membrane protein PagC required for the serum resistance phenotype in Salmonella enterica serovar choleraesuis. Microbiology 151, 863-873. Ojanen, T., Helander, I. M., Haahtela, K., Korhonen, T. K. & Laakso, T. (1993). Outer membrane proteins and lipopolysaccharides in pathovars of Xanthomonas campestris. Appl Environ Microbiol 59, 4143-4151. Pal, U., Yang, X., Chen, M., Bockenstedt, L. K., Anderson, J. F., Flavell, R. A., Norgard, M. V. & Fikrig, E. (2004). OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. J Clin Invest 113, 220-230. Pichavant, M., Delneste, Y., Jeannin, P., Fourneau, C., Brichet, A., Tonnel, A. B. & Gosset, P. (2003). Outer membrane protein A from Klebsiella pneumoniae activates bronchial epithelial cells: implication in neutrophil recruitment. J Immunol 171, 6697-6705. Poplawsky, A. R. & Chun, W. (1997). pigB determines a diffusible factor needed for extracellular polysaccharide slime and xanthomonadin production in Xanthomonas campestris pv. campestris. J Bacteriol 179, 439-444. Poplawsky, A. R. & Chun, W. (1998). Xanthomonas campestris pv. campestris requires a functional pigB for epiphytic survival and host infection. Mol Plant Microbe Interact 11, 466-475. Prasadarao, N. V., Wass, C. A., Weiser, J. N., Stins, M. F., Huang, S. H. & Kim, K. S. (1996). Outer membrane protein A of Escherichia coli contributes to invasion of brain microvascular endothelial cells. Infect Immun 64, 146-153. Prasadarao, N. V., Blom, A. M., Villoutreix, B. O. & Linsangan, L. C. (2002). A novel interaction of outer membrane protein A with C4b binding protein mediates serum resistance of Escherichia coli K1. J Immunol 169, 6352-6360. Proft, T. & Baker, E. N. (2009). Pili in Gram-negative and Gram-positive bacteria - structure, assembly and their role in disease. Cell Mol Life Sci 66, 613-635. Qian, W., Jia, Y., Ren, S. X., He, Y. Q., Feng, J. X., Lu, L. F., Sun, Q., Ying, G., Tang, D. J., Tang, H., Wu, W., Hao, P., Wang, L., Jiang, B. L., Zeng, S., Gu, W. Y., Lu, G., Rong, L., Tian, Y., Yao, Z., Fu, G., Chen, B., Fang, R., Qiang, B., Chen, Z., Zhao, G. P., Tang, J. L. & He, C. (2005). Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Res 15, 757-767. Rawling, E. G., Brinkman, F. S. & Hancock, R. E. (1998). Roles of the carboxy-terminal half of Pseudomonas aeruginosa major outer membrane protein OprF in cell shape, growth in low-osmolarity medium, and peptidoglycan association. J Bacteriol 180, 3556-3562. Ray, S. K., Rajeshwari, R., Sharma, Y. & Sonti, R. V. (2002). A high-molecular-weight outer membrane protein of Xanthomonas oryzae pv. oryzae exhibits similarity to non-fimbrial adhesins of animal pathogenic bacteria and is required for optimum virulence. Mol Microbiol 46, 637-647. Rigano, L. A., Siciliano, F., Enrique, R., Sendin, L., Filippone, P., Torres, P. S., Questa, J., Dow, J. M., Castagnaro, A. P., Vojnov, A. A. & Marano, M. R. (2007). Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv. citri. Mol Plant Microbe Interact 20, 1222-1230. Rigden, D. J. & Galperin, M. Y. (2004). The DxDxDG motif for calcium binding: multiple structural contexts and implications for evolution. J Mol Biol 343, 971-984. Rocco, F., De Gregorio, E., Colonna, B. & Di Nocera, P. P. (2009). Stenotrophomonas maltophilia genomes: a start-up comparison. Int J Med Microbiol 299, 535-546. Rojas, C. M., Ham, J. H., Deng, W. L., Doyle, J. J. & Collmer, A. (2002). HecA, a member of a class of adhesins produced by diverse pathogenic bacteria, contributes to the attachment, aggregation, epidermal cell killing, and virulence phenotypes of Erwinia chrysanthemi EC16 on Nicotiana clevelandii seedlings. Proc Natl Acad Sci U S A 99, 13142-13147. Rukayadi, Y., Suwanto, A., Tjahjono, B. & Harling, R. (2000). Survival and epiphytic fitness of a nonpathogenic mutant of Xanthomonas campestris pv. glycines. Appl Environ Microbiol 66, 1183-1189. Ryan, R. P., Fouhy, Y., Lucey, J. F., Crossman, L. C., Spiro, S., He, Y. W., Zhang, L. H., Heeb, S., Camara, M., Williams, P. & Dow, J. M. (2006). Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc Natl Acad Sci U S A 103, 6712-6717. Saier, M. H., Jr., Tran, C. V. & Barabote, R. D. (2006). TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res 34, D181-186. Sambrook, J. & Russel, D. W. (2001). Molecular Cloning: A Laboratory Manual, 3 edn. Cold Spring Habor, New York: Cold Spring Habor Laboratory Press. Schroter, K., Flaschel, E., Puhler, A. & Becker, A. (2001). Xanthomonas campestris pv. campestris secretes the endoglucanases ENGXCA and ENGXCB: construction of an endoglucanase-deficient mutant for industrial xanthan production. Appl Microbiol Biotechnol 55, 727-733. Slater, H., Alvarez-Morales, A., Barber, C. E., Daniels, M. J. & Dow, J. M. (2000). A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in Xanthomonas campestris. Mol Microbiol 38, 986-1003. Smith, S. G., Mahon, V., Lambert, M. A. & Fagan, R. P. (2007). A molecular Swiss army knife: OmpA structure, function and expression. FEMS Microbiol Lett 273, 1-11. Songer, J. G. (1997). Bacterial phospholipases and their role in virulence. Trends Microbiol 5, 156-161. Sonntag, I., Schwarz, H., Hirota, Y. & Henning, U. (1978). Cell envelope and shape of Escherichia coli: multiple mutants missing the outer membrane lipoprotein and other major outer membrane proteins. J Bacteriol 136, 280-285. Stoodley, P., Sauer, K., Davies, D. G. & Costerton, J. W. (2002). Biofilms as complex differentiated communities. Annu Rev Microbiol 56, 187-209. Sugawara, E., Steiert, M., Rouhani, S. & Nikaido, H. (1996). Secondary structure of the outer membrane proteins OmpA of Escherichia coli and OprF of Pseudomonas aeruginosa. J Bacteriol 178, 6067-6069. Swings, J. G., Civerolo, E.L. (1993). Xanthomonas. Boundary Row, London.: Chapman & Hall Inc. Titball, R. W. (1993). Bacterial phospholipases C. Microbiol Rev 57, 347-366. Torres, P. S., Malamud, F., Rigano, L. A., Russo, D. M., Marano, M. R., Castagnaro, A. P., Zorreguieta, A., Bouarab, K., Dow, J. M. & Vojnov, A. A. (2007). Controlled synthesis of the DSF cell-cell signal is required for biofilm formation and virulence in Xanthomonas campestris. Environ Microbiol 9, 2101-2109. Vorholter, F. J., Schneiker, S., Goesmann, A., Krause, L., Bekel, T., Kaiser, O., Linke, B., Patschkowski, T., Ruckert, C., Schmid, J., Sidhu, V. K., Sieber, V., Tauch, A., Watt, S. A., Weisshaar, B., Becker, A., Niehaus, K. & Puhler, A. (2008). The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. J Biotechnol 134, 33-45. Wang, L., Rong, W. & He, C. (2008). Two Xanthomonas extracellular polygalacturonases, PghAxc and PghBxc, are regulated by type III secretion regulators HrpX and HrpG and are required for virulence. Mol Plant Microbe Interact 21, 555-563. Wang, T. W. & Tseng, Y. H. (1992). Electrotransformation of Xanthomonas campestris by RF DNA of filamentous phage phi Lf. Lett Appl Microbiol 14, 65-68. Wang, Y. (2002). The function of OmpA in Escherichia coli. Biochem Biophys Res Commun 292, 396-401. Weiser, J. N. & Gotschlich, E. C. (1991). Outer membrane protein A (OmpA) contributes to serum resistance and pathogenicity of Escherichia coli K-1. Infect Immun 59, 2252-2258. Wengelnik, K., Marie, C., Russel, M. & Bonas, U. (1996). Expression and localization of HrpA1, a protein of Xanthomonas campestris pv. vesicatoria essential for pathogenicity and induction ofthe hypersensitive reaction. J Bacteriol 178, 1061-1069. William, P. H. (1980). Black rot: a continuing treat to world crucifers. Plant Disease 64, 736-742. Windhorst, S., Frank, E., Georgieva, D. N., Genov, N., Buck, F., Borowski, P. & Weber, W. (2002). The major extracellular protease of the nosocomial pathogen Stenotrophomonas maltophilia: characterization of the protein and molecular cloning of the gene. J Biol Chem 277, 11042-11049. Woodruff, W. A. & Hancock, R. E. (1989). Pseudomonas aeruginosa outer membrane protein F: structural role and relationship to the Escherichia coli OmpA protein. J Bacteriol 171, 3304-3309. Xiang, Z., and He, Y., (2009). Vaxign: a web-based vaccine target design program for reverse vaccinology. Procedia in Vaccinology 1, 23-29 Yang, B. Y., Tsai, H. F. & Tseng, Y. H. (1988). Broad host range cosmid pLAFR1 and non-mucoid mutant XCP20 provide a suitable vector-host system for cloning genes in Xanthomonas campestris pv. campestris. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi 21, 40-49. Yang, C. H., Gavilanes-Ruiz, M., Okinaka, Y., Vedel, R., Berthuy, I., Boccara, M., Chen, J. W., Perna, N. T. & Keen, N. T. (2002). hrp genes of Erwinia chrysanthemi 3937 are important virulence factors. Mol Plant Microbe Interact 15, 472-480.
摘要: Previous study showed that in LB medium the wild type, Xanthomonas campestris pv. campestris 17, grew in a dispersed fashion; however, mopB mutant (XcMopB) grew in an aggregated state, forming observable clumps. To explore the aggregation mechanism of mopB mutant in X. campestris pv. campestris (Xcc) and function of MopB in Xcc and evolutionally-related Stenotrophomonas maltophilia, this study divived into three parts was performed. In the first part, the role of MopB in Xcc was characterized. Western blotting analysis result showed that Xcc MopB is the major outer-membrane protein (OMP). Xcc MopB shared over 97% identity with homologues from other members of Xanthomonas. In addition, XcMopB showed surface deformation, altered OMP composition, impaired xanthan production, increased sensitivity to stressful conditions, including SDS, EGTA, elevated temperature and changes in pH, reduced adhesion and motility and defects in pathogenesis. The finding that the major OMP is required for pathogenicity is unprecedented in phytopathogenic bacteria. In the second part, the mechanism of forming aggregates in XcMopB was investigated. Mutation in either rpfF (required for the synthesis of diffusible signal factor, DSF) or mopB causes cell aggregation with concomitant production of a gum-like substance. Addition of either DSF or endo-β-1,4-mannanase into the culture can disperse the aggregates formed by rpfF mutant (XcRpfF) but not that of mopB mutant, suggesting that distinct mechanisms are involved in their aggregate formation. Scanning electron microscopy revealed that aggregated XcMopB cells were clumped together by fibrous structures. Surprisingly, the aggregates could be dispersed by metalloprotease secreted from Serratia marcescens. Based on the above results, it is concluded that the main component of fibrous structures present in the aggregated cells of XcMopB is proteinacious. In the third part, the role of mopB homologs in S.maltophilia was characterized. The mopBSm mutant was constructed by insertional mutation, and the presence of the mutation was confirmed by PCR method and Western blotting analysis. SmMopB showed dry colonies on LB agar plate, similar to the phenotype of XcMopB. In LB broth, XcMopB grew as an aggregrated form when cultures entered into the stationary phase; however, SmMopB grew in a dispersed fashion. Complementation test appeared that the complemented strain, XcMopB(pFY-SmMopB), was grew in a dispersed fashion, indicating that MopBSm and MopBXcc share similar structures, but formation of cell aggregates between XcMopB and SmMopB was quite distinctive. Membrane fractionation analysis results demonstrated that MopBSm was the most abundant outer membrane proteins in S. maltophilia. The drastic change in the surface layer of the mopBSm mutant was revealed by electron microscopy. Furthermore, compare to the wild type strain, the mopBSm mutant was more sensitive to stresses, including human serum, SDS and hydrogen peroxide. Moreover, S. maltophilia MopB is highly conserved in strains of Stenotrophomonas and lacks a transmembrane helix. Taken together, MopBSm may be a good candidate developing into a drug, which can be combined with suitable antibiotics for controlling the nosocomial infection of multidrug resistant S. maltophilia in hospital.
實驗室前人意外發現 Xanthomonas campestris pv. campestris (Xcc) mopB 突變株 (XcMopB) 之 LB 培養液會有菌體集結現象,野生株 Xc17 則否。為了解 mopB 突變株的集結機制以及 mopB 在 Xcc 與演化親緣相關相近的 Stenotrophomonas maltophilia 菌體中所扮演的角色,本研究分成三部分進行探討。 第一部分主要為探討 MopB 在 Xcc 中的生理功能。以西方墨點法證實 MopB 為 Xcc 最主要的外膜蛋白,且 Xcc MopB 與 Xanthomonas 菌屬其他成員的 MopB homologs 相似度高達 97%。破壞 mopB 基因會造成菌體外膜形態與外膜組成的改變,胞外黏多醣產量減少,菌體抵抗逆境 (例如SDS,EGTA,溫度與 pH) 的能力降低,黏附能力和運動能力下降,以及喪失病原性。第二部分實驗目的為探討 mopB 突變株的菌體集結機制。rpfF (主導的產物參與合成生物膜重要訊息傳遞分子 DSF ) 突變株與 mopB 突變株的菌體會集結並產生 gum-like 物質。添加 DSF 或酵素 endo-β-1,4-mannanase 可以分散 rpfF 突變株的集結物,但是無法分散 mopB 突變株的集結,顯示兩突變株集結的機制不相同。以掃描式電子顯微鏡觀察 mopB 突變株的集結現象,發現細胞個體間具有交錯的纖維狀結構。Serratia marcescens 分泌的 metalloprotease 可以分散這些纖維狀集結物。結果顯示影響 MopB 集結的纖維狀物主要是由蛋白質所組成。第三部分實驗主要在探討 S. maltophilia MopB homologs 所扮演的生理角色。首先構築了 S. maltophilia mopB 突變株,並以 PCR 和西方墨點法確認所獲得突變株之正確性。S. maltophilia mopB 突變株 (SmMopB) 具有較乾的菌落外觀,與 XcMopB 相似。在 LB 液態培養基中,XcMopB 進入 stationary phase 時期便開始形成集結,然而 SmMopB 卻始終維持均質態的生長。將 S. maltophilia 的 mopB 基因選殖於質體 pFY13-9 後,送入 XcMopB中,構築成 XcMopB(pFY-SmMopB)。於液態培養基中此轉殖株呈現均質態的生長,顯示 S. maltophilia 的 MopBSm 與 X. campestris pv. campestris 的 MopBXcc 結構、功能相似,因此,可以互補 XcMopB 缺失 MopB 之效應,兩菌株之 MopB 雖然結構類似,但形成菌體集結的機制並不相同。MopBsm 也是 S. maltophilia 最主要的外膜蛋白。以電子顯微鏡觀察,相較於野生株 SmMopB 的外觀明顯粗糙。比較菌株對環境逆境的耐受程度,可發現突變株對抗血清、SDS 和雙氧水的能力均較野生株低弱。此外,Stenotrophomnas 菌屬之 MopB 蛋白具有高度保守性,且缺乏 transmembrane helix,符合成為疫苗的特性。MopBSm 或可研發成為抗 S. maltophilia 感染的藥物標的,合併抗生素的使用,以控制 S. maltophilia 多重抗藥菌株的院內感染。
其他識別: U0005-2701201119383800
Appears in Collections:分子生物學研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.