Please use this identifier to cite or link to this item:
標題: OsGA2oxs之功能研究 I.水稻OsGA2ox2基因之功能及其T-DNA插入活化突變體M43852之探討 II. C20 OsGA2ox6三個保留性motifs之功能探討
Functional study of Rice GA 2-oxidase I. Characterization of rice GA2ox2 and its T-DNA activation mutant M43852 II. Functional study of the conserved motifs in C20 type OsGA2ox6
作者: 謝昆廷
Hsieh, Kun-Ting
關鍵字: Gibberellin
GA 2-oxidases
出版社: 分子生物學研究所
引用: Achard, P., Gong, F., Cheminant, S., Alioua, M., Hedden, P., and Genschik, P. (2008). The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20, 2117-2129. An, G., Lee, S., Kim, S.H., and Kim, S.R. (2005). Molecular genetics using T-DNA in rice. Plant Cell Physiol 46, 14-22. Appleford, N.E., Evans, D.J., Lenton, J.R., Gaskin, P., Croker, S.J., Devos, K.M., Phillips, A.L., and Hedden, P. (2006). Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat. Planta 223, 568-582. Bailey-Serres, J., and Voesenek, L.A. (2010). Life in the balance: a signaling network controlling survival of flooding. Curr Opin Plant Biol 13, 489-494. Barratt, D.H., Derbyshire, P., Findlay, K., Pike, M., Wellner, N., Lunn, J., Feil, R., Simpson, C., Maule, A.J., and Smith, A.M. (2009). Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase. Proc Natl Acad Sci U S A 106, 13124-13129. Bolle, C. (2004). The role of GRAS proteins in plant signal transduction and development. Planta 218, 683-692. Chen, S., Jin, W., Wang, M., Zhang, F., Zhou, J., Jia, Q., Wu, Y., Liu, F., and Wu, P. (2003). Distribution and characterization of over 1000 T-DNA tags in rice genome. Plant J 36, 105-113. Chourey, P.S., Taliercio, E.W., Carlson, S.J., and Ruan, Y.L. (1998). Genetic evidence that the two isozymes of sucrose synthase present in developing maize endosperm are critical, one for cell wall integrity and the other for starch biosynthesis. Mol Gen Genet 259, 88-96. Chuang, C.F., and Meyerowitz, E.M. (2000). Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci U S A 97, 4985-4990. Coleman, H.D., Yan, J., and Mansfield, S.D. (2009). Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc Natl Acad Sci U S A 106, 13118-13123. de Lucas, M., Daviere, J.M., Rodriguez-Falcon, M., Pontin, M., Iglesias-Pedraz, J.M., Lorrain, S., Fankhauser, C., Blazquez, M.A., Titarenko, E., and Prat, S. (2008). A molecular framework for light and gibberellin control of cell elongation. Nature 451, 480-484. Delseny, M., and Pelletier, G. (2001). From Arabidopsis to rice genomics: a survey of French programmes. C R Acad Sci III 324, 1103-1110. Depuydt, S., and Hardtke, C.S. (2011). Hormone signalling crosstalk in plant growth regulation. Curr Biol 21, R365-373. Feng, S., Martinez, C., Gusmaroli, G., Wang, Y., Zhou, J., Wang, F., Chen, L., Yu, L., Iglesias-Pedraz, J.M., Kircher, S., Schafer, E., Fu, X., Fan, L.M., and Deng, X.W. (2008). Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451, 475-479. Feng, Y., and Xue, Q. (2006). The serine carboxypeptidase like gene family of rice (Oryza sativa L. ssp. japonica). Funct Integr Genomics 6, 14-24. Gale, M.D., and Devos, K.M. (1998). Comparative genetics in the grasses. Proc Natl Acad Sci U S A 95, 1971-1974. Goff, S.A., Ricke, D., Lan, T.H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H., Hadley, D., Hutchison, D., Martin, C., Katagiri, F., Lange, B.M., Moughamer, T., Xia, Y., Budworth, P., Zhong, J., Miguel, T., Paszkowski, U., Zhang, S., Colbert, M., Sun, W.L., Chen, L., Cooper, B., Park, S., Wood, T.C., Mao, L., Quail, P., Wing, R., Dean, R., Yu, Y., Zharkikh, A., Shen, R., Sahasrabudhe, S., Thomas, A., Cannings, R., Gutin, A., Pruss, D., Reid, J., Tavtigian, S., Mitchell, J., Eldredge, G., Scholl, T., Miller, R.M., Bhatnagar, S., Adey, N., Rubano, T., Tusneem, N., Robinson, R., Feldhaus, J., Macalma, T., Oliphant, A., and Briggs, S. (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92-100. Greco, R., Ouwerkerk, P.B., Taal, A.J., Favalli, C., Beguiristain, T., Puigdomenech, P., Colombo, L., Hoge, J.H., and Pereira, A. (2001). Early and multiple Ac transpositions in rice suitable for efficient insertional mutagenesis. Plant Mol Biol 46, 215-227. Harberd, N.P., King, K.E., Carol, P., Cowling, R.J., Peng, J., and Richards, D.E. (1998). Gibberellin: inhibitor of an inhibitor of...? Bioessays 20, 1001-1008. Hattori, Y., Nagai, K., Furukawa, S., Song, X.J., Kawano, R., Sakakibara, H., Wu, J., Matsumoto, T., Yoshimura, A., Kitano, H., Matsuoka, M., Mori, H., and Ashikari, M. (2009). The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460, 1026-1030. Hedden, P., and Phillips, A.L. (2000). Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5, 523-530. Helliwell, C.A., Sullivan, J.A., Mould, R.M., Gray, J.C., Peacock, W.J., and Dennis, E.S. (2001). A plastid envelope location of Arabidopsis ent-kaurene oxidase links the plastid and endoplasmic reticulum steps of the gibberellin biosynthesis pathway. Plant J 28, 201-208. Hirano, K., Ueguchi-Tanaka, M., and Matsuoka, M. (2008). GID1-mediated gibberellin signaling in plants. Trends Plant Sci 13, 192-199. Hirano, K., Asano, K., Tsuji, H., Kawamura, M., Mori, H., Kitano, H., Ueguchi-Tanaka, M., and Matsuoka, M. (2010). Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice. Plant Cell 22, 2680-2696. Hirochika, H. (1997). Retrotransposons of rice: their regulation and use for genome analysis. Plant Mol Biol 35, 231-240. Hirochika, H. (2001). Contribution of the Tos17 retrotransposon to rice functional genomics. Curr Opin Plant Biol 4, 118-122. Hirochika, H., Guiderdoni, E., An, G., Hsing, Y.I., Eun, M.Y., Han, C.D., Upadhyaya, N., Ramachandran, S., Zhang, Q., Pereira, A., Sundaresan, V., and Leung, H. (2004). Rice mutant resources for gene discovery. Plant Mol Biol 54, 325-334. Hsing, Y.I., Chern, C.G., Fan, M.J., Lu, P.C., Chen, K.T., Lo, S.F., Sun, P.K., Ho, S.L., Lee, K.W., Wang, Y.C., Huang, W.L., Ko, S.S., Chen, S., Chen, J.L., Chung, C.I., Lin, Y.C., Hour, A.L., Wang, Y.W., Chang, Y.C., Tsai, M.W., Lin, Y.S., Chen, Y.C., Yen, H.M., Li, C.P., Wey, C.K., Tseng, C.S., Lai, M.H., Huang, S.C., Chen, L.J., and Yu, S.M. (2007). A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol Biol 63, 351-364. Ikeda, A., Ueguchi-Tanaka, M., Sonoda, Y., Kitano, H., Koshioka, M., Futsuhara, Y., Matsuoka, M., and Yamaguchi, J. (2001). slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13, 999-1010. Itoh, H., Matsuoka, M., and Steber, C.M. (2003). A role for the ubiquitin-26S-proteasome pathway in gibberellin signaling. Trends Plant Sci 8, 492-497. Itoh, H., Ueguchi-Tanaka, M., Sato, Y., Ashikari, M., and Matsuoka, M. (2002). The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell 14, 57-70. Itoh, H., Ueguchi-Tanaka, M., Sentoku, N., Kitano, H., Matsuoka, M., and Kobayashi, M. (2001). Cloning and functional analysis of two gibberellin 3 beta -hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci U S A 98, 8909-8914. Jaillais, Y., and Chory, J. (2010). Unraveling the paradoxes of plant hormone signaling integration. Nat Struct Mol Biol 17, 642-645. Jeong, D.H., An, S., Kang, H.G., Moon, S., Han, J.J., Park, S., Lee, H.S., An, K., and An, G. (2002). T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiology 130, 1636-1644. Jeong, D.H., An, S., Park, S., Kang, H.G., Park, G.G., Kim, S.R., Sim, J., Kim, Y.O., Kim, M.K., Kim, J., Shin, M., Jung, M., and An, G. (2006). Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J 45, 123-132. Jung, K.H., Hur, J., Ryu, C.H., Choi, Y., Chung, Y.Y., Miyao, A., Hirochika, H., and An, G. (2003). Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol 44, 463-472. Kaneko, M., Itoh, H., Ueguchi-Tanaka, M., Ashikari, M., and Matsuoka, M. (2002). The alpha-amylase induction in endosperm during rice seed germination is caused by gibberellin synthesized in epithelium. Plant Physiology 128, 1264-1270. Khush, G.S. (1999). Green revolution: preparing for the 21st century. Genome 42, 646-655. Khush, G.S. (2001). Green revolution: the way forward. Nat Rev Genet 2, 815-822. Lee, D.J., and Zeevaart, J.A. (2005). Molecular cloning of GA 2-oxidase3 from spinach and its ectopic expression in Nicotiana sylvestris. Plant Physiology 138, 243-254. Liu, H., Wang, X., Zhang, H., Yang, Y., Ge, X., and Song, F. (2008). A rice serine carboxypeptidase-like gene OsBISCPL1 is involved in regulation of defense responses against biotic and oxidative stress. Gene 420, 57-65. Lo, S.F., Yang, S.Y., Chen, K.T., Hsing, Y.I., Zeevaart, J.A.D., Chen, L.J., and Yu, S.M. (2008). A Novel Class of Gibberellin 2-Oxidases Control Semidwarfism, Tillering, and Root Development in Rice. The Plant Cell Online 20, 2603-2618. MacMillan, J. (2001). Occurrence of Gibberellins in Vascular Plants, Fungi, and Bacteria. J Plant Growth Regul 20, 387-442. Magome, H., Yamaguchi, S., Hanada, A., Kamiya, Y., and Oda, K. (2008). The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. Plant J 56, 613-626. Mahoney, J.A., Ntolosi, B., DaSilva, R.P., Gordon, S., and McKnight, A.J. (2001). Cloning and characterization of CPVL, a novel serine carboxypeptidase, from human macrophages. Genomics 72, 243-251. McGinnis, K.M., Thomas, S.G., Soule, J.D., Strader, L.C., Zale, J.M., Sun, T.P., and Steber, C.M. (2003). The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. Plant Cell 15, 1120-1130. Milkowski, C., and Strack, D. (2004). Serine carboxypeptidase-like acyltransferases. Phytochemistry 65, 517-524. Morrison, K.L., and Weiss, G.A. (2001). Combinatorial alanine-scanning. Curr Opin Chem Biol 5, 302-307. Mugford, S.T., Qi, X., Bakht, S., Hill, L., Wegel, E., Hughes, R.K., Papadopoulou, K., Melton, R., Philo, M., Sainsbury, F., Lomonossoff, G.P., Roy, A.D., Goss, R.J., and Osbourn, A. (2009). A serine carboxypeptidase-like acyltransferase is required for synthesis of antimicrobial compounds and disease resistance in oats. Plant Cell 21, 2473-2484. Nakajima, M., Shimada, A., Takashi, Y., Kim, Y.C., Park, S.H., Ueguchi-Tanaka, M., Suzuki, H., Katoh, E., Iuchi, S., Kobayashi, M., Maeda, T., Matsuoka, M., and Yamaguchi, I. (2006). Identification and characterization of Arabidopsis gibberellin receptors. Plant J 46, 880-889. Nelson, D.R., Schuler, M.A., Paquette, S.M., Werck-Reichhart, D., and Bak, S. (2004). Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiology 135, 756-772. Nemhauser, J.L., Hong, F., and Chory, J. (2006). Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126, 467-475. Olszewski, N., Sun, T.P., and Gubler, F. (2002). Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14 Suppl, S61-80. Parussini, F., Garcia, M., Mucci, J., Aguero, F., Sanchez, D., Hellman, U., Aslund, L., and Cazzulo, J.J. (2003). Characterization of a lysosomal serine carboxypeptidase from Trypanosoma cruzi. Mol Biochem Parasitol 131, 11-23. Peng, J., Carol, P., Richards, D.E., King, K.E., Cowling, R.J., Murphy, G.P., and Harberd, N.P. (1997). The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev 11, 3194-3205. Peng, S., Huang, J., Sheehy, J.E., Laza, R.C., Visperas, R.M., Zhong, X., Centeno, G.S., Khush, G.S., and Cassman, K.G. (2004). Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci U S A 101, 9971-9975. Richards, D.E., King, K.E., Ait-Ali, T., and Harberd, N.P. (2001). HOW GIBBERELLIN REGULATES PLANT GROWTH AND DEVELOPMENT: A Molecular Genetic Analysis of Gibberellin Signaling. Annu Rev Plant Physiol Plant Mol Biol 52, 67-88. Rieu, I., Eriksson, S., Powers, S.J., Gong, F., Griffiths, J., Woolley, L., Benlloch, R., Nilsson, O., Thomas, S.G., Hedden, P., and Phillips, A.L. (2008). Genetic analysis reveals that C19-GA 2-oxidation is a major gibberellin inactivation pathway in Arabidopsis. Plant Cell 20, 2420-2436. Ruan, Y.L., Jin, Y., and Huang, J. (2009). Capping invertase activity by its inhibitor: roles and implications in sugar signaling, carbon allocation, senescence and evolution. Plant Signal Behav 4, 983-985. Ruan, Y.L., Jin, Y., Yang, Y.J., Li, G.J., and Boyer, J.S. (2010). Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Mol Plant 3, 942-955. Sakai, M., Sakamoto, T., Saito, T., Matsuoka, M., Tanaka, H., and Kobayashi, M. (2003). Expression of novel rice gibberellin 2-oxidase gene is under homeostatic regulation by biologically active gibberellins. J Plant Res 116, 161-164. Sakamoto, T. (2004). An Overview of Gibberellin Metabolism Enzyme Genes and Their Related Mutants in Rice. Plant Physiology 134, 1642-1653. Sakamoto, T., Kobayashi, M., Itoh, H., Tagiri, A., Kayano, T., Tanaka, H., Iwahori, S., and Matsuoka, M. (2001). Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiology 125, 1508-1516. Sakamoto, T., Morinaka, Y., Ishiyama, K., Kobayashi, M., Itoh, H., Kayano, T., Iwahori, S., Matsuoka, M., and Tanaka, H. (2003). Genetic manipulation of gibberellin metabolism in transgenic rice. Nat Biotechnol 21, 909-913. Sallaud, C., Gay, C., Larmande, P., Bes, M., Piffanelli, P., Piegu, B., Droc, G., Regad, F., Bourgeois, E., Meynard, D., Perin, C., Sabau, X., Ghesquiere, A., Glaszmann, J.C., Delseny, M., and Guiderdoni, E. (2004). High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. Plant J 39, 450-464. Santner, A., and Estelle, M. (2009). Recent advances and emerging trends in plant hormone signalling. Nature 459, 1071-1078. Sasaki, A., Itoh, H., Gomi, K., Ueguchi-Tanaka, M., Ishiyama, K., Kobayashi, M., Jeong, D.H., An, G., Kitano, H., Ashikari, M., and Matsuoka, M. (2003). Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299, 1896-1898. Sasaki, A., Ashikari, M., Ueguchi-Tanaka, M., Itoh, H., Nishimura, A., Swapan, D., Ishiyama, K., Saito, T., Kobayashi, M., Khush, G.S., Kitano, H., and Matsuoka, M. (2002). Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416, 701-702. Schomburg, F.M., Bizzell, C.M., Lee, D.J., Zeevaart, J.A., and Amasino, R.M. (2003). Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 15, 151-163. Sequencing Project, I.R.G. (2005). The map-based sequence of the rice genome. Nature 436, 793-800. Sidhu, S.S., and Kossiakoff, A.A. (2007). Exploring and designing protein function with restricted diversity. Curr Opin Chem Biol 11, 347-354. Silverstone, A.L., Ciampaglio, C.N., and Sun, T. (1998). The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10, 155-169. Spray, C.R., Kobayashi, M., Suzuki, Y., Phinney, B.O., Gaskin, P., and MacMillan, J. (1996). The dwarf-1 (dt) Mutant of Zea mays blocks three steps in the gibberellin-biosynthetic pathway. Proc Natl Acad Sci U S A 93, 10515-10518. Sun, T.P., and Kamiya, Y. (1994). The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Plant Cell 6, 1509-1518. Terada, R., Urawa, H., Inagaki, Y., Tsugane, K., and Iida, S. (2002). Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 20, 1030-1034. Thomas, S.G., Phillips, A.L., and Hedden, P. (1999). Molecular cloning and functional expression of gibberellin 2- oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci U S A 96, 4698-4703. Ueguchi-Tanaka, M., Ashikari, M., Nakajima, M., Itoh, H., Katoh, E., Kobayashi, M., Chow, T.Y., Hsing, Y.I., Kitano, H., Yamaguchi, I., and Matsuoka, M. (2005). GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437, 693-698. Valegard, K., van Scheltinga, A.C., Lloyd, M.D., Hara, T., Ramaswamy, S., Perrakis, A., Thompson, A., Lee, H.J., Baldwin, J.E., Schofield, C.J., Hajdu, J., and Andersson, I. (1998). Structure of a cephalosporin synthase. Nature 394, 805-809. Varbanova, M., Yamaguchi, S., Yang, Y., McKelvey, K., Hanada, A., Borochov, R., Yu, F., Jikumaru, Y., Ross, J., Cortes, D., Ma, C.J., Noel, J.P., Mander, L., Shulaev, V., Kamiya, Y., Rodermel, S., Weiss, D., and Pichersky, E. (2007). Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2. Plant Cell 19, 32-45. Wang, H., Caruso, L.V., Downie, A.B., and Perry, S.E. (2004). The embryo MADS domain protein AGAMOUS-Like 15 directly regulates expression of a gene encoding an enzyme involved in gibberellin metabolism. Plant Cell 16, 1206-1219. Weiss, D., and Ori, N. (2007). Mechanisms of cross talk between gibberellin and other hormones. Plant Physiology 144, 1240-1246. Weller, J.L., Hecht, V., Vander Schoor, J.K., Davidson, S.E., and Ross, J.J. (2009). Light Regulation of Gibberellin Biosynthesis in Pea Is Mediated through the COP1/HY5 Pathway. The Plant Cell Online 21, 800-813. Wolf, A.E., Dietz, K.J., and Schroder, P. (1996). Degradation of glutathione S-conjugates by a carboxypeptidase in the plant vacuole. FEBS Lett 384, 31-34. Xu, K., Xu, X., Fukao, T., Canlas, P., Maghirang-Rodriguez, R., Heuer, S., Ismail, A.M., Bailey-Serres, J., Ronald, P.C., and Mackill, D.J. (2006). Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442, 705-708. Yamaguchi, S. (2008). Gibberellin Metabolism and its Regulation. Annual Review of Plant Biology 59, 225-251. Yamaguchi, S., and Kamiya, Y. (2000). Gibberellin biosynthesis: its regulation by endogenous and environmental signals. Plant Cell Physiol 41, 251-257. Yamauchi, Y., Ogawa, M., Kuwahara, A., Hanada, A., Kamiya, Y., and Yamaguchi, S. (2004). Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16, 367-378. Yamauchi, Y., Takeda-Kamiya, N., Hanada, A., Ogawa, M., Kuwahara, A., Seo, M., Kamiya, Y., and Yamaguchi, S. (2007). Contribution of gibberellin deactivation by AtGA2ox2 to the suppression of germination of dark-imbibed Arabidopsis thaliana seeds. Plant Cell Physiol 48, 555-561. Yu, J., Hu, S., Wang, J., Wong, G.K., Li, S., Liu, B., Deng, Y., Dai, L., Zhou, Y., Zhang, X., Cao, M., Liu, J., Sun, J., Tang, J., Chen, Y., Huang, X., Lin, W., Ye, C., Tong, W., Cong, L., Geng, J., Han, Y., Li, L., Li, W., Hu, G., Li, J., Liu, Z., Qi, Q., Li, T., Wang, X., Lu, H., Wu, T., Zhu, M., Ni, P., Han, H., Dong, W., Ren, X., Feng, X., Cui, P., Li, X., Wang, H., Xu, X., Zhai, W., Xu, Z., Zhang, J., He, S., Xu, J., Zhang, K., Zheng, X., Dong, J., Zeng, W., Tao, L., Ye, J., Tan, J., Chen, X., He, J., Liu, D., Tian, W., Tian, C., Xia, H., Bao, Q., Li, G., Gao, H., Cao, T., Zhao, W., Li, P., Chen, W., Zhang, Y., Hu, J., Liu, S., Yang, J., Zhang, G., Xiong, Y., Li, Z., Mao, L., Zhou, C., Zhu, Z., Chen, R., Hao, B., Zheng, W., Chen, S., Guo, W., Tao, M., Zhu, L., Yuan, L., and Yang, H. (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79-92. Zentella, R., Zhang, Z.L., Park, M., Thomas, S.G., Endo, A., Murase, K., Fleet, C.M., Jikumaru, Y., Nambara, E., Kamiya, Y., and Sun, T.P. (2007). Global analysis of della direct targets in early gibberellin signaling in Arabidopsis. Plant Cell 19, 3037-3057. Zhu, Y., Nomura, T., Xu, Y., Zhang, Y., Peng, Y., Mao, B., Hanada, A., Zhou, H., Wang, R., Li, P., Zhu, X., Mander, L.N., Kamiya, Y., Yamaguchi, S., and He, Z. (2006). ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell 18, 442-456.
摘要: GA 2-oxidases (GA2oxs) are enzymes involved in the GA catabolic pathway that hydroxylate the C-2 of active GAs or GA precursors to produce biologically inactive GAs. Ten GA2ox genes have been identified in rice and they were divided into C19-type (OsGA2ox1-4, 7-8 and 10) and C20-type OsGA2oxs (OsGA2ox5-6 and 9). The C20-type OsGA2oxs contains three conserved motifs that have not been previously studied and also a C19-type OsGA2ox2 gene which has not been characterized. The purpose of this study is to study the functions of OsGA2ox2 gene in rice and to elucidate the functional roles of the conserved motifs in C20-type OsGA2ox6. To study the function of OsGA2ox2, two T-DNA insertion mutants M43852 and M43211 with T-DNA tag inserted next to OsGA2ox2 gene were isolated and characterized. The mutant M43211 showed the same phenotype as TNG67 with no activation of OsGA2ox2, while M43852 revealed semi-dwarf with more tillers and showed increased expression of OsGA2ox2. Further experiments using transgenic rice to over-express OsGA2ox2 revealed severe dwarf yet fertile plants. The severe dwarf (35% of TNG67) phenomenon was different from the activation mutant M43852 (70% of TNG67), and the capability to produce seeds was in constrast to the C19-type GA2oxs over-expression transgenic rice plants which were mostly sterile. In addition, transgenic rice over-expressing OsGA2ox2 also resulted in increased expression of OsGA3ox2 and OsGA20ox2 genes and their dwarf phenotype could be partially recapitulated by adding GA3. Taken together, these results suggest that the OsGA2ox2 has GA 2-oxidase activity and is responsible for the dwarf phenotype observed in M43852 and over-expression transgenic rice. However, the different degrees of plant height between M43852 and over-expression transgenic rice could be attributed to the different levels of OsGA2ox2 expression. To elucidate the function of the conserved motifs in C20-type GA2oxs, 11 mutated OsGA2ox6 genes which each contain a single amino acid change in different conserved motifs were created and used to transform rice. Based on the dwarf degrees observed in the transgenic rice over-expressing different mutated genes, it can be observed that the mutant Y123A in motif I lost OsGA2ox6 activity completely, while mutants E140A, A141E and H143A in motif II lost OsGA2ox6 activity partially, whereas mutant G343A in motif III show reduced OsGA2ox6 activity. In summary, the C19-type GA2ox2 is a functional GA 2-oxidase when over-expression can reduce plant height and several critical amino acid sequences in the conserved motifs have been demonstrated to play a crucial role in determining the activity of OsGA2ox6.
GA 2-oxidases (GA2oxs)能夠對活化態GA或是GA前驅物的C-2位置進行hydroxylation,使其轉變成不活化態,為GA代謝途徑的主要酵素。過去的研究中發現水稻具有十個GA2oxs且被分類為C19類型 (OsGA2ox1-4、7-8 & 10)和C20類型 (OsGA2ox5-6 & 9),此外不論是C20類型的OsGA2oxs特有的三個保留性區域或是C19類型的OsGA2ox2,目前都沒有被研究過。因此本實驗之目的為研究水稻的OsGA2ox2之功能以及解釋三個保留性區域對於C20類型的OsGA2ox6扮演何種腳色。為了研究OsGA2xo2之功能,本實驗從T-DNA突變庫找到了兩個T-DNA插入位置在OsGA2ox2基因附近的T-DNA插入突變體M43852及M43211。M43211之外表性狀和TNG67相同且OsGA2ox2並沒有活化,然而M43852呈現半矮化、多分蘗和OsGA2ox2表現活化等情形。利用轉基因技術大量表現OsGA2ox2於轉殖株中,造成植株嚴重矮化,這樣嚴重矮化 (TNG67的35%)的性狀和M43852半矮化 (TNG67的70%)之性狀不同,另外轉殖株仍能夠結穗稔實這點與過去所探討的C19類型的OsGA2oxs其轉殖株皆無法結穗稔實不同。除此之外,轉殖株大量表現OsGA2ox2提高了OsGA3ox2和OsGA20ox2的表現量,且其株高能夠藉由處理GA3有部分回復的情形,綜合上述資料顯示OsGA2ox2可能具有GA 2-oxidase之酵素活性,因此造成M43852及轉殖株矮化之性狀,而M43852和轉殖株之間株高的差異性可能是因為OsGA2ox2表現量不同所導致。另一方面,為了解釋C20類型的GA2oxs三個保留性區域之功能,利用單一胺基酸置換製造十一個OsGA2ox6點突變構築並將其轉形至水稻,根據不同點突變轉殖株之株高,觀察到保留性區域I的Y123A失去了OsGA2ox6之酵素活性,保留性區域II的E140A、A141E及H143A喪失了部分的OsGA2ox6之酵素活性,而保留性區域III的G343A則輕微減少了OsGA2ox6之酵素活性。整體來說,C19類型的OsGA2ox2可能具有GA 2-oxidase之酵素活性,當大量表現OsGA2ox2時能夠減少植株之株高,而本實驗也從各保留性區域找到數個重要胺基酸能夠影響到OsGA2ox6之酵素活性。
其他識別: U0005-2408201112452400
Appears in Collections:分子生物學研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.