Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22283
標題: 應用金黃色葡萄球菌鎘離子運輸蛋白CadA於斑馬魚重金屬抗性之研究
Application of the Staphylococcus aureus cadmium-transporter CadA in zebrafish(Danio rerio) for heavy metal resistance
作者: 李郁蕙
Li, Yu-Hui
關鍵字: cadmium

cadA
zebrafish
pI258
microinjection
heavy metal resistance
痛痛病
金黃色葡萄球菌
鎘離子運輸蛋白
顯微注射法
斑馬魚
出版社: 生命科學系所
引用: 彭雨菁(Yu-Ching Peng)。2005。吳郭魚之金屬硫蛋白質在重金屬之生物檢測及其生物復育之應用。國立中興大學生命科學系,碩士論文。 汪玉婷。2004。基因轉殖大腸桿菌吸附重金屬之精細結構分析。元智大學化學工程學系,碩士論文。 Bal, N., C. C. Wu, P. Catty, F. Guillain, and E. Mintz. 2003. Cd2+ and the N-terminal metal-binding domain protect the putative membranous CPC motif of the Cd2+-ATPase of Listeria monocytogenes. Biochem. J. 369:681-685. Bizily, S. P., C. L. Rugh, A. O. Summers, and R. B. Meagher. 1999. Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc. Natl. Acad. Sci. U. S. A 96:6808-6813. Blechinger, S. R., J. T. Warren, Jr., J. Y. Kuwada, and P. H. Krone. 2002. Developmental toxicology of cadmium in living embryos of a stable transgenic zebrafish line. Environ. Health Perspect. 110:1041-1046. Chan, K. M., L. L. Ku, P. C. Chan, and W. K. Cheuk. 2006. Metallothionein gene expression in zebrafish embryo-larvae and ZFL cell-line exposed to heavy metal ions. Mar. Environ. Res. Chen, T. T. and D. A. Powers. 1990. Transgenic fish. Trends Biotechnol. 8:209-215. Chen, W. Y., J. A. John, C. H. Lin, H. F. Lin, S. C. Wu, C. H. Lin, and C. Y. Chang. 2004. Expression of metallothionein gene during embryonic and early larval development in zebrafish. Aquat. Toxicol. 69:215-227. Chen, X., A. Agarwal, and D. P. Giedroc. 1998. Structural and functional heterogeneity among the zinc fingers of human MRE-binding transcription factor-1. Biochemistry 37:11152-11161. Covarrubias, L., Y. Nishida, and B. Mintz. 1986. Early postimplantation embryo lethality due to DNA rearrangements in a transgenic mouse strain. Proc. Natl. Acad. Sci. U. S. A 83:6020-6024. Emmerson, B. T. 1970. "Ouch-ouch" disease: the osteomalacia of cadmium nephropathy. Ann. Intern. Med. 73:854-855. Endo, G. and S. Silver. 1995. CadC, the transcriptional regulatory protein of the cadmium resistance system of Staphylococcus aureus plasmid pI258. J. Bacteriol. 177:4437-4441. George, S. G., K. Todd, and J. Wright. 1996. Regulation of metallothionein in teleosts: induction of MTmRNA and protein by cadmium in hepatic and extrahepatic tissues of a marine flatfish, the turbot (Scophthalmus maximus). Comp Biochem. Physiol C. Pharmacol. Toxicol. Endocrinol. 113:109-115. Gong, Z., T. Yan, J. Liao, S. E. Lee, J. He, and C. L. Hew. 1997. Rapid identification and isolation of zebrafish cDNA clones. Gene 201:87-98.. Guffanti, A. A., Y. Wei, S. V. Rood, and T. A. Krulwich. 2002. An antiport mechanism for a member of the cation diffusion facilitator family: divalent cations efflux in exchange for K+ and H+. Mol. Microbiol. 45:145-153. Hamer, D. H. 1986. Metallothionein. Annu. Rev. Biochem. 55:913-951. Harada, M. 1995. Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev. Toxicol. 25:1-24. Inoue, K., S. Yamashita, J. Hata, S. Kabeno, S. Asada, E. Nagahisa, and T. Fujita. 1990. Electroporation as a new technique for producing transgenic fish. Cell Differ. Dev. 29:123-128. Kagi, J. H. 1991. Overview of metallothionein. Methods Enzymol. 205:613-626. Kagi, J. H. and Y. Kojima. 1987. Chemistry and biochemistry of metallothionein. Experientia Suppl 52:25-61. Kagi, J. H. and A. Schaffer. 1988. Biochemistry of metallothionein. Biochemistry 27:8509-8515. Kimura, T., N. Itoh, M. Takehara, I. Oguro, J. Ishizaki, T. Nakanishi, and K. Tanaka. 2002. MRE-binding transcription factor-1 is activated during endotoxemia: a central role for metallothionein. Toxicol. Lett. 129:77-84. Labrot, F., J. F. Narbonne, P. Ville, D. M. Saint, and D. Ribera. 1999. Acute toxicity, toxicokinetics, and tissue target of lead and uranium in the clam Corbicula fluminea and the worm Eisenia fetida: comparison with the fish Brachydanio rerio. Arch. Environ. Contam Toxicol. 36:167-178. Lavitrano, M., A. Camaioni, V. M. Fazio, S. Dolci, M. G. Farace, and C. Spadafora. 1989. Sperm cells as vectors for introducing foreign DNA into eggs: genetic transformation of mice. Cell 57:717-723. Legatzki, A., G. Grass, A. Anton, C. Rensing, and D. H. Nies. 2003. Interplay of the Czc system and two P-type ATPases in conferring metal resistance to Ralstonia metallidurans. J. Bacteriol. 185:4354-4361. Lele, Z. and P. H. Krone. 1996. The zebrafish as a model system in developmental, toxicological and transgenic research. Biotechnol. Adv. 14:57-72. Liao, V. H., J. Dong, and J. H. Freedman. 2002. Molecular characterization of a novel, cadmium-inducible gene from the nematode Caenorhabditis elegans. A new gene that contributes to the resistance to cadmium toxicity. J. Biol. Chem. 277:42049-42059. Margoshes, M. and B. L. Vallee. 1957. A cadmium protein from equine kidney cortex. J. Am. Chem. Soc. 79:4813-4814. Mayer, G. D., A. Leach, P. Kling, P. E. Olsson, and C. Hogstrand. 2003. Activation of the rainbow trout metallothionein-A promoter by silver and zinc. Comp Biochem. Physiol B Biochem. Mol. Biol. 134:181-188. Mejare, M. and L. Bulow. 2001. Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol. 19:67-73. Moffatt, P. and F. Denizeau. 1997. Metallothionein in physiological and physiopathological processes. Drug Metab Rev. 29:261-307. Muller, F., Z. Ivics, F. Erdelyi, T. Papp, L. Varadi, L. Horvath, and N. Maclean. 1992. Introducing foreign genes into fish eggs with electroporated sperm as a carrier. Mol. Mar. Biol. Biotechnol. 1:276-281. Nies, D. H. 1999. Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 51:730-750. Nies, D. H. 1992. Resistance to cadmium, cobalt, zinc, and nickel in microbes. Plasmid 27:17-28. Nogawa, K. and T. Kido. 1993. Biological monitoring of cadmium exposure in itai-itai disease epidemiology. Int. Arch. Occup. Environ. Health 65:S43-S46. Novick, R. P. and C. Roth. 1968. Plasmid-linked resistance to inorganic salts in Staphylococcus aureus. J. Bacteriol. 95:1335-1342. Patrick, L. 2003. Toxic metals and antioxidants: Part II. The role of antioxidants in arsenic and cadmium toxicity. Altern. Med. Rev. 8:106-128. Peters, K. G., P. S. Rao, B. S. Bell, and L. A. Kindman. 1995. Green fluorescent fusion proteins: powerful tools for monitoring protein expression in live zebrafish embryos. Dev. Biol. 171:252-257. Reddy, G. N. and M. N. Prasad. 1992. Cadmium induced potassium efflux from Scenedesmus quadricauda. Bull. Environ. Contam Toxicol. 49:600-605. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: A laboratory manual, 2nd edition. Cold Spring Laboratory. Cold Spring Harbor, New York. Silver, S. 1996. Bacterial resistances to toxic metal ions--a review. Gene 179:9-19. Silver, S. and L. T. Phung. 1996. Bacterial heavy metal resistance: new surprises. Annu. Rev. Microbiol. 50:753-789. Smirnova, I. V., D. C. Bittel, R. Ravindra, H. Jiang, and G. K. Andrews. 2000. Zinc and cadmium can promote rapid nuclear translocation of metal response element-binding transcription factor-1. J. Biol. Chem. 275:9377-9384. Stuart, G. W., J. V. McMurray, and M. Westerfield. 1988. Replication, integration and stable germ-line transmission of foreign sequences injected into early zebrafish embryos. Development 103:403-412. Tsai, K. J., Y. F. Lin, M. D. Wong, H. H. Yang, H. L. Fu, and B. P. Rosen. 2002. Membrane topology of the p1258 CadA Cd(II)/Pb(II)/Zn(II)-translocating P-type ATPase. J. Bioenerg. Biomembr. 34:147-156. Tynecka, Z., Z. Gos, and J. Zajac. 1981. Energy-dependent efflux of cadmium coded by a plasmid resistance determinant in Staphylococcus aureus. J. Bacteriol. 147:313-319. Vallee, B. L. and D. D. Ulmer. 1972. Biochemical effects of mercury, cadmium, and lead. Annu. Rev. Biochem. 41:91-128. Wan, M., R. Heuchel, F. Radtke, P. E. Hunziker, and J. H. Kagi. 1995. Regulation of metallothionein gene expression in Cd- or Zn-adapted RK-13 cells. Experientia 51:606-611. Winkler, C., J. R. Vielkind, and M. Schartl. 1991. Transient expression of foreign DNA during embryonic and larval development of the medaka fish (Oryzias latipes). Mol. Gen. Genet. 226:129-140. Wu, S. M., C. F. Weng, J. C. Hwang, C. J. Huang, and P. P. Hwang. 2000. Metallothionein induction in early larval stages of tilapia (Oreochromis mossambicus). Physiol Biochem. Zool. 73:531-537. Yan, C. H. and K. M. Chan. 2004. Cloning of zebrafish metallothionein gene and characterization of its gene promoter region in HepG2 cell line. Biochim. Biophys. Acta 1679:47-58. Yan, C. H. and K. M. Chan. 2002. Characterization of zebrafish metallothionein gene promoter in a zebrafish caudal fin cell-line, SJD. 1. Mar. Environ. Res. 54:335-339. Yiangou, M., X. Ge, K. C. Carter, and J. Papaconstantinou. 1991. Induction of several acute-phase protein genes by heavy metals: a new class of metal-responsive genes. Biochemistry 30:3798-3806.
摘要: 鎘用於電鍍工業、礦業、冶鍊、電池、廢五金、染料、焊料,以及用於製造塑膠之穩定劑。離子形式的鎘對生物有很大的威脅,可經由食物鏈之關係進而危害到人類的健康,日本就曾經出現鎘中毒引起的「痛痛病」(Itai-itai disease),因此鎘污染所造成的生態環境破壞以及對人類構成的危險引起國際上的重視。鎘對魚類的影響,包括造成不正常顫抖、激烈泳動、破壞表皮、滲透壓之不平衡、影響鰓之結構與功能、生長遲緩、畸形、電解質失調等。為了解除鎘的毒性,生物體自低等的細菌至高等的哺乳動物都發展出一些獨特的解毒機制。其中,金黃色葡萄球菌(Staphylococcus aureus)之質體pI258上基因cadA,其產物CadA屬於P-type ATPase,為一種需要水解ATP以提供能量的鎘離子排出系統。本研究的主要目的是將pI258上cadA基因,以金屬硫蛋白MT(metallothionein)啟動子構築於帶有綠螢光蛋白(green fluorescent protein, GFP)報告基因的載體pIRES-hrGFP-1a上,並利用顯微注射法(microinjection)轉殖至斑馬魚(Danio rerio),期可以藉P-type ATPase將鎘排出細胞外而不累積在細胞內的方式,探討cadA基因轉殖斑馬魚對鎘的抗性是否能增加及減少累積量,解決鎘等重金屬累積在魚類食品的問題。本研究利用聚合酶連鎖反應及反轉錄聚合酶連鎖反應篩選表現cadA基因的轉殖斑馬魚,並且繼續飼養孵育。在進行受精後72小時孵化完成之野生種斑馬魚稚魚之鎘、鋅、鉛重金屬96小時抗性測試中發現,野生種斑馬魚稚魚在鎘溶液5 μM、鋅溶液76.5 μM ,或鉛溶液12.0 μM 時,分別能夠約有50 %存活率。而另在鎘溶液5、10 μM及鋅溶液51.0、61.2 μM中進行抗性測試的結果顯示,短暫性(transient)表現cadA基因的轉殖斑馬魚在鎘及鋅抗性表現上確實比野生種高。
Cadmium(Cd) is a non-essential metal for the organisms, widely used in industrialized countries. The Itai-itai disease caused by cadmium contamination has made a serious impact on human health for its bioaccumulation through the food chain. Cadmium represents a heavy metal pollutant in Taiwan. Under the Cd2+ exposure, fresh water fish experiences growth inhibition and even death. Homeostatic mechanisms are required for all organisms to minimize the toxicity of cadmium. The motivation of this study is to clone and to transfer the cadA gene originated from bacterial plasmid, Staphylococcus aureus plasmid pI258, into Danio rerio. Experiments were conducted to examine whether it would confer resistance to cadmium, lead(Pb), zinc(Zn) as well as decrease the heavy metal content of the transgenic zebrafish. The stable transgenic germ-lines were confirmed both in DNA, and RNA level. Furthermore, fish embryos during developing or larvae in general showed the highest susceptibility in the fish life cycle. Posthatch larvae were continuously exposed to 5 μM Cd, 76.5 μM Zn, or 12.0 μM Pb for 96 hours beginning at the 72nd hour after fertilization, and resulting in a larval survival of near 50%.On the other hand, transient zebrafish expressing cadA showed that CadA was functionally active and that the zebrafish had enhanced resistance to Cd(II), and Zn(II). These results suggest that transgenic zebrafish expressing cadA can enhance metal resistance probably due to the ability to reduce the heavy metal content in fish.
URI: http://hdl.handle.net/11455/22283
其他識別: U0005-0307200600152900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0307200600152900
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.