Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22317
標題: 偵測及篩選分離厭氧產氫系統中的微生物
Detection and isolation of clostridial strains in a fermentative hydrogen-producing system
作者: 陳永田
Chen, Yung-Tien
關鍵字: 產氫酶反轉錄聚合酶連鎖反應
CMS (condensed molasses fermentation solubles)
梭狀芽孢桿菌
變性梯度膠體電泳
hydrogenase
RT-PCR (reverse transcriptase polymerase chain reaction)
Clostridium
DGGE (denaturing gradient gel electrophoresis)
出版社: 生命科學系所
引用: 洪國彦 (2005) 在不同水力停留時間條件下醱酵產氫系統中的微生物多樣性. 中興大學生命科學系. 碩士論文 張瑞仁 (2006) 以分子生物技術建構厭氧產氫系統之基礎研究. 中興大學生命科學系. 博士論文 Ackrell, B. A., R. N. Asato, and H. F. Mower. 1966. Multiple forms of bacterial hydrogenases. J Bacteriol 92:828-38. Beckers, G., L. Nolden, and A. Burkovski. 2001. Glutamate synthase of Corynebacterium glutamicum is not essential for glutamate synthesis and is regulated by the nitrogen status. Microbiology 147:2961-70. Behensky, P., V. Stenzl, F. Adamek, and V. Behal. 1999. Conversion of glutamate to glutamine by permeabilized Corynebacterium glutamicum. Folia Microbiol (Praha) 44:487-90. Both, B., W. Buckel, R. Kroppenstedt, and E. Stackebrandt. 1992. Phylogenetic and chemotaxonomic characterization of Acidaminococcus fermentans. FEMS Microbiol Lett 76:7-11. Bott, M., and A. Niebisch. 2003. The respiratory chain of Corynebacterium glutamicum. J Biotechnol 104:129-53. Buckel, W. 1980. Analysis of the fermentation pathways of clostridia using double labelled glutamade. Arch Microbiol 127:167-9. Buckel, W., and H. A. Barker. 1974. Two pathways of glutamate fermentation by anaerobic bacteria. J Bacteriol 117:1248-60. Chen, C. C., C. Y. Lin, and J. S. Chang. 2001. Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate. Appl Microbiol Biotechnol 57:56-64. Chen, C. C., C. Y. Lin, and M. C. Lin. 2002. Acid-base enrichment enhances anaerobic hydrogen production process. Appl Microbiol Biotechnol 58:224-8. Cook, G. M., F. A. Rainey, G. Chen, E. Stackebrandt, and J. B. Russell. 1994. Emendation of the description of Acidaminococcus fermentans, a trans-aconitate- and citrate-oxidizing bacterium. Int J Syst Bacteriol 44:576-8. Del Mar Gamboa, M., E. Rodriguez, and P. Vargas. 2005. Diversity of mesophilic clostridia in Costa Rican soils. Anaerobe 11:322-6. Delaunay, S., P. Daran-Lapujade, J. M. Engasser, and J. L. Goergen. 2004. Glutamate as an inhibitor of phosphoenolpyruvate carboxylase activity in Corynebacterium glutamicum. J Ind Microbiol Biotechnol 31:183-8. Delaunay, S., D. Uy, M. F. Baucher, J. M. Engasser, A. Guyonvarch, and J. L. Goergen. 1999. Importance of phosphoenolpyruvate carboxylase of Corynebacterium glutamicum during the temperature triggered glutamic acid fermentation. Metab Eng 1:334-43. Demain, A. L., M. Newcomb, and J. H. Wu. 2005. Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69:124-54. Devereux, R., and G. W. Mundfrom. 1994. A phylogenetic tree of 16S rRNA sequences from sulfate-reducing bacteria in a sandy marine sediment. Appl Environ Microbiol 60:3437-9. Dewhirst, F. E., B. J. Paster, N. Tzellas, B. Coleman, J. Downes, D. A. Spratt, and W. G. Wade. 2001. Characterization of novel human oral isolates and cloned 16S rDNA sequences that fall in the family Coriobacteriaceae: description of olsenella gen. nov., reclassification of Lactobacillus uli as Olsenella uli comb. nov. and description of Olsenella profusa sp. nov. Int J Syst Evol Microbiol 51:1797-804. Doores, S., and D. C. Westhoff. 1983. Selective method for the isolation of Sporolactobacillus from food and environment sources. J Appl Bacteriol 54:273-80. Fang, H. H., H. Liu, and T. Zhang. 2002. Characterization of a hydrogen-producing granular sludge. Biotechnol Bioeng 78:44-52. Fang, H. H., T. Zhang, and H. Liu. 2002. Microbial diversity of a mesophilic hydrogen-producing sludge. Appl Microbiol Biotechnol 58:112-8. Georgi, T., D. Rittmann, and V. F. Wendisch. 2005. Lysine and glutamate production by Corynebacterium glutamicum on glucose, fructose and sucrose: roles of malic enzyme and fructose-1,6-bisphosphatase. Metab Eng 7:291-301. Gerstmeir, R., V. F. Wendisch, S. Schnicke, H. Ruan, M. Farwick, D. Reinscheid, and B. J. Eikmanns. 2003. Acetate metabolism and its regulation in Corynebacterium glutamicum. J Biotechnol 104:99-122. Gest, H. 1952. Properties of cell-free hydrogenases of Escherichia coli and Rhodospirillum rubrum. J Bacteriol 63:111-21. Gourdon, P., and N. D. Lindley. 1999. Metabolic analysis of glutamate production by Corynebacterium glutamicum. Metab Eng 1:224-31. Greetham, H. L., M. D. Collins, G. R. Gibson, C. Giffard, E. Falsen, and P. A. Lawson. 2004. Sutterella stercoricanis sp. nov., isolated from canine faeces. Int J Syst Evol Microbiol 54:1581-4. Griswold, K. E., B. A. White, and R. I. Mackie. 1999. Diversity of extracellular proteolytic activities among Prevotella species from the rumen. Curr Microbiol 39:187-94. Gutmann, M., C. Hoischen, and R. Kramer. 1992. Carrier-mediated glutamate secretion by Corynebacterium glutamicum under biotin limitation. Biochim Biophys Acta 1112:115-23. Haneda, J., Y. Shiobara, M. Inui, T. Sekiguchi, Y. Sato, Y. Takayama, R. Kikuno, S. Okuda, M. Inoue, and T. Sasahara. 2006. [Distribution of Clostridium tetani in topsoil from Sagamihara, central Japan]. Kansenshogaku Zasshi 80:690-3. Hartel, U., and W. Buckel. 1996. Fermentation of trans-aconitate via citrate, oxaloacetate, and pyruvate by Acidaminococcus fermentans. Arch Microbiol 166:342-9. Hartel, U., and W. Buckel. 1996. Sodium ion-dependent hydrogen production in Acidaminococcus fermentans. Arch Microbiol 166:350-6. Hernandez, F., and R. Guillen. 2000. Microwave processing for scanning electron microscopy. Eur J Morphol 38:109-11. Hoischen, C., and R. Kramer. 1990. Membrane alteration is necessary but not sufficient for effective glutamate secretion in Corynebacterium glutamicum. J Bacteriol 172:3409-16. Holzapfel, W. H., and S. J. Botha. 1988. Physiology of Sporolactobacillus strains isolated from different habitats and the indication of in vitro antagonism against Bacillus species. Int J Food Microbiol 7:161-8. Hyronimus, B., C. Le Marrec, A. H. Sassi, and A. Deschamps. 2000. Acid and bile tolerance of spore-forming lactic acid bacteria. Int J Food Microbiol 61:193-7. Iyer, P., M. A. Bruns, H. Zhang, S. Van Ginkel, and B. E. Logan. 2004. H2-producing bacterial communities from a heat-treated soil inoculum. Appl Microbiol Biotechnol 66:166-73. Jakoby, M., R. Kramer, and A. Burkovski. 1999. Nitrogen regulation in Corynebacterium glutamicum: isolation of genes involved and biochemical characterization of corresponding proteins. FEMS Microbiol Lett 173:303-10. Kanwar, S. S., H. K. Tewari, B. S. Chadha, V. Punj, and V. K. Sharma. 1995. Lactic acid production from molasses by Sporolactobacillus cellulosolvens. Acta Microbiol Immunol Hung 42:331-8. Kataoka, M., K. I. Hashimoto, M. Yoshida, T. Nakamatsu, S. Horinouchi, and H. Kawasaki. 2006. Gene expression of Corynebacterium glutamicum in response to the conditions inducing glutamate overproduction. Lett Appl Microbiol 42:471-6. Kato, S., S. Haruta, Z. J. Cui, M. Ishii, and Y. Igarashi. 2004. Effective cellulose degradation by a mixed-culture system composed of a cellulolytic Clostridium and aerobic non-cellulolytic bacteria. FEMS Microbiol Ecol 51:133-42. Kimura, E. 2003. Metabolic engineering of glutamate production. Adv Biochem Eng Biotechnol 79:37-57. Kimura, E. 2002. Triggering mechanism of L-glutamate overproduction by DtsR1 in coryneform bacteria. J Biosci Bioeng 94:545-51. Kramer, R., and C. Lambert. 1990. Uptake of glutamate in Corynebacterium glutamicum. 2. Evidence for a primary active transport system. Eur J Biochem 194:937-44. Kramer, R., C. Lambert, C. Hoischen, and H. Ebbighausen. 1990. Uptake of glutamate in Corynebacterium glutamicum. 1. Kinetic properties and regulation by internal pH and potassium. Eur J Biochem 194:929-35. Kronemeyer, W., N. Peekhaus, R. Kramer, H. Sahm, and L. Eggeling. 1995. Structure of the gluABCD cluster encoding the glutamate uptake system of Corynebacterium glutamicum. J Bacteriol 177:1152-8. Lambert, C., A. Erdmann, M. Eikmanns, and R. Kramer. 1995. Triggering Glutamate Excretion in Corynebacterium glutamicum by Modulating the Membrane State with Local Anesthetics and Osmotic Gradients. Appl Environ Microbiol 61:4334-4342. Lapujade, P., J. L. Goergen, and J. M. Engasser. 1999. Glutamate excretion as a major kinetic bottleneck for the thermally triggered production of glutamic acid by Corynebacterium glutamicum. Metab Eng 1:255-61. Lay, J. J. 2000. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol Bioeng 68:269-78. Lee, K. S., J. F. Wu, Y. S. Lo, Y. C. Lo, P. J. Lin, and J. S. Chang. 2004. Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor. Biotechnol Bioeng 87:648-57. Leuchtenberger, W., K. Huthmacher, and K. Drauz. 2005. Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69:1-8. Liu, W. T., K. D. Linning, K. Nakamura, T. Mino, T. Matsuo, and L. J. Forney. 2000. Microbial community changes in biological phosphate-removal systems on altering sludge phosphorus content. Microbiology 146 ( Pt 5):1099-107. Liu, X., Y. Zhu, and S. T. Yang. 2006. Construction and characterization of ack deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid and hydrogen production. Biotechnol Prog 22:1265-75. Logan, B. E., S. E. Oh, I. S. Kim, and S. Van Ginkel. 2002. Biological hydrogen production measured in batch anaerobic respirometers. Environ Sci Technol 36:2530-5. Maamar, H., L. Abdou, C. Boileau, O. Valette, and C. Tardif. 2006. Transcriptional analysis of the cip-cel gene cluster from Clostridium cellulolyticum. J Bacteriol 188:2614-24. Maeda, I., T. Mizoguchi, Y. Miura, K. Yagi, N. Shioji, and H. Miyasaka. 2000. Influence of sulfate-reducing bacteria on outdoor hydrogen production by photosynthetic bacterium with seawater. Curr Microbiol 40:210-3. Marx, A., B. J. Eikmanns, H. Sahm, A. A. de Graaf, and L. Eggeling. 1999. Response of the central metabolism in Corynebacterium glutamicum to the use of an NADH-dependent glutamate dehydrogenase. Metab Eng 1:35-48. Mathot, A. G., E. Beliard, and D. Thuault. 2003. Streptococcus thermophilus 580 produces a bacteriocin potentially suitable for inhibition of Clostridium tyrobutyricum in hard cheese. J Dairy Sci 86:3068-74. Matsui, H., K. Ogata, K. Tajima, M. Nakamura, T. Nagamine, R. I. Aminov, and Y. Benno. 2000. Phenotypic characterization of polysaccharidases produced by four Prevotella type strains. Curr Microbiol 41:45-9. McGarvey, J. A., W. G. Miller, S. Sanchez, and L. Stanker. 2004. Identification of bacterial populations in dairy wastewaters by use of 16S rRNA gene sequences and other genetic markers. Appl Environ Microbiol 70:4267-75. Nielsen, A. T., W. T. Liu, C. Filipe, L. Grady, Jr., S. Molin, and D. A. Stahl. 1999. Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor. Appl Environ Microbiol 65:1251-8. Nolden, L., M. Farwick, R. Kramer, and A. Burkovski. 2001. Glutamine synthetases of Corynebacterium glutamicum: transcriptional control and regulation of activity. FEMS Microbiol Lett 201:91-8. Ogino, H., T. Miura, K. Ishimi, M. Seki, and H. Yoshida. 2005. Hydrogen production from glucose by anaerobes. Biotechnol Prog 21:1786-8. Okino, S., M. Inui, and H. Yukawa. 2005. Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 68:475-80. Rajeshkumar, K., and K. Jayachandran. 2004. Treatment of dairy wastewater using a selected bacterial isolate, Alcaligenes sp. MMRR7. Appl Biochem Biotechnol 118:65-72. Ren, N. Q., H. Chua, S. Y. Chan, Y. F. Tsang, Y. J. Wang, and N. Sin. 2006. Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors. Bioresour Technol. Rilla, N., B. Martinez, T. Delgado, and A. Rodriguez. 2003. Inhibition of Clostridium tyrobutyricum in Vidiago cheese by Lactococcus lactis ssp. lactis IPLA 729, a nisin Z producer. Int J Food Microbiol 85:23-33. Rogosa, M. 1969. Acidaminococcus gen. n., Acidaminococcus fermentans sp. n., anaerobic gram-negative diplococci using amino acids as the sole energy source for growth. J Bacteriol 98:756-66. Sales-Duval, M., F. Lucas, and G. Blanchart. 2002. Effects of exogenous ammonia or free amino acids on proteolytic activity and protein breakdown products in Streptococcus bovis, Prevotella albensis, and Butyrivibrio fibrisolvens. Curr Microbiol 44:435-43. Sawayama, S., K. Tsukahara, and T. Yagishita. 2006. Phylogenetic description of immobilized methanogenic community using real-time PCR in a fixed-bed anaerobic digester. Bioresour Technol 97:69-76. Schallehn, G., and M. H. Wolff. 1988. [Morphological changes in human embryonic lung fibroblasts caused by cytotoxins of various Clostridium species]. Zentralbl Bakteriol Mikrobiol Hyg [A] 267:367-78. Seletzky, J. M., U. Noack, J. Fricke, S. Hahn, and J. Buchs. 2006. Metabolic activity of Corynebacterium glutamicum grown on L: -lactic acid under stress. Appl Microbiol Biotechnol 72:1297-307. Shirai, T., A. Nakato, N. Izutani, K. Nagahisa, S. Shioya, E. Kimura, Y. Kawarabayasi, A. Yamagishi, T. Gojobori, and H. Shimizu. 2005. Comparative study of flux redistribution of metabolic pathway in glutamate production by two coryneform bacteria. Metab Eng 7:59-69. Smith, L. D. 1970. Clostridium oceanicum, sp. n., a sporeforming anaerobe isolated from marine sediments. J Bacteriol 103:811-3. Stansen, C., D. Uy, S. Delaunay, L. Eggeling, J. L. Goergen, and V. F. Wendisch. 2005. Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl Environ Microbiol 71:5920-8. Stephenson, M., and L. H. Stickland. 1931. Hydrogenase: a bacterial enzyme activating molecular hydrogen: The properties of the enzyme. Biochem J 25:205-14. Temaru, E., S. Shimura, and T. Karasawa. 2005. Clostridium tetani Is a phospholipase (lecithinase)-producing bacterium. J Clin Microbiol 43:2024-5. Theodoratou, E., R. Huber, and A. Bock. 2005. [NiFe]-Hydrogenase maturation endopeptidase: structure and function. Biochem Soc Trans 33:108-11. Tokuda, G., I. Yamaoka, and H. Noda. 2000. Localization of symbiotic clostridia in the mixed segment of the termite Nasutitermes takasagoensis (Shiraki). Appl Environ Microbiol 66:2199-207. Trotschel, C., S. Kandirali, P. Diaz-Achirica, A. Meinhardt, S. Morbach, R. Kramer, and A. Burkovski. 2003. GltS, the sodium-coupled L-glutamate uptake system of Corynebacterium glutamicum: identification of the corresponding gene and impact on L-glutamate production. Appl Microbiol Biotechnol 60:738-42. Ueno, Y., S. Haruta, M. Ishii, and Y. Igarashi. 2001. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl Microbiol Biotechnol 57:555-62. Uy, D., S. Delaunay, P. Germain, J. M. Engasser, and J. L. Goergen. 2003. Instability of glutamate production by Corynebacterium glutamicum 2262 in continuous culture using the temperature-triggered process. J Biotechnol 104:173-84. Uy, D., S. Delaunay, J. L. Goergen, and J. M. Engasser. 2005. Dynamics of glutamate synthesis and excretion fluxes in batch and continuous cultures of temperature-triggered Corynebacterium glutamicum. Bioprocess Biosyst Eng 27:153-62. Van Dyke, M. I., and A. J. McCarthy. 2002. Molecular biological detection and characterization of Clostridium populations in municipal landfill sites. Appl Environ Microbiol 68:2049-53. Vanhoutte, T., G. Huys, E. De Brandt, G. C. Fahey, Jr., and J. Swings. 2005. Molecular monitoring and characterization of the faecal microbiota of healthy dogs during fructan supplementation. FEMS Microbiol Lett 249:65-71. Vasileva, A., and R. Jessberger. 2005. Precise hit: adeno-associated virus in gene targeting. Nat Rev Microbiol 3:837-47. Wagner, M., and A. Loy. 2002. Bacterial community composition and function in sewage treatment systems. Curr Opin Biotechnol 13:218-27. Walker, N. D., N. R. McEwan, and R. J. Wallace. 2003. Cloning and functional expression of dipeptidyl peptidase IV from the ruminal bacterium Prevotella albensis M384(T). Microbiology 149:2227-34. Wang, C. C., C. W. Chang, C. P. Chu, D. J. Lee, B. V. Chang, C. S. Liao, and J. H. Tay. 2003. Using filtrate of waste biosolids to effectively produce bio-hydrogen by anaerobic fermentation. Water Res 37:2789-93. Wang, Y., X. Song, P. P. Yang, Z. Y. Duan, and Z. G. Mao. 2003. [Purification and characterization of glutamate dehydrogenase. from Corynebacterium glutamicum S9114]. Sheng Wu Gong Cheng Xue Bao 19:725-9. Watanabe, K., Y. Kodama, and S. Harayama. 2001. Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. J Microbiol Methods 44:253-62. Wendisch, V. F., M. Spies, D. J. Reinscheid, S. Schnicke, H. Sahm, and B. J. Eikmanns. 1997. Regulation of acetate metabolism in Corynebacterium glutamicum: transcriptional control of the isocitrate lyase and malate synthase genes. Arch Microbiol 168:262-9. Xiao, J., Z. Shi, P. Gao, H. Feng, Z. Duan, and Z. Mao. 2006. On-line optimization of glutamate production based on balanced metabolic control by RQ. Bioprocess Biosyst Eng 29:109-17. Yu, B. Q., W. Shen, Z. X. Wang, and J. Zhuge. 2005. [Glyoxylate cycle is required for the overproduction of glutamate but is not essential for Corynebacterium glutamicum growth on glucose]. Sheng Wu Gong Cheng Xue Bao 21:270-4. Zhao, Y., C. A. Tomas, F. B. Rudolph, E. T. Papoutsakis, and G. N. Bennett. 2005. Intracellular butyryl phosphate and acetyl phosphate concentrations in Clostridium acetobutylicum and their implications for solvent formation. Appl Environ Microbiol 71:530-7. Zhu, Y., and S. T. Yang. 2003. Adaptation of Clostridium tyrobutyricum for enhanced tolerance to butyric acid in a fibrous-bed bioreactor. Biotechnol Prog 19:365-72. Zhu, Y., and S. T. Yang. 2004. Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum. J Biotechnol 110:143-57.
摘要: 氫氣燃燒後無污染的特性,使全球積極發展以氫能源作為替代石化能源的研究。在眾多氫氣產生方式中,由於生物性產氫技術實現了將有機廢棄物生質物轉為潔淨氫能源,其兼具廢棄物利用與能源再生的特性而受到重視。 本研究利用以糖蜜醱酵液作為基質來源的連續式厭氧產氫系統進行微生物產氫的研究。前人曾以產氫酶基因為目標進行反轉錄聚合酶連鎖反應(RT-PCR),發現系統中有Clostridium屬細菌的存在。因此本研究利用PYG培養基篩選分離系統中的Clostridium屬細菌,得到了Clostridium. tyrobutyricum F4及Clostridium pasteurianum F40兩個菌株。也利用VR培養基自糖蜜中篩到了Clostridium sporosphaeroides F52會利用味精產生氫氣的菌株。也確實有文獻提到Clostridium sporosphaeroides能以味精為單一碳源來產氫。實驗利用根據Clostridium屬細菌的產氫酶基因核苷酸序列上的保守性區域所設計的引子對,對HRT為8及4小時系統內的總RNA進行RT-PCR,另外也分別對作為殖種源的污水處理廠的污泥、作為基質的糖蜜、及HRT為8及4小時系統內的試樣總DNA進行聚合酶連鎖反應(PCR),產物經過定序比對後,顯示在HRT為8及4小時的系統中活躍表現的Clostridium屬細菌產氫酶基因都近似於C. acetobutylicum的產氫酶基因,而將污泥、糖蜜、HRT為8小時及4小時得到的clone,進一步作親緣關係樹的分析,發現來自糖蜜的clone和來自HRT為8小時及4小時的clone較相近,顯示系統中的主要產氫微生物,可能來自於糖蜜。進一步探討此產氫系統中微生物社會的組成,實驗以16s rDNA及16s rRNA為目標分別對不同HRT條件下的系統內總DNA及RNA試樣以變性梯度膠體電泳(DGGE)進行分析。結果顯示系統HRT條件的改變使系統內微生物族群的組成及相對的數量發生改變。DGGE分析的結果發現在HRT8及HRT4小時的系統中, Clostridium tyrobutyricum和Clostridium butyricum可能為主要的產氫微生物。由於糖蜜中含有醣類及味精,因此認為在本系統中,同時存在利用醣類和味精的兩株菌,可能可以最充分地利用榶蜜中的養分來生產氫氣。因此將自糖蜜中分離出的F4、F40及F52三株菌,兩兩共培養於糖蜜中,發現當F40及F52共培養時,果如推論,可得到最高的產氫量,約有96 ml的氫氣量。
Hydrogen is known as a clean energy resource. The recent surge in global H2 production research promises to make this clean fuel a replacement energy utilization of fossil fuels. The biological production of hydrogen by using wastewater and other biomass as raw materials has been attracting attention due to the characteristic of conversion of waste materials to energy resources. An anaerobically fermentative continuous culture system using condensed molasses fermentation solubles (CMS), which comes from a monosodium glutamate factory, as nutrient substrate was used to study hydrogen production. Previous results of reverse transcription polymerase chain reaction (RT-PCR) indicated that Clostridium spp. existed in the system. In fact, one Clostridium tyrobutyricum-like and one C. pasteurianum-like clostridia (F4 and F40) were substantially isolated from CMS by using PYG agar plate (glucose as sole carbon source). One C. sporosphaeroides-like clostridia (F52) were also isolated from CMS by using VR agar plate (monosodium glutamate as sole carbon source). C. sporosphaeroides was reported that they could produce hydrogen when using monosodium glutamate as sole carbon source. Primers were synthesized according to the consensus sequence of different clostridial hydrogenase genes. The results of PCR and RT-PCR indicated that those clostridial hydrogenase genes actively expressed under HRT 8 h and HRT 4 h were similar to the hydrogenase genes of C. acetobutylicum. Phylogenetic analysis of all the hydrogenase amino acid sequences obtained from RT-PCR, and PCR indicated that clostridial hydrogenase genes actively expressed under HRT 8 h and HRT 4 h were similar to hydrogenase genes of Clostridium sp. existed in CMS. The result reveal that the major hydrogen-producing clostridia may come from CMS. The hydrogen-producing rate of this system varied with different hydraulic retention time (HRT), probably due to the variation of microbial composition in this system. Indeed, this variation was clearly shown in the denaturing gradient gel electrophoresis (DGGE) of 16S rDNA fragment that were produced by PCR and RT-PCR from total cellular DNA and RNA at HRT 8 h and HRT 4 h, respectively. When those 16S rDNA fragments that significantly appeared on the DGGE gel were further cloned and sequenced, the results indicated that Clostridium tyrobutyricum and C. butyricum were probably the major hydrogen-producing microbes under HRT 8 h and HRT 4 h. Because CMS contain carbohydrate and monosodium glutamate, it was speculated that two strains of bacteria using glucose and monosodium glutamate, respectively, might efficiently use CMS to produce hydrogen. Hence co-culture of F4、F40、F52 using CMS medium, reveal that co-culture of F40 and F52 can have the highest H2 production up to 96 ml .
URI: http://hdl.handle.net/11455/22317
其他識別: U0005-0902200708514000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0902200708514000
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.