Please use this identifier to cite or link to this item:
標題: Cdk5/p35蛋白對於雄性激素接受器功能調控及攝護腺癌細胞增生所扮演的角色
The roles of Cdk5/p35 in regulating androgen receptor function and proliferation of prostate cancer cells
作者: 曾群富
Tseng, Chun-Fu
關鍵字: androgen receptor
prostate cancer
出版社: 生命科學系所
引用: 1. Thompson, I. M., Pauler, D. K., Goodman, P. J., Tangen, C. M., Lucia, M. S., Parnes, H. L., Minasian, L. M., Ford, L. G., Lippman, S. M., Crawford, E. D., Crowley, J. J., and Coltman, C. A., Jr. Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N Engl J Med, 350: 2239-2246, 2004. 2. Bolla, M., Gonzalez, D., Warde, P., Dubois, J. B., Mirimanoff, R. O., Storme, G., Bernier, J., Kuten, A., Sternberg, C., Gil, T., Collette, L., and Pierart, M. Improved survival in patients with locally advanced prostate cancer treated with radiotherapy and goserelin. N Engl J Med, 337: 295-300, 1997. 3. Hamalainen, E., Adlercreutz, H., Puska, P., and Pietinen, P. Diet and serum sex hormones in healthy men. J Steroid Biochem, 20: 459-464, 1984. 4. Dorgan, J. F., Judd, J. T., Longcope, C., Brown, C., Schatzkin, A., Clevidence, B. A., Campbell, W. S., Nair, P. P., Franz, C., Kahle, L., and Taylor, P. R. Effects of dietary fat and fiber on plasma and urine androgens and estrogens in men: a controlled feeding study. Am J Clin Nutr, 64: 850-855, 1996. 5. Gann, P. H., Hennekens, C. H., Ma, J., Longcope, C., and Stampfer, M. J. Prospective study of sex hormone levels and risk of prostate cancer. J Natl Cancer Inst, 88: 1118-1126, 1996. 6. Konety, B. R. and Nelson, J. B. Nonandrogenic mediators of prostatic growth. Hematol Oncol Clin North Am, 15: 459-476, 2001. 7. Andersson, S., Berman, D. M., Jenkins, E. P., and Russell, D. W. Deletion of steroid 5 alpha-reductase 2 gene in male pseudohermaphroditism. Nature, 354: 159-161, 1991. 8. Balk, S. P. Androgen receptor as a target in androgen-independent prostate cancer. Urology, 60: 132-138; discussion 138-139, 2002. 9. Isaacs, J. T. The biology of hormone refractory prostate cancer. Why does it develop? Urol Clin North Am, 26: 263-273, 1999. 10. Small, E. J. and Vogelzang, N. J. Second-line hormonal therapy for advanced prostate cancer: a shifting paradigm. J Clin Oncol, 15: 382-388, 1997. 11. Savarese, D. M., Halabi, S., Hars, V., Akerley, W. L., Taplin, M. E., Godley, P. A., Hussain, A., Small, E. J., and Vogelzang, N. J. Phase II study of docetaxel, estramustine, and low-dose hydrocortisone in men with hormone-refractory prostate cancer: a final report of CALGB 9780. Cancer and Leukemia Group B. J Clin Oncol, 19: 2509-2516, 2001. 12. Arlen, P. M. and Gulley, J. L. Docetaxel-based regimens, the standard of care for metastatic androgen-insensitive prostate cancer. Future Oncol, 1: 19-22, 2005. 13. Isaacs, J. T. and Isaacs, W. B. Androgen receptor outwits prostate cancer drugs. Nat Med, 10: 26-27, 2004. 14. Brown, C. J., Goss, S. J., Lubahn, D. B., Joseph, D. R., Wilson, E. M., French, F. S., and Willard, H. F. Androgen receptor locus on the human X chromosome: regional localization to Xq11-12 and description of a DNA polymorphism. Am J Hum Genet, 44: 264-269, 1989. 15. Grossmann, M. E., Huang, H., and Tindall, D. J. Androgen receptor signaling in androgen-refractory prostate cancer. J Natl Cancer Inst, 93: 1687-1697, 2001. 16. Culig, Z., Hobisch, A., Cronauer, M. V., Radmayr, C., Trapman, J., Hittmair, A., Bartsch, G., and Klocker, H. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res, 54: 5474-5478, 1994. 17. Koivisto, P., Kolmer, M., Visakorpi, T., and Kallioniemi, O. P. Androgen receptor gene and hormonal therapy failure of prostate cancer. Am J Pathol, 152: 1-9, 1998. 18. Wolf, D. A., Herzinger, T., Hermeking, H., Blaschke, D., and Horz, W. Transcriptional and posttranscriptional regulation of human androgen receptor expression by androgen. Mol Endocrinol, 7: 924-936, 1993. 19. Choong, C. S., Kemppainen, J. A., Zhou, Z. X., and Wilson, E. M. Reduced androgen receptor gene expression with first exon CAG repeat expansion. Mol Endocrinol, 10: 1527-1535, 1996. 20. Hsiao, P. W., Lin, D. L., Nakao, R., and Chang, C. The linkage of Kennedy''s neuron disease to ARA24, the first identified androgen receptor polyglutamine region-associated coactivator. J Biol Chem, 274: 20229-20234, 1999. 21. Yeh, S., Lin, H. K., Kang, H. Y., Thin, T. H., Lin, M. F., and Chang, C. From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc Natl Acad Sci U S A, 96: 5458-5463, 1999. 22. Fujimoto, N., Yeh, S., Kang, H. Y., Inui, S., Chang, H. C., Mizokami, A., and Chang, C. Cloning and characterization of androgen receptor coactivator, ARA55, in human prostate. J Biol Chem, 274: 8316-8321, 1999. 23. Yeh, S. and Chang, C. Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc Natl Acad Sci U S A, 93: 5517-5521, 1996. 24. Hsiao, P. W. and Chang, C. Isolation and characterization of ARA160 as the first androgen receptor N-terminal-associated coactivator in human prostate cells. J Biol Chem, 274: 22373-22379, 1999. 25. Wang, X., Yeh, S., Wu, G., Hsu, C. L., Wang, L., Chiang, T., Yang, Y., Guo, Y., and Chang, C. Identification and characterization of a novel androgen receptor coregulator ARA267-alpha in prostate cancer cells. J Biol Chem, 276: 40417-40423, 2001. 26. Aarnisalo, P., Palvimo, J. J., and Janne, O. A. CREB-binding protein in androgen receptor-mediated signaling. Proc Natl Acad Sci U S A, 95: 2122-2127, 1998. 27. Fu, M., Wang, C., Reutens, A. T., Wang, J., Angeletti, R. H., Siconolfi-Baez, L., Ogryzko, V., Avantaggiati, M. L., and Pestell, R. G. p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation. J Biol Chem, 275: 20853-20860, 2000. 28. Debes, J. D., Schmidt, L. J., Huang, H., and Tindall, D. J. p300 mediates androgen-independent transactivation of the androgen receptor by interleukin 6. Cancer Res, 62: 5632-5636, 2002. 29. Berrevoets, C. A., Doesburg, P., Steketee, K., Trapman, J., and Brinkmann, A. O. Functional interactions of the AF-2 activation domain core region of the human androgen receptor with the amino-terminal domain and with the transcriptional coactivator TIF2 (transcriptional intermediary factor2). Mol Endocrinol, 12: 1172-1183, 1998. 30. Ikonen, T., Palvimo, J. J., and Janne, O. A. Interaction between the amino- and carboxyl-terminal regions of the rat androgen receptor modulates transcriptional activity and is influenced by nuclear receptor coactivators. J Biol Chem, 272: 29821-29828, 1997. 31. Zhou, Z. X., Kemppainen, J. A., and Wilson, E. M. Identification of three proline-directed phosphorylation sites in the human androgen receptor. Mol Endocrinol, 9: 605-615, 1995. 32. Lin, H. K., Yeh, S., Kang, H. Y., and Chang, C. Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc Natl Acad Sci U S A, 98: 7200-7205, 2001. 33. Gioeli, D., Ficarro, S. B., Kwiek, J. J., Aaronson, D., Hancock, M., Catling, A. D., White, F. M., Christian, R. E., Settlage, R. E., Shabanowitz, J., Hunt, D. F., and Weber, M. J. Androgen receptor phosphorylation. Regulation and identification of the phosphorylation sites. J Biol Chem, 277: 29304-29314, 2002. 34. Sadi, M. V., Walsh, P. C., and Barrack, E. R. Immunohistochemical study of androgen receptors in metastatic prostate cancer. Comparison of receptor content and response to hormonal therapy. Cancer, 67: 3057-3064, 1991. 35. van der Kwast, T. H., Schalken, J., Ruizeveld de Winter, J. A., van Vroonhoven, C. C., Mulder, E., Boersma, W., and Trapman, J. Androgen receptors in endocrine-therapy-resistant human prostate cancer. Int J Cancer, 48: 189-193, 1991. 36. Hobisch, A., Culig, Z., Radmayr, C., Bartsch, G., Klocker, H., and Hittmair, A. Distant metastases from prostatic carcinoma express androgen receptor protein. Cancer Res, 55: 3068-3072, 1995. 37. Culig, Z., Hoffmann, J., Erdel, M., Eder, I. E., Hobisch, A., Hittmair, A., Bartsch, G., Utermann, G., Schneider, M. R., Parczyk, K., and Klocker, H. Switch from antagonist to agonist of the androgen receptor bicalutamide is associated with prostate tumour progression in a new model system. Br J Cancer, 81: 242-251, 1999. 38. Veldscholte, J., Voorhorst-Ogink, M. M., Bolt-de Vries, J., van Rooij, H. C., Trapman, J., and Mulder, E. Unusual specificity of the androgen receptor in the human prostate tumor cell line LNCaP: high affinity for progestagenic and estrogenic steroids. Biochim Biophys Acta, 1052: 187-194, 1990. 39. Veldscholte, J., Ris-Stalpers, C., Kuiper, G. G., Jenster, G., Berrevoets, C., Claassen, E., van Rooij, H. C., Trapman, J., Brinkmann, A. O., and Mulder, E. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem Biophys Res Commun, 173: 534-540, 1990. 40. Craft, N., Shostak, Y., Carey, M., and Sawyers, C. L. A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med, 5: 280-285, 1999. 41. Nazareth, L. V. and Weigel, N. L. Activation of the human androgen receptor through a protein kinase A signaling pathway. J Biol Chem, 271: 19900-19907, 1996. 42. Hobisch, A., Eder, I. E., Putz, T., Horninger, W., Bartsch, G., Klocker, H., and Culig, Z. Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res, 58: 4640-4645, 1998. 43. Gregory, C. W., Whang, Y. E., McCall, W., Fei, X., Liu, Y., Ponguta, L. A., French, F. S., Wilson, E. M., and Earp, H. S., 3rd Heregulin-induced activation of HER2 and HER3 increases androgen receptor transactivation and CWR-R1 human recurrent prostate cancer cell growth. Clin Cancer Res, 11: 1704-1712, 2005. 44. Liu, Y., Majumder, S., McCall, W., Sartor, C. I., Mohler, J. L., Gregory, C. W., Earp, H. S., and Whang, Y. E. Inhibition of HER-2/neu kinase impairs androgen receptor recruitment to the androgen responsive enhancer. Cancer Res, 65: 3404-3409, 2005. 45. Mellinghoff, I. K., Vivanco, I., Kwon, A., Tran, C., Wongvipat, J., and Sawyers, C. L. HER2/neu kinase-dependent modulation of androgen receptor function through effects on DNA binding and stability. Cancer Cell, 6: 517-527, 2004. 46. Culig, Z. Role of the androgen receptor axis in prostate cancer. Urology, 62: 21-26, 2003. 47. Suzuki, H., Ueda, T., Ichikawa, T., and Ito, H. Androgen receptor involvement in the progression of prostate cancer. Endocr Relat Cancer, 10: 209-216, 2003. 48. Olayioye, M. A., Neve, R. M., Lane, H. A., and Hynes, N. E. The ErbB signaling network: receptor heterodimerization in development and cancer. Embo J, 19: 3159-3167, 2000. 49. Graus-Porta, D., Beerli, R. R., Daly, J. M., and Hynes, N. E. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. Embo J, 16: 1647-1655, 1997. 50. Tzahar, E., Waterman, H., Chen, X., Levkowitz, G., Karunagaran, D., Lavi, S., Ratzkin, B. J., and Yarden, Y. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol, 16: 5276-5287, 1996. 51. Krauss, W. C., Park, J. W., Kirpotin, D. B., Hong, K., and Benz, C. C. Emerging antibody-based HER2 (ErbB-2/neu) therapeutics. Breast Dis, 11: 113-124, 2000. 52. Kato, S., Endoh, H., Masuhiro, Y., Kitamoto, T., Uchiyama, S., Sasaki, H., Masushige, S., Gotoh, Y., Nishida, E., Kawashima, H., Metzger, D., and Chambon, P. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science, 270: 1491-1494, 1995. 53. Slamon, D. J., Godolphin, W., Jones, L. A., Holt, J. A., Wong, S. G., Keith, D. E., Levin, W. J., Stuart, S. G., Udove, J., Ullrich, A., and et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science, 244: 707-712, 1989. 54. Carraway, K. L., 3rd, Weber, J. L., Unger, M. J., Ledesma, J., Yu, N., Gassmann, M., and Lai, C. Neuregulin-2, a new ligand of ErbB3/ErbB4-receptor tyrosine kinases. Nature, 387: 512-516, 1997. 55. Freeman, M. R. HER2/HER3 heterodimers in prostate cancer: Whither HER1/EGFR? Cancer Cell, 6: 427-428, 2004. 56. Hellmich, M. R., Pant, H. C., Wada, E., and Battey, J. F. Neuronal cdc2-like kinase: a cdc2-related protein kinase with predominantly neuronal expression. Proc Natl Acad Sci U S A, 89: 10867-10871, 1992. 57. Xiong, Y., Zhang, H., and Beach, D. D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell, 71: 505-514, 1992. 58. Tsai, L. H., Delalle, I., Caviness, V. S., Jr., Chae, T., and Harlow, E. p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature, 371: 419-423, 1994. 59. Tang, D., Yeung, J., Lee, K. Y., Matsushita, M., Matsui, H., Tomizawa, K., Hatase, O., and Wang, J. H. An isoform of the neuronal cyclin-dependent kinase 5 (Cdk5) activator. J Biol Chem, 270: 26897-26903, 1995. 60. Zheng, M., Leung, C. L., and Liem, R. K. Region-specific expression of cyclin-dependent kinase 5 (cdk5) and its activators, p35 and p39, in the developing and adult rat central nervous system. J Neurobiol, 35: 141-159, 1998. 61. Ko, J., Humbert, S., Bronson, R. T., Takahashi, S., Kulkarni, A. B., Li, E., and Tsai, L. H. p35 and p39 are essential for cyclin-dependent kinase 5 function during neurodevelopment. J Neurosci, 21: 6758-6771, 2001. 62. Sun, D., Leung, C. L., and Liem, R. K. Phosphorylation of the high molecular weight neurofilament protein (NF-H) by Cdk5 and p35. J Biol Chem, 271: 14245-14251, 1996. 63. Paglini, G., Peris, L., Diez-Guerra, J., Quiroga, S., and Caceres, A. The Cdk5-p35 kinase associates with the Golgi apparatus and regulates membrane traffic. EMBO Rep, 2: 1139-1144, 2001. 64. Kato, G. and Maeda, S. Neuron-specific Cdk5 kinase is responsible for mitosis-independent phosphorylation of c-Src at Ser75 in human Y79 retinoblastoma cells. J Biochem (Tokyo), 126: 957-961, 1999. 65. Patrick, G. N., Zukerberg, L., Nikolic, M., de la Monte, S., Dikkes, P., and Tsai, L. H. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature, 402: 615-622, 1999. 66. Lee, M. S., Kwon, Y. T., Li, M., Peng, J., Friedlander, R. M., and Tsai, L. H. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature, 405: 360-364, 2000. 67. Kusakawa, G., Saito, T., Onuki, R., Ishiguro, K., Kishimoto, T., and Hisanaga, S. Calpain-dependent proteolytic cleavage of the p35 cyclin-dependent kinase 5 activator to p25. J Biol Chem, 275: 17166-17172, 2000. 68. Gao, C., Negash, S., Guo, H. T., Ledee, D., Wang, H. S., and Zelenka, P. CDK5 regulates cell adhesion and migration in corneal epithelial cells. Mol Cancer Res, 1: 12-24, 2002. 69. Xin, X., Ferraro, F., Back, N., Eipper, B. A., and Mains, R. E. Cdk5 and Trio modulate endocrine cell exocytosis. J Cell Sci, 117: 4739-4748, 2004. 70. Lilja, L., Johansson, J. U., Gromada, J., Mandic, S. A., Fried, G., Berggren, P. O., and Bark, C. Cyclin-dependent kinase 5 associated with p39 promotes Munc18-1 phosphorylation and Ca(2+)-dependent exocytosis. J Biol Chem, 279: 29534-29541, 2004. 71. Lilja, L., Yang, S. N., Webb, D. L., Juntti-Berggren, L., Berggren, P. O., and Bark, C. Cyclin-dependent kinase 5 promotes insulin exocytosis. J Biol Chem, 276: 34199-34205, 2001. 72. Ubeda, M., Kemp, D. M., and Habener, J. F. Glucose-induced expression of the cyclin-dependent protein kinase 5 activator p35 involved in Alzheimer''s disease regulates insulin gene transcription in pancreatic beta-cells. Endocrinology, 145: 3023-3031, 2004. 73. Lee, K. Y., Rosales, J. L., Lee, B. C., Chung, S. H., Fukui, Y., Lee, N. S., Lee, K. Y., and Jeong, Y. G. Cdk5/p35 expression in the mouse ovary. Mol Cells, 17: 17-22, 2004. 74. Musa, F. R., Tokuda, M., Kuwata, Y., Ogawa, T., Tomizawa, K., Konishi, R., Takenaka, I., and Hatase, O. Expression of cyclin-dependent kinase 5 and associated cyclins in Leydig and Sertoli cells of the testis. J Androl, 19: 657-666, 1998. 75. Musa, F. R., Takenaka, I., Konishi, R., and Tokuda, M. Effects of luteinizing hormone, follicle-stimulating hormone, and epidermal growth factor on expression and kinase activity of cyclin-dependent kinase 5 in Leydig TM3 and Sertoli TM4 cell lines. J Androl, 21: 392-402, 2000. 76. Zhang, Q., Ahuja, H. S., Zakeri, Z. F., and Wolgemuth, D. J. Cyclin-dependent kinase 5 is associated with apoptotic cell death during development and tissue remodeling. Dev Biol, 183: 222-233, 1997. 77. Miyajima, M., Nornes, H. O., and Neuman, T. Cyclin E is expressed in neurons and forms complexes with cdk5. Neuroreport, 6: 1130-1132, 1995. 78. Jemal, A., Thomas, A., Murray, T., and Thun, M. Cancer statistics, 2002. CA Cancer J Clin, 52: 23-47, 2002. 79. Lin, H., Juang, J. L., and Wang, P. S. Involvement of Cdk5/p25 in digoxin-triggered prostate cancer cell apoptosis. J Biol Chem, 279: 29302-29307, 2004. 80. Burd, C. J., Petre, C. E., Moghadam, H., Wilson, E. M., and Knudsen, K. E. Cyclin D1 binding to the androgen receptor (AR) NH2-terminal domain inhibits activation function 2 association and reveals dual roles for AR corepression. Mol Endocrinol, 19: 607-620, 2005. 81. Tarricone, C., Dhavan, R., Peng, J., Areces, L. B., Tsai, L. H., and Musacchio, A. Structure and regulation of the CDK5-p25(nck5a) complex. Mol Cell, 8: 657-669, 2001. 82. Li, B. S., Ma, W., Jaffe, H., Zheng, Y., Takahashi, S., Zhang, L., Kulkarni, A. B., and Pant, H. C. Cyclin-dependent kinase-5 is involved in neuregulin-dependent activation of phosphatidylinositol 3-kinase and Akt activity mediating neuronal survival. J Biol Chem, 278: 35702-35709, 2003. 83. Fu, A. K., Fu, W. Y., Ng, A. K., Chien, W. W., Ng, Y. P., Wang, J. H., and Ip, N. Y. Cyclin-dependent kinase 5 phosphorylates signal transducer and activator of transcription 3 and regulates its transcriptional activity. Proc Natl Acad Sci U S A, 101: 6728-6733, 2004. 84. Fu, A. K., Fu, W. Y., Cheung, J., Tsim, K. W., Ip, F. C., Wang, J. H., and Ip, N. Y. Cdk5 is involved in neuregulin-induced AChR expression at the neuromuscular junction. Nat Neurosci, 4: 374-381, 2001. 85. Igawa, T., Lin, F. F., Lee, M. S., Karan, D., Batra, S. K., and Lin, M. F. Establishment and characterization of androgen-independent human prostate cancer LNCaP cell model. Prostate, 50: 222-235, 2002. 86. Pfeil, K., Eder, I. E., Putz, T., Ramoner, R., Culig, Z., Ueberall, F., Bartsch, G., and Klocker, H. Long-term androgen-ablation causes increased resistance to PI3K/Akt pathway inhibition in prostate cancer cells. Prostate, 58: 259-268, 2004. 87. Osman, I., Scher, H. I., Drobnjak, M., Verbel, D., Morris, M., Agus, D., Ross, J. S., and Cordon-Cardo, C. HER-2/neu (p185neu) protein expression in the natural or treated history of prostate cancer. Clin Cancer Res, 7: 2643-2647, 2001.
摘要: Cyclin dependent Kinase 5 (Cdk5) 蛋白在Cdk家族中是很特別的一員,它的激酶活性不需依賴Cyclin蛋白所啟動,並且不涉及細胞週期 (cell cycle) 的調控。Cdk5的激酶活性是需要一種神經特有的活化因子,p35,所啟動。在現今的研究中,Cdk5與p35蛋白活性的功能一般被探討於中樞神經系統與神經退化性疾病。本實驗室為首先發現在攝護腺癌細胞株 (lymph node carcinoma of prostate, LNCaP) 有 Cdk5與p35蛋白的表現,且在Cdk5活性抑制劑Roscovitine抑制其活性的情況下,發現細胞型態有明顯的改變。雄性激素接受器 (androgen receptor) 是種配體依賴的核酸轉錄因子,並在調控攝護腺癌細胞增生中扮演重要的角色。在前人研究中,Cyclin D1是能與雄性激素接受器有蛋白之間的交互作用而p35是種與Cyclin結構相似的蛋白,是故我們利用免疫沉澱法及免疫細胞螢光染色法證明在LNCaP細胞中,Cdk5具有透過p35與雄性激素接受器有蛋白之間交互作用的能力。在處理人工合成之雄性激素R1881刺激下,經由Roscovitine以及Cdk5 siRNA的處理,發現AR-Ser81的磷酸化與Cdk5的蛋白及活性有關。本實驗成果為首度報導雄性激素接受器是Cdk5激酶的受質 (substrate) 。在攝護腺癌最新的研究顯示,Her2/ErbB3的蛋白活性也能經由透過下游訊息所磷酸化AR-Ser81而調節AR的轉錄功能。同時,Cdk5的蛋白活性在神經細胞中Neuregulin所誘導的PI3K/Akt訊息傳遞路徑中能直接影響Her2/ErbB3的活性。因此,我們也利用免疫沉澱法及免疫細胞螢光染色法發現在LNCaP細胞中,Cdk5與Her2/ErbB3有蛋白之間的交互作用。在Cdk5所影響的生物功能上,我們藉由MTT assay發現,在抑制Cdk5活性的情況下,細胞的增生也明顯的受到抑制,並且在處理Cdk5 siRNA的情形下,細胞內PSA表現量有受到抑制。綜合以上的結果,我們認為Cdk5與p35蛋白對於雄性激素接受器功能及攝護腺癌細胞增生中扮演重要的角色,並且為治療攝護腺癌的基礎研究提供一個新的方向。
Cyclin-dependent kinase 5 (Cdk5) is a unique member of Cdk family. Cdk5 is neither activated by Cyclin nor involved in regulating cell cycle. p35 is a neuron-specific activator of Cdk5. The functions of Cdk5 and p35 are explored in central nervous system (CNS) and neurodegenerative diseases in recent decade. Our results demonstrated that Cdk5 and p35 proteins were expressed in prostate cancer cell (lymph node carcinoma of prostate (LNCaP)) and cell morphology was changed by treatment with Cdk5 specific inhibitor, Roscovitine. Androgen receptor (AR) is a ligand-dependent transcription factor that mediates proliferation of prostate cancer. It has been reported that there is protein interaction between Cyclin D1 and AR. Since the similar structure of p35 and Cyclin, the interaction of Cdk5 and AR via p35 was identified by immunoprecipitation and immunocytochemistry. Under the treatment of R1881, we found AR p-Ser81 site was inhibited by treatment with Roscovitine as well as Cdk5 siRNA. On the other hand, up-to-date reports indicate Her2/ ErbB3 could regulate AR transcription function in prostate cancer and regulate AR p-Ser81 site. Cdk5 has also been considered to directly activate Her2/ ErbB3 and involved in neuregulin-dependent PI3K/Akt pathway in neuronal cells. Therefore, the interaction between Cdk5 and Her2/ErbB3 were then identified. Furthermore, Cdk5 inhibition by Roscovitine or siRNA decreased the proliferation and intracellular expression of prostate specific antigen (PSA) of LNCaP cells, which are two important biomarkers for prostate cancer cells. These results suggest that Cdk5 and p35 are novel players in regulating AR function and prostate cancer cell proliferation and potential to become new therapeutic targets in prostate cancer.
其他識別: U0005-1807200616545300
Appears in Collections:生命科學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.