Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22372
標題: 台灣二葉松及芒草在不同海拔及季節之光能利用
Using of Absorbed Light in PSII for Pinus taiwanensis, Miscanthus transmorrisonensis, and M. floridulus in Different Seasons and Elevation
作者: 賴冠名
Lai, Kuan-Ming
關鍵字: 葉綠素螢光
clorophyll fluorescence
最大光化學潛能
光化學電子傳遞
熱消散
過剩能量
反射光譜
光化學反射指數
葉黃素循環
光合作用
光合速率
光利用效率
光呼吸
光子流密度
光系統二
能量分配
推估
季節變化
低溫
海拔
調降
光保護
台灣二葉松
高山芒
五節芒
C3植物
C4植物
Fv/Fm
photochemical electron transport
thermal dissipation
excess energy
spectral reflectance
photochemical reflectance index
xanthophyll cycle
photosynthesis
photosynthesis rate
light-use efficiency
photorespiration
PPFD
PSII
energy allocation
estimation
seasonal variation
low temperature
elevation
down-regulation
photoprotection
Pinus taiwanensis
Miscanthus transmorrisonensis
Miscanthus floridulus
C3 plant
C4 plant
出版社: 生命科學系所
引用: 石峰吉。2005。不同葉色芥藍菜的葉綠素螢光及葉片反射光譜特性。國立中興大學生命科學研究所碩士論文。 翁仁憲、廖天賜、孫國笏、鍾基啓、林宗平、徐鎮暉。2002。塔塔加地區台灣雲杉(Picea morrisonicola)光合作用之季節變化。農業氣象及農業水資源之應用與管理。pp.131-142。 陳耀南。2004。不同生態習性植物之葉綠素螢光特性。國立中興大學生命科學研究所碩士論文。 Taiz, L., & Zeiger, E. (2002). Plant Physiology. Sinauer Associates, Inc. (3rd ed., pp. 110-156). Adams, W. W. III, & Demmig-Adams, B. (1994). Carotenoid composition and down regulation of photosystem II in three conifer species during the winter. Physiologia Plantarum, 92, 451-458. Adams, W. W. III, Demmig-Adams, B., Rosenstiel, T. N., Brightwell, A. K., & Ebbert, V. (2002). Photosynthesis and photoprotection in overwintering plants. Plant Biology, 4, 545-557. Adams, W. W. III, Zarter, C. R., Ebbert, V., & Demmig-Adams, B. (2004). Photoprotection of overwintering evergreens. BioScience, 54, 41-49. Arnon, D., Allen, M., & Whatley, F. (1954). Photosynthesis by isolated chloroplasts. Nature, 174, 394. Cai, S.-Q., & Xu, D.-Q. (2002). Light intensity-dependent reversible down-regulation and irreversible damage of PSII in soybean leaves. Plant Science, 163, 847-853. Cailly, A. L., Rizza, F., Genty, B., & Harbinson, J. (1996). Fate of excitation at PSII in leaves. The non-photochemical side. Plant Physiology and Biochemistry, special issue, 86. Chow, W. S., Lee, H.-Y., He, J., Hendrickson, L. Hong, Y.-N., & Matsubara, S. (2005). Photoinactivation of photosystem II in leaves. Photosynthsis. Research, 84, 35-41. Colom, M. R., Prato, E. P., & Giannini R. (2003). Chlorophyll fluorescence and photosynthetic response to light in 1-year-old needles during spring and early summer in Pinus leucodermis. Trees, 17, 207-210. Corcuera, L., Morales, F., Abadia, A., & Gil-Pelegrin, E. (2005). The effect of low temperatures on the photosynthetic apparatus of Quercus ilex subsp. ballota at its lower and upper altitudinal limits in the Iberian peninsula and during a single freezing-thawing cycle. Trees, 19, 99-108. D’Ambrosio, N., Arena, C., & Virzo de Santo, A. (2003). Different relationship between electron transport and CO2 assimilation in two Zea mays cultivars as influenced by increasing irradiance. Photosynthetica, 41, 489-495. Demmig-Adams, B., Adams, W. W. III, Barker, D. H., Logan, B. A., Bowling, D. R., & Verhoeven, A.S. (1996). Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum, 98, 253-264. Dungan, R. J., Whitehead, D., McGlone, M., Duncan, R. P., & Allen, R. B. (2003). Cold-induced photoinhibition and winter leaf-loss in the broad-leaved tree Aristotelia serrata (Elaeocarpaceae). Functional Plant Biology, 30, 543-550. Earl, H. J., & Tollenaar, M. (1997). Maize leaf absorptance of photosynthetically active radiation and its estimation using a chlorophyll meter. Crop Science, 37, 436-440. Edwards, G. E., & Baker, N. R. (1993). Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? Photosynthesis Research, 27, 89-102. Farage, P. K., Blowers, D., Long, S. P., & Baker, N. R. (2006). Low growth temperatures modify the efficiency of light use by photosystem II for CO2 assimilation in leaves of two chilling-tolerant C4 species, Cyperus longus L. and Miscanthus × giganteus. Plant Cell and Environment, 29, 720-728. Field, T. S., Lee, D. W., & Holbrook, N. M. (2001). Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood. Plant Physiology, 127, 567-574. Filella I., Peñuelas, J., Llorens L., & Estiarte, M. (2004). Reflectance assessment of seasonal and annual changes in biomass and CO2 uptake of a Mediterranean shrubland submitted to experimental warming and drought. Remote Sensing of Environment, 90, 308-318. Gamon, J. A., Field, C. B., Bilger, W., Björkman, O., Fredeen, A. L., & Peñuelas, J. (1990). Remote sensing of the xanthophyll-cycle and chlorophyll fluorescence in sunflower leaves and canopies. Oecologia, 85, 1-7. Gamon J. A., Field, C. B., Fredeen, A. L., & Thayer, S. (2001). Assessing photosynthetic downregulation in sunflower stands with an optically-based model. Photosynthesis Research, 67, 113-125. Gamon, J. A., Serrano, L., & Surfus, J. S. (1997). The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia, 112, 492-501. Gamon, J. A., & Surfus, J. S. (1999). Assessing leaf pigment content and activity with a reflectometer. New Phytologist, 143, 105-117. García-Plazaola, J. I., Olano, J. M., Hernández, A., & Becerril, J. M. (2003). Photoprotection in evergreen Mediterranean plants during sudden periods of intense cold weather. Trees, 17, 285-291. Genty, B., Briantais, J. M., & Baker, N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta, 990, 87-92. Guo, J., & Trotter, C. M. (2004). Estimation photosynthetic light-use efficiency using the photochemical reflectance index: variations among species. Functional Plant Biology, 31, 255-265. Hendrickson, L., Förster, B., Pogson, B. J., & Chow, W. S. (2005). A simple chlorophyll fluorescence parameter that correlated with the rate coefficient of photoinactivation of PSII. Photosynth. Research, 84, 43-49. Hendrickson, L., Furbank, R. T., & Chow, W. S. (2004). A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. Photosynthesis Research, 82, 73-81. Hikosaka, K., Kato, M. C., & Hirose, T. (2004). Photosynthesis rates and partitioning of absorbed light energy in photoinhibition leaves. Physiologia Plantarum, 121, 699-708. Hirotsu, N. Makino, A. Ushio, A., & Mae, T. (2004). Changes in the thermal dissipation and the electron flow in the water-water cycle in rice grown under conditions of physiologically low temperature. Plant and Cell Physiology, 45, 635-644. Holt, N. E., Zigmantas, D., Valkunas, L., Li, X.-P., Niyogi, K. K., & Fleming, G. R. (2005). Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science, 307, 433-436. Kato, M. C., Hikosaka, K., Hirotsu, N., Makino, A., & Hirose, T. (2003). The excess light energy that is neither utilized in photosynthesis nor dissipated by photoprotective mechanisms determines the rate of photoinactivation in photosystem II. Plant and Cell Physiology, 44, 318-325. Kooten, O. V., & Snel, J. F. H. (1990). The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research, 25, 147-150. Kornyeyev, D., Holaday, A. S., & Logan, B. A. (2004). Minimisation of the photon energy absorbed by ‘closed’ reaction centers of photosystem 2 as a photoprotective strategy in higher plants. Photosynthetica 42, 377-386. Krall, J. P., & Edwards, G. E. (1992). Relationship between photosystem II activity and CO2 fixation. Physiologia Plantarum, 86, 180-187. Kramer, D. M., Johnson, G., Kiirats, O., & Edwards, G. E. (2004). New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosyntheis Research, 79, 209-218. Krause, G. H., Carouge, N., & Garden, H. (1999). Long-term effects of temperature shifts on xanthophylls cycle and photoinhibition in spinach (Spinacia oleracea). Australian Journal of Plant Physiology, 26, 125-134. Külheim, C., Ågren, J., & Jansson, S. (2002). Rapid regulation of light harvesting and plant fitness in the field. Science, 297, 91-93. Lichtenthaler, H. K., Buschmann, C., & Knapp, M. (2005). How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio Rfd of leaves with the PAM fluorometer. Photosynthetica, 43, 379-393. Logan, B. A., Demmig-Adams, B. Adams, W. W. III, & Grace, S. C. (1998). Antioxidants and xanthophylls cycle-dependent energy dissipation in Cucurbita pepo L. and Vinca major L. acclimated to four growth PPFDs in the field. Journal of Experimental Botany, 49, 1869-1879. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with folin reagent. Journal of Biological Chemistry, 193, 265-275. Matsubara, S., & Chow, W. S. (2004). Populations of photoinactivated photosystem II reaction centers characterized by chlorophyll a fluorescence lifetime in vivo. Plant Biology, 101, 18234-18239. Maxwell, K., & Johnson, G. M. (2000). Chlorophyll fluorescence – a practical guide. Journal of Exerimental Botany, 51, 659-668. Muller, O., Hikosaka, K., & Hirose, T. (2005). Seasanal changes in light and temperature affect the balance between light harvesting and light utilization components of photosynthesis in an evergreen understory shrub. Oecologia, 143, 501-508. Nichol, C. J., Huemmrich, K. F., Black, T. A., Jarvis, P. G., Walthall, C. L., Grace, J., & Hall, F. G. (2000). Remote sensing of photosyhthetic- light-use efficiency of boreal forest. Agricultural and Forest Meteorology, 101, 131-142. Niyogi, K. K. (1999). Potoprotection revisted: Genetic and molecular approaches. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 333-359 Oberhuber, W., & Edwards, G. E. (1993). Temperature dependence of the linkage of quantum yield of photosystem II to CO2 fixation in C4 and C3 plants. Plant Physiology, 101, 507-512. Oliveria, G., & Peñuelas, J. (2001). Allocation of absorbed light energy into photochemistry and dissipation in a semi-deciduous and an evergreen Mediterranean woody species during winter. Australian Journal of Plant Physiology, 28, 471-480. Park, Y.-I., Chow, W. S., & Anderson, J. M. (1995). Light inactivation of functional PSII in leaves of peas grown in moderate light depends on photon exposure. Planta, 196, 401-411. Park, Y.-I., Anderson, J. M., & Chow, W. S. (1996). Photoinactivation of functional photosystem II and D1-protein synthesis in vivo are independent of the modulation of the photosynthetic apparatus by growth irradiance. Planta, 198, 300-309. Peñuelas, J., Filella, I., Llusià, J., Siscart, D., & Piñol, J. (1998). Comparative field study of spring and summer leaf gas exchange and photobiology of the Mediterranean trees Quercus ilex and Phillyrea latifolia. Journal of Experimental Botany, 49, 229-238. Robakowski, P. (2005). Susceptibility to low-temperature photoinhibition in three conifers differing in successional status. Tree Physiology, 25, 1151-1160. Shen, Y.-K., Chow, W. S., Park, Y.-I., & Anderson, J. M. (1996). Photoinactivation of photosystem II by cumulative exposure to short light pulses during the induction period of photosynthesis. Photosynthesis Research, 47, 51-59. Solhaug, K.A., & Haugen, J. (1998). Seasonal variation of photoinhibiton of photosynthesis in bark from Populus tremula L. Photosynthetica, 35, 411-417. Steyn, W. J., Wand, S. J. E., Holcroft, D. M., & Jacobs, G. (2002). Anthocyanins in vegetative tissues: a propose unified function in photoprotection. New Phytologist, 155, 349-361. Strand, M., & Öquist, G. (1988). Effects of frost hardening, dehardening and freezing stress on in vivo chlorophyll flurescence of Scots pine seedlings (Pinus sylvestris L.). Plant Cell and Environment, 11, 231-238. Stylinski, C. D., Gamon, J. A., & Oechel, W. C. (2002). Seasonal patterns of reflectance indices, carotenoid pigments and photosynthesis of evergreen chaparral species. Oecologia, 131, 366-374. Stylinski, C. D., Oechel, W. C., Gamon, J. A., Tissue, D. T., Miglietta, F., & Raschi, A. (2000). Effects of lifelong [CO2] enrichment on carboxylation and light utilization of Quercus pubescens Willd. examined with gas exchange, biochemistry and optical techniques. Plant Cell and Environment, 23, 1353-1362. Tsonev T. D., & Hikosaka, K. (2003). Contribution of photosynthetic electron transport, heat dissipation, and recovery of photoinactivated photosystem II to photoprotection at different temperature in Chenopodium album leaves. Plant Cell Physioogy, 44, 825-835 Verhoeven, A. S., Adams, W. W. III, & Demmig-Adams, B. (1996). Close relationship between the state of the xanthophylls cycle pigments and photosystem II efficiency during recovery from winter stress. Physiologia Plantarum, 96, 567-576. Verhoeven, A. S., Adams, W. W. III and Demmig-Adams, B. (1999). The xanthophylls cycle and acclimation of Pinus ponderosa and Malva neglecta to winter stress. Oecologia, 118, 277-287. Weng, J.-H., Liao, T.-S., Sun, K.-H., Chung, J.-C., Lin, C.-P., & Chu, C.-H. (2005). Seasonal variations in photosynthesis of Picea morrisonicola growing in the subalpine region of subtropical Taiwan. Tree Physiology, 25, 973-979. Weng, J.-H., Liao, T.-S., Hwang, M.-A., Chung, J.-C., Lin, C.-P., & Chu, C.-H. (2006). Seasonal variation in photosystem II efficiency and photochemical reflectance index of evergreen trees and perennial grasses growing at low and high elevations in subtropical Taiwan. Tree Physiology, 26, 1097-1104. Werner, C., Correia, O., & Beyschlag, W. (1999). Two different strategies of Mediterranean macchia plants to avoid photoinhibitory damage by excessive radiation levels during summer drought. Acta Oecologia, 20, 15-23. Williams, E. L., Hovenden, M. J., & Close, D. C. (2003). Strategies of light energy utilization, dissipation and attenuation in six co-occurring alpine heath species in Tasmania. Functional Plant Biology, 30, 1205-1218.
摘要: 為比較在不同海拔及季節下,C3及C4植物的光系統II(photosystem II, PSII)之光能分配情形,選擇在台灣分佈廣泛的C3型常綠針葉樹:台灣二葉松(Pinus taiwanensis)與伴生的C4型多年生草本植物:高山芒(Miscanthus transmorrisonensis)及五節芒(M. floridulus)為材料,於2003年9月起至2006年2月止,分別在塔塔加(2,600 m a.s.l.)及惠蓀林場(800 m a.s.l.)測定不同光子流密度(photosynthetic photon flux density, PPFD)下的葉綠素螢光(chlorophyll fluorescence)。結果顯示,台灣二葉松及芒草在冬季低溫時皆會提高光照下的熱消散之能量比例(thermal dissipation in the light, DL),以避免過多光能進入PSII反應中心(reaction center, RC)。而兩者的過剩光能之能量比例(excess energy, E)在各季節及不同PPFD下皆無明顯變化,顯示冬季低溫時,其PSII最大光化學潛能(maximum PSII photochemical efficiency, Fv/Fm)之降低主要肇因於調降(down-regulation)PSII效能的光保護作用(photoprotection)。台灣二葉松在冬季的Fv/Fm及各季節的PSII光化學電子傳遞之能量比例(photochemical electron transport, P)皆高於芒草,但DL則明顯較低,且當P值降低時,其分配至DL的比例亦低於芒草。此乃由於台灣二葉松屬於C3植物,能利用光呼吸作用(photorespiration)協助過剩光能之排除,故能保有較高的Fv/Fm及P。而C4型的芒草則無光呼吸,故須藉由高比例的非光化學消散(DL+L,其中L代表黑暗下失去之能量比例,即energy lost in the dark)來排除天線系統(antenna)所吸收的光能。台灣二葉松的Fv/Fm、P及DL+L之變化與氣溫及PPFD皆有良好相關,故可利用氣溫及PPFD進行各光能分配之推估。至於芒草則僅Fv/Fm與DL之變化與氣溫有顯著相關,其P與E則終年維持在低範圍,變化不明顯。 為利用葉綠素螢光及葉片反射光譜(spectral reflectance)以簡便方法推估植物在不同海拔、季節及PPFD下之光合作用能力,以生長在塔塔加及惠蓀林場的台灣二葉松進行測定。結果顯示,可藉由光化學反射指數(photochemical reflectance index, PRI)、氣溫及PPFD之複迴歸方程式進行兩地台灣二葉松的P之推估。但在相同的P值下,塔塔加的台灣二葉松其光利用效率(light-use efficiency, LUE)明顯高於惠蓀林場測得者。此乃由於塔塔加位處高海拔地區,其氣溫較低,故光呼吸消耗掉的光能較少。至於台灣二葉松的淨光合速率(net photosynthesis rate, Pn)則可利用PRI及氣溫或PPFD之複迴歸方程式進行推估。
The chlorophyll fluorescence of one C3 evergreen conifer (Pinus taiwanensis Hayata) and two C4 perennial grasses (Miscanthus transmorrisonensis Hayata and M. floridulus (Labill.) Warb. ex K. Schum. & Lauterb.) were investigated at predawn and different photosynthetic photon flux density (PPFD) in Tatachia (2,600 m a.s.l.) and Hui-Sun Forest Station (800 m a.s.l.) from September 2003 to February 2006. In winter, they both increase the thermal dissipation in the light (DL) to avoid excess absorbed light energy being transferred into the reaction center (RC) of photosystem II (PSII). In addition, the excess energy (E) sustaining in low range (0.1 ~ 0.2) in any season and PPFD reveals that the reducing of maximum PSII photochemical efficiency (Fv/Fm) ascribes to photoprotection by down-regulation of the PSII efficiency, rather than photoinhibition. C3 plants could dissipate part of excess energy by photorespiration, which is absent in C4 plants. Compared to P. taiwanensis, it is necessary for M. transmorrisonensis and M. floridulus to maintain high proportion of non-photochemical dissipation (DL+L; L, energy lost in the dark) to expel excess absorbed light energy. Consequently, these two plants have lower propotion of photochemical electron transport (P) and higher propotion of DL+L than P. taiwanensis. The variation of Fv/Fm, P, and DL+L of P. taiwanensis is significantly related to temperature and PPFD, and this could be utilized to estimate the energy allocation. Based on PRI (photochemical reflectance index), temperature, and PPFD, multiple regression equation could also help estimate P of P. taiwanensis. At the same P, however, the light-use efficiency (LUE) of P. taiwanensis in Tatachia is significantly higher than in Hui-Sun Forest Station. Due to lower temperature at high elevation, photorespiration consumes less energy in Tatachia. As for the net photosynthesis rate (Pn), it could be estimated through the multiple equations of PRI, PRIpd (PRI at predawn), and temperature or PPFD. Applying leaf spectral reflectance accompanied by chlorophyll fluorescence, temperature and PPFD, the equations of this research could easily and accurately estimate the photosynthesis capacity of P. taiwanensis in different seasons and PPFD.
URI: http://hdl.handle.net/11455/22372
其他識別: U0005-2006200613333000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2006200613333000
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.