Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22409
標題: 應用金黃葡萄球菌鎘離子運輸蛋白CadA於阿拉伯芥重金屬抗性之研究
Application of the Staphylococcus aureus cadmium-transporter CadA in Arabidopsis thaliana for heavy metal resistance
作者: 陳君如
Chen, Jiun-Ru
關鍵字: Arabidopsis thaliana

cadmium
Staphylococcus aureus
阿拉伯芥
金黃葡萄球菌
出版社: 生命科學系所
引用: 林志偉(Chie-Wei Lin)。2003。應用革蘭氏陽性菌汞離子還原酶於真核生物之基礎研究。國立中興大學生命科學系,碩士論文。 蘇天財(Tien-Tsai Su)。2005。表現革蘭氏陽性菌有機汞裂解酶基因於阿拉伯芥以提高植物對有機汞耐受性之研究。國立中興大學生命科學系,碩士論文。 Bal, N., C. C. Wu, P. Catty, F. Guillain, and E. Mintz. 2003. Cd2+ and the N-terminal metal-binding domain protect the putative membranous CPC motif of the Cd2+-ATPase of Listeria monocytogenes. Biochem J. 369:681-5. Bevan, M. W., and M. D. Chilton. 1982. T-DNA of the Agrobacterium Ti and Ri plasmids. Annu. Rev. Genet. 16:357-84. Bizily, S. P., C. L. Rugh, A. O. Summers, and R. B. Meagher. 1999. Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc. Natl. Acad. Sci. USA. 96(12):6808-13. Clough, S. J., and A. F. Bent. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16(6): 735–743. Dominguez-Solis, J. R., G. Gutierrez-Alcala, J. M. Vega, L. C. Romero, and C. Gotor. 2001. The cytosolic O-Acetylserine(thiol)lyase gene is regulated by heavy metal and can function in cadmium tolerance. J. Biol. Chem. 276(12):9297-9302. Endo, G., and S. Silver. 1995. CadC, the transcriptional regulatory protein of the cadmium resistance system of Staphylococcus aureus plasmid pI258. J Bacteriol. 177(15):4437-41. Fosmire, G. J. 1990. Zinc toxicity. Am J Clin Nutr. 51(2):225-7. Garfinkel, D. J., and E. W. Nester. 1980. Agrobacterium tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J Bacteriol.144(2):732-43. Grill, E. 1987. Phytochelatins, the heavy metal binding peptides of plants: characterization and sequence determination. Experientia Suppl. 52:317-22. Guffanti, A. A., Y. Wei, S. V. Rood, and T. A. Krulwich. 2002. An antiport mechanism for a member of the cation diffusion facilitator family: divalent cations efflux in exchange for K+ and H+. Mol. Microbiol. 45(1):145–153. Hagino, L., and M. Kono. 1955. A study on the cause of Itai-itai disease. Proceedings of the 17th Meeting of the Japanese Society of Clinical Surgeons [in Japanese]. Hall, J. L. 2002. Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot. 53(366):1-11. Harada, M. 1995. Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit. Rev. Toxicol. 25(1):1-24. He, Z. L., X. E. Yang, and P. J. Stoffella. 2005. Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol. 19(2-3):125-40. Hiei, Y., T. Komari, and T. Kubo. 1997. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol. 35(1-2):205-18. Hooykaas, P. J. 1989. Transformation of plant cells via Agrobacterium. Plant Mol Biol. 13(3):327-36. Järup, L. 2002. Cadmium overload and toxicity. Nephrol Dial Transplant.17 Suppl 2:35-9. Jarup, L., M. Berglund, C. G. Elinder, G. Nordberg, and M. Vahter. 1998. Health effects of cadmium exposure – a review of the literature and a risk estimate. Scand J Work Environ Health. 24(3):1-51. Klein, R. M., E. D. Wolf, R. Wu, and J. C. Sanford. 1992. High-velocity microprojectiles for delivering nucleic acids into living cells. Biotechnology. 24:384-6 Lee, J., H. Bae, J. Jeong, J. Y. Lee, Y. Y. Yang, I. Hwang, E. Martinoia, and Y. Lee. 2003. Functional expression of a bacterial heavy metal transporter in Arabidopsis enhances resistance to and decreases uptake of heavy metals. Plant Physiol. 133(2):589-96. Lee, S. M., G. Grass, C. J. Haney, B. Fan, B. P. Rosen, A. Anton, D. H. Nies, and C. Rensing. 2002. Functional analysis of the Escherichia coli zinc transporter ZitB. FEMS Microbiol. Lett. 215(2):273–278. Legatzki, A., G. Grass, A. Anton, C. Rensing, and D. H. Nies. 2003. Interplay of the Czc System and Two P-Type ATPases in Conferring Metal Resistance to Ralstonia metallidurans. J Bacteriol. 185(15):4354–4361 Liang, Z. Y., E. A. Pilon-Smits, L. Jouanin, and N. Terry. 1999. Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol. 119(1):73-79 Liao, V. H., J. Dong, and J. H. Freedman. 2002. Molecular characterization of a novel, cadmium-inducible gene from the nematode Caenorhabditis elegans. A new gene that contributes to the resistance to cadmium toxicity. J. Biol. Chem. 277(44): 42049–42059 Mejare, M., and L. Bulow. 2001. Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol. 19(2):67-73. Mills, R. F., G. C. Krijger, P. J. Baccarini, J. L. Hall, and L. E. Williams. 2003. Functional expression of AtHMA4, a P1B-type ATPase of the Zn/Co/Cd/Pb subclass. Plant J. 35(2):164-76. Nies ,D. H. 1999. Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51: 730-750 Nies, D. H. 2003. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 27:313–339. Nogawa, K., andT.Kido. 1993. Biological monitoring of cadmium exposure in itai-itai disease epidemiology. Int Arch Occup Environ Health. 65:S43-6. Novick, R. P., and C. Roth. 1968. Plasmid-linked resistance to inorganic salts in Staphylococcus aureus. J Bacteriol. 95(4):1335-42. Nucifora, G., L. Chu, T. K. Misra, and S. Silver. 1989. Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium efflux ATPase. Proc. Natl. Acad. Sci. USA 86:3544-3548 Patrick, L. 2003. Toxic metals and antioxidants: Part II. The role of antioxidants in arsenic and cadmium toxicity. Altern Med Rev. 8(2):106-28. Rensing, C., B. Mitra, and B. P. Rosen. 1997. The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc Natl Acad Sci USA. 94(26):14326-31. Rensing, C., M. Ghosh, and B. P. Rosen. 1999. Families of soft-metal-ion-transporting ATPases. J Bacteriol. 181(19):5891-7. Rensing, C., Y. Sun, B. Mitra, and B. P. Rosen. 1998. Pb(II)-translocating P-type ATPases. J Biol Chem. 273(49):32614-7. Rugh, C. L., H. D. Wilde, N. M. Stack, D. M. Thompson, A. O. Summers, and R. B. Meagher. 1996. Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc. Natl. Acad. Sci. USA. 93(8):3182-3187. Rugh, C. L., J. F. Senecoff, R. B. Meagher, and S. A. Merkle. 1998. Development of transgenic yellow poplar for mercury phytoremediation. Nat. Biotechnol. 16(10):925-928. Salt, D. E., R. D. Smith, and I. Raskin. 1998. Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:643-668. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning.: A laboratory manual, 2nd edition. Cold Spring Laboratory. Cold Spring Harbor, New York. Sheng, J., and V. Citovsky. 1996. Agrobacterium-plant cell DNA transport: have virulence proteins, will travel. Plant Cell. 8(10):1699-710. Silver, S., and L.T. Phung. 1996. Bacterial heavy metal resistance: new suprises. Annu. Rev. Microbiol. 50:753-89 Song, W. Y., Enrico Martinoia, J. Lee, D. Kim, D. Y. Kim, Esther Vogt, D. Shim, Kwan Sam Choi, Inhwan Hwang, and Youngsook Lee. 2004. A novel family of Cys-rich membrane proteins mediates cadmium resistance in Arabidopsis. Plant Physiology. 135:1027–1039. Song, W. Y., E. J. Sohn, E. Martinoia, Y.J. Lee, Y. Y. Yang, M. Jasinski, C. Forestier, I. Hwang, and Y. Lee. 2003. Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol. 21(8):914-9. Tsai, K. J., K. P. Yoon, and A. R. Lynn. 1992. ATP-dependent cadmium transport by the cadA cadmium resistance determinant in everted membrane vesicles of Bacillus subtilis. J Bacteriol. 174(1):116-21 Tsai, K. J., Y. F. Lin, M. D. Wong, H. H. Yang, H. L. Fu, and B. P. Rosen. 2002. Membrane topology of the pI258 CadA Cd(II)/Pb(II)/Zn(II)- translocationg P-type ATPase. J Bioenerg Biomembr. 34:147-56. Tzfira, T., and V. Citovsky. 2002. Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends Cell Biol. 12(3):121-9. Vaucheret, H., C. Beclin, T. Elmayan, F. Feuerbach, C. Godon, J. B. Morel, P. Mourrain, J. C. Palauqui, and S. Vernhettes. 1998. Transgene-induced gene silencing in plants. Plant J. 16(6):651-9. Weast, R. C. 1984. CRC handbook of chemistry and physics, 64 edn. CRC, Boca Raton, Fla. Williams, L. E., J. K. Pittman, and J. L. Hall. 2000. Emerging mechanisms for heavy metal transport in plants. Biochim. Bio-phys. Acta. 1465(1-2):104-126 Zhu, Y. L., E. A. Pilon-Smits, A. S. Tarun , S. U. Weber, L. Jouanin, and N. Terry. 1999. Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol. 121(4):1169-1177
摘要: 鎘和鉛在工業化國家中被廣泛地利用,但對於生物體而言,鎘和鉛是非必需重金屬元素,一但累積在生物體內,則會對生物造成毒害。曾在日本發生因汞中毒所引起的水俁病(Minamata disease),鎘中毒所引起的痛痛病(Itai-itai disease),都是因為在食物鏈中生物的累積性,使得微量的污染也深具威脅性,因此,將非必需重金屬累積程度減至最小之機制是所有生物體所需要的。本研究主要目的是利用植物基因轉殖工程將已知的革蘭氏陽性菌金黃葡萄球菌(Staphylococcus aureus)質體pI258上的抗鎘系統(cadCA operon)中之鎘離子運輸蛋白的cadA基因轉殖至阿拉伯芥(Arabidopsis thaliana)中,使其在植物細胞內表現,來探討cadA基因的轉殖植物對鎘、鉛或鋅能否增加抗性及減少累積量,以利日後作為降低累積性或植生復育(Phytoremediation)的工具。本實驗是以帶有花椰菜嵌紋病毒CaMV 35S啟動子的載體pBI121來推動cadA基因在阿拉伯芥內表現,利用農桿菌轉殖法(Agrobacterium mediated transformation)將CadA基因嵌入阿拉伯芥基因體中。種子每代皆以抗生素Kanamycin作篩選,而得到帶有CadA基因的第三子代同型接合(homozygous)的轉殖株種子。利用聚合酶連鎖反應和反轉錄聚合酶連鎖反應得知cadA基因確實有嵌入阿拉伯芥基因體中且有表現。在含鎘的耐受性發芽測試結果顯示,和野生型阿拉伯芥相比較之下,表現cadA基因的轉殖植物對鎘的抗性確實提高。另外,在含鉛或鋅的抗性測試結果顯示,和野生型阿拉伯芥相比較之下,表現cadA基因的轉殖植物對鉛或鋅的抗性確實提高。但在鎘及鉛累積量的檢測中,表現cadA基因的轉殖植物對鎘或鉛的累積量卻都只比野生型阿拉伯芥的累積量微高些。本研究證實利用基因工程的方法將cadA基因表現於植物中的確能提高植物對鎘、鉛及鋅的耐受性,未來可應用在使受重金屬污染土地中之植物增加對重金屬的抗性,以作為植生復育(Phytoremediation)的工具。
Cadmium(Cd) and lead(Pb) are widely used in industrialized countries, and both are non-essential heavy metals for the organisms. When they are accumulated, they will become extremely toxic to living organisms. For instance, the Minimata disease caused by mercury contamination, and the Itai-itai disease caused by cadmium contamination had made serious injury to the biological system for its bioaccumulation in the food chain. These heavy metals could be a threat at the low levels. Therefore, mechanisms responsible for minimizing the concentraction of non-essential heavy metals is required for all organisms. This study was initiated to clone and characterise of cadA gene originated from cadCA operon in a gram-positive bacteial plasmid, Staphylococcus aureus plasmid pI258, into Arabidopsis thaliana.The expression of cadA gene in A. thaliana may increase its resistance to cadmium, lead and zinc(Zn) and decrease the heavy metal content in the transgenic plants. The isolated transgenic lines were conferred both in DNA and RNA levels. Analysis of transgenic A. thaliana plants expressing cadA showed that CadA is functionally active and that the plants have enhanced resistance of Cd(II), Pb(II) and Zn(II), while accumulated a greater amounts of Cd(II) or Pb(II). These results suggest that transgenic plants expressing cadA may be an useful tool for phytoremediation.
URI: http://hdl.handle.net/11455/22409
其他識別: U0005-2507200610364500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2507200610364500
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.