Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22417
標題: 綠茶多酚對心肌細胞酸化降低肌肉收縮鈣離子敏感性保護效應機制探討
Protective effects of green tea polyphenols of catechin and epigallocatechin-3-gallate on acidic pH reduction of Ca2+ sensitivity of cardiac muscle contraction
作者: 郭世昌
Kuo, Shih-Chung
關鍵字: 綠茶多酚
green tea polyphenol, catechin
兒茶素
表沒食子兒茶素沒食子酸酯
抗氧化
抗癌,抗發炎
抗菌
抗病毒
抗纖維化
降血脂
保護心臟
缺血/復血動物模式
細胞凋亡
STAT-1活化
酸化
鈣離子敏感性
肌原纖維
水解ATP酵素活性
酪氨酸內生性螢光
心肌旋光蛋白次單元C
骨骼肌旋光蛋白次單元C
替換性心肌肌原纖維
epigallocatechin gallate (EGCg)
antioxidant
anticancer
anti-inflammatory
antibacterial
antiviral
antifibrotic
hypolipidemic
cardioprotective agents
ischemia/reperfusion animal model
apoptosis
STAT-1 activation
acidosis
calcium sensitivity
myofibrillar actomyosin ATPase activity
intrinsic fluorescence of tyrosine residue, troponin C (cTnC and/or sTnC )
substituted cardiac myofibril
出版社: 生命科學系所
引用: Anderson,PAW., Greig,A., Mark,T.A., Malouf,N.N., Oakeley,A.E, Ungerleider,R,M., Allen,P.D., and Kay,B.K. (1995). Molecular basis of human cardiac troponin T isoforms expressed in the developing, adult, and failing heart. Circ Res 71:681-686. Adrain,C., Martin,S.J., Slee,E.A., (2001). Executioner caspase-3,-6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem 276:7320-7326 Ausubel,F.A., Brent,R., Kingston,R.E., Moore,D.D., Seidman,J.G., Smith, J.A., and Struhl,K. (1990). Expression Using the T7 RNA Polymerase/Promotor System. In Current Protocols in Molecular Biology. 16:2.1-2.11 Ball,K.L, Johnson,M.D, and Solaro,R.J. (1994) Isoform specific interactions of troponin I and troponin C determine pH sensitivity of myofibrillar Ca2+ activation. Biochemistry 33:8464-8471. Berezowsky,C. and J,Bag. (1988) Developmentally regulated slow troponin C messenger RNA in chicken skeletal and cardiac muscles. Biochem Cell Biol 66:880~888, Blumenschein,TM.A., Tripet,B.P., Hodges,R.S., Sykes,B.D. (2001). Mapping the interacting regions between troponins T and C. Binding of TnT and TnI peptides to TnC and NMR mapping of the TnT-binding site on TnC. J Biol Chem 276:36606-36612. Breitbart,R.E. and Nadal-Ginard,B. (1986). Complete nucleotide sequence of the fast skeletal troponin T gene: Alternative spliced exons exhibit unusual interspecies divergence. J Mol Biol 188:313-324. Bucher, E.A., Dhoot, G.K., Emerson,M.M., Ober,M., Emerson,C.P. (1999). Structure and evolution of the alternatively spliced fast troponin T isoform gene. J Biol Chem 274:17661-17670. Cande,C., Cecconi,F., Dessen,P., Kroemer,G., (2002). Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death. J Cell Sci 115:4727-4734. Chong, P.C. and Hodges,R.S. (1982). Proximity of sulfhydryl groups to the sites of interaction between components of the troponin complex from rabbit skeletal muscle. J Biol Chem 257:2549-2555. Dargis,R., Pearlstone,J.R., Barrette-Ng,I., Edwards,H., and Smillie,L.B. (2002). Single mutation (A162H) in human cardiac troponin I corrects acid pH sensitivity of Ca2+-regulated actomyosin S1 ATPase. J Biol Chem 277: 34662-34665. Day,S.M., Westfall,M.V., Fomichefa,E.V., Hoyer,K., Yasuda,S., La Cross, N.C., Alecy,L.G.D., Ingwall,J.S., Metzger,M.J. (2006). Histidine button engineered into cardiac troponin I protects the ischemia and failing heart. Nature medic12:181-189 Ding,X.L, Akella,A.B., and Gulati,J. (1995). Contributions of troponin I and troponin C to the acidic pH-induced depression of contractile Ca2+ sensitivity in cardiotrabeculae. Biochemistry 34:2309-2316. Donaldson,S.K., Hermansen,L., and Bolles,L. (1978). Differential, direct effects of H+ on Ca2+ -activated force of skinned fibers from the soleus, cardiac and adductor magnus muscles of rabbits. Pflugers Arch 376:55-65. Ferrières,G., Pugière,M., Mani,J.C., Villard,S., Laprade,M., Doutre,P., Pau, B., and Granier,C. (2000). Systemic mapping of regions of human cardiac troponin I involved in binding to cardiac troponin C: N- and C-terminal low affinity contributing regions. FEBS Lett 479:99-105. Förster,T. (1965). Delocalized excitation and excitation transfer. In Sinaoglu, O , ed. Modern Quantum Chemistry, Part III. Academic press: New York. pp93-137. Fujimori,K., Sorenson,M., Herzberg,O., Moult,J., Reinach,F.C. (1990). Probing the calcium-induced conformational transition of troponin C with site-directed mutants. Nature 345:182-184. Gordon,A.M., Homsher,E., Regnier,M. (2000). Regulation of contraction in striated muscle. Physiol Rev. 80:853-924. Grabarek,Z., Tan,R.Y., Wang,J., Tao,T., Gergely,J. (1990). Inhibition of mutant troponin C activity by an intra-domain disulphide bond. Nature 345: 132-135. Grabarek,Z., Drabikowski,W., Leavis,P.C, Rosenfeld,S.S, and Gergely,J. (1981). Proteolytic fragments of troponin C. Interactions with the other troponin subunits and biological activity. J Biol Chem 256:13121-13127 Gulati,S. and Babu, A. (1989) Effect of acidosis on Ca2+ sensitivity of skinned cardiac muscle with troponin C exchange. FEB 245:279-282 Han,M.K., Lin,P., Paek,D., Harvey,J.J, Fuior,E., Knutson,J.R. (2002). Fluorescence studies of pyrene maleimide-labeled translin: excimer fluorescence indicates subunits associate in a tail-to-tail configuration to form octamer. Biochemistry 41:3468-3476. Hendry,l., John,S. (2004). Regulation of STAT signalling by proteolytic processing. Eur J Biochem 271:4613-4620. Herzberg,O., Moult,J., James,MNG. (1986). A model for the Ca2+-induced conformational transition of troponin C. A trigger for muscle contraction. J Biol Chem 261:2638-2644. Hitchcock,S.E., Zimmerman,C.J., Smakkey,C. (1981). Study of the structure of troponin-T by measuring the relative reactivities of lysines with acetic anhydride. J Mol Biol 147:125-151. Houdusse,A., Love,M.L., Dominguez,R., Grabarek,Z., Cohen,C. (1997).Structures of four Ca2+-bound troponin C at 2.0 Å resolution: further insights into the Ca2+-switch in the calmodulin superfamily. Structure 5: 1695-1711. Huang,Q.Q., Chen,A., Jin,J.P. (1999). Complete sequence and genomic organization of mouse slow skeletal muscle troponin T gene. Gene 229: 1-10. Ivashkiv,L.B., Hu,X., (2004). Signaling by STATs. Arthritis Res Ther 6:159-168. Jin,J.P., Huang,Q.Q., Yeh,H.I., and Lin,JJC. (1992). Complete nucleotide sequence and structural organization of rat cardiac troponin T gene. A single gene generates embryonic and adult isoforms via developmentally regulated alternative splicing. J Mol Biol 227:1269-1276. Jin,J.P. and Samanez,R.A. (2001). Evolution of a metal-binding cluster in the NH2-terminal variable region of avian fast skeletal muscle troponin T: Functional divergence on the basis of tolerance to structural drifting. J Mol Evol 52:103-116. Kerrick,W.G., Malencik,D.A., Hoar,P.E., Potter,J.D., Coby,R.L., Pocinwong,S., Fischer,E.H., (1980). Ca2+ and Sr2+ activation: comparison of cardiac and skeletal muscle contraction models. Pflugers Arch 386(3):207-213. Kleerekoper,Q., Howarth,JW., Guo,X., Solaro,R.J., and Rosevear,P.R. (1995). Cardiac troponin I induced conformational changes in cardiac troponin C as monitored by NMR using site-directed spin and isotope labeling. Biochemistry 34:13343-13352. Kobayashi,T., Tagagi,T., Konishi,K., Morimoto,S. Ohtsuki,I. (1989). Amino acid sequence of porcine cardiac muscle troponin C. J Biochem (Tokyo) 106:55-59. Kobayashi,T., Tao,T., Grabarek,Z., Gergely,J. Collins,J.H. (1991). Cross-linking of residue 57 in the regulatory domain of a mutant rabbit skeletal troponin C to the inhibitory region of troponin I. J Biol Chem 266: 13746-13751. Kress, M., H. E. Huxley, A. R. Farqui, and J. Hendrix (1986). Structure changes during activation of frog muscle studied by time resolved X-ray diffraction. J. Mol. Biol. 188: 325-342. Leavis,P.C, and Kraft,E.L. (1978). Calcium binding to cardiac troponin C. Arch Biochem Biophys 186:411-415. Lehman,W., Roso,M., Tobacman,L.S, Craig,R. (2001). Troponin organization on relaxed and activated thin filaments revealed by electron microscopy and three-dimensional reconstruction. J Mol Biol 307:739-744. Lehrer,S.S and Geeves,M.A. (1998) The muscle thin filament as a classical cooperative/allosteric regulatory system. J Mol Biol 277:1081-1089. Lehrer,S.S. (1997). Intramolecular pyrene excimer fluorescence a probe of proximity and protein conformational change. Meth Enzymol 278: 286-295. Lether, S. S., (1994). The regulatory switch of the muscle thin filament: Ca2+ or myosin heads? J. Muscle Res. Cell Motil. 15: 232-236. Li,G., Martin,A.F. and Solaro,R.J. (2001). Localization of regions of troponin I important in deactivation of cardiac myofilaments by acidic pH. J Mol Cell Cardiol 33:1309-1320. Li,Y., Love,M.L., Putkey,J.A. and Cohen,C. (2000). Bepridil opens the regulatory N-terminal lobe of cardiac troponin C. Proc Natl Acad Sci USA 97:5140-5145. Liou,Y.M and Chang,JCH. (2004). Differential effect of pH on calcium-induced conformational changes of cardiac troponin C in complex with cardiac and skeletal troponin I and T. 48th American Biophysical Annual Meeting at Baltimore, MA, USA. , Feb 23-27, Liou,Y.M. and Chen,M.W. (2003). Calcium-dependent protein-protein interactions induce changes in proximity relationships of Cys-48 and Cys-64 in chicken skeletal troponin I. Eur. J Biochem. 270:2092-3100. Liou,YM. and Fuchs,F. (1992). Pyrene-labeled cardiac troponin C: Effects of Ca2+ on monomer and excimer fluorescence in solution and myofibrils. Biophys J 61:892-901. Liou,Y.M. and Fuchs,F. (1993). Energy-transfer measurements of the Cys35-Cys-84 distance in bovine cardiac troponin C. Biochim et Biophys Acta 1202:92-98. Luo,Y., Wu,J.L., Gergely,J. & Tao,T. (1997). Troponin T and Ca2+ dependence of the distance between Cys48 and Cys133 of troponin I in the ternary troponin complex and reconstituted thin filaments. Biochemiatry 36: 11027-11035. Luo,Y., Wu,J.L., Gergely,J. & Tao,T. (1998). Localization of Cys133 of rabbit skeletal troponin-I with respect to troponin-C by resonance energy transfer. Biophys J 74:3111-3119. Luo,Y., Leszyk,J., Li,B., Gergely, J. & Tao, T. (2000) Proximity relationships between residue 6 of troponin I and residues in troponin C: Further evidence for extended conformation of troponin C in the troponin complex. Biochemistry 39:15306-15315. Luo,Y., Wu,J.L., Li,B., Langsetmo,K., Gergely,J. & Tao,T. (2000) Photocrosslinking of benzophenone-labeled single cysteine troponin I mutants to other thin filament proteins. J Mol Biol 296:899-910. Malnic,B., Farah,C.S. & Reinach,F.C. (1998). Regulatory properties of the NH2- and COOH-terminal domains of troponin T. ATPase activation and binding to troponin I and troponin C. J Biol Chem 273:10594-10601. Maytum,R., Westordorf,B., Jaquet,K. and Geeves,M.A. (2003). Differential regulation of actomyosin interaction by skeletal and cardiac troponin isoforms. J Biol Chem 278:6696-6701. Maytum,R., Lehrer,S.S., Geeves,M.A., (1999). Cooperativity and switching within the three-state model of muscle regulation. Biochemistry 38:1102-1110. McCubbin,W.D., Oikawa,K., Kay,C.M. (1986). Comparative calcium binding and conformational studies of turkey and rabbit skeletal troponin C. FEBS Lett 195(1-2):17-22 McKay,R.T., Tripet,B.P., Hodges,R.S., Sykes,B.D. (1997). Interaction of the second binding region of troponin I with the regulatory domain of skeletal muscle troponin C as determined by NMR spectroscopy. J Biol Chem 272:28494-28500 McKay,R.T., Pearlstone,J.R., Corson,D.C., Gagne, S.M., Smillie, L.B. Sykes, B.D. (1998). Structure and interaction site of the regulatory domain of troponin-C when complexed with the 96-148 region of troponin-I. Biochemistry 37:12419-12430. Menegazzi,M., Suzuki,H., Knight,R.A., Latchman,D.S., Stephanou, A. (2004). Epigallocatechin-3-gallate inhibits STAT-1 activation and protects cardiac myocyte from ischemia/reperfusion induced apoptosis. The FASEB journal. Mercier,P., Li,MX., Sykes,B.D. (2000). Role of the structural domain of troponin C in muscle regulation: NMR studies of Ca2+ binding and subsequent interactions with regions 1-40 and 96-115 of troponin I. Biochemistry 39:2902-2911. Metzger,J.M. and Moss,R.L.. (1990). Greater hydrogen ion-induced depression of tension and velocity in skinned single fibers of rat fast than slow muscles. J Physiol 393:727-742. Metzger,J.M., Parmacek,M.S., Barr,E., Pasyk,K., Lin,W.I., Cochrane,K.L., Field,L.J., Leiden,j.m., (1993). Skeletal troponin C reduces contractile sensitivity to acidosis in cardiac myocytes from transgenic mice. Metzger,J.M., Day,S.M., Westfall,M.V., Fomicheva,E.V., Hoyer,K., Yasuda,S., La Cross NC., D'Alecy,L.G., Ingwall,J.S. (2006). Histidine button engineered into cardiac troponin I protects the ischemic and failing heart. Nat Med 12:181-189. Miyazawa,T. (2000). Absortion, metabolism and antioxidative effects of tea catechin in human. Biofactor 13:55-59 Morimoto,S. and Goto,T. (2000). Role of troponin I isoform switching in determining the pH sensitivity of Ca2+ regulaton in developing rabbit cardiac muscle. Biochem Biophys Res Commun 267:912-917. Muzio,M. (1998). Signalling by proteolysis: death receptors induce apoptosis. Int J Clin Lab Res 28:141-147. Nijveldt,R.T., Van Nood,E., Van Hoorn,D.EC., Boelens,P.G., Van Norren,K Van Leeuwen,P.AM. (2001). Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 74:418-425 Ogut,O. and Jin,J.P. (1996). Expression, zinc-affinity purification and characterization of a novel metal-binding cluster in troponin T: metal-stabilized α-structure and effects of the NH2-terminal variable region on the conformation of intact troponin T and its association with tropomyosin. Biochemistry 35:16581-16590. Olah,G.A. & Trewhella,J. (1994). A model structure of the muscle protein complex 4Ca2+•Troponin C•Troponin I derived from small-angle scattering data: Implications for regulation. Biochemistry 33:12800-12806. Oliveira,D.M., Nakaie,C.R., Sousa,A.D., Farah,C.S., Reinach,F.C. (2000). Mapping the domain of troponin T responsible for the activation of actomyosin ATPase activity. Identification of residues involved in binding to actin. J Biol Chem 275:27513-27519. Palmer,S. and Kentish,JC. (1994)The role of troponin C in modulating the Ca2+ sensitivity of mammalian skinned cardiac and skeletal muscle fibers. J Physiol (Lond) 480:45-60. Pearlstone,J.R. and Smillie,L.B. (1978). Troponin T fragments: physical properties and binding to troponin C. Can. J Biochem 56:521-527. Perry,S.V. (1999). Troponin I: Inhibitor or facilitator. Mol Cell Biochem 190:9-32. Potter,J.D. (1982) Preparation of troponin and its subunits. Meth Enzymol. 85:241-263. Potter,J.D., Parsons,B., Szczesna,D., Zhao,J., Van Slooten,G., Kerric,W.G., Putkey,J.A. (1997). The effect of pH on the Ca2+ affinity of the Ca2+ regulatory sites of skeletal and cardiac troponin C in skinned muscle fibres. J Muscle Res Cell Motil. 18:599-609. Reinach,F.C. and Karlsson,R. (1988) Cloning expression, and site-directed mutagenesis of chicken skeletal muscle troponin C. J Biol Chem 263:2371-2376. Sahoo,D., Narayanaswam,V., Kay,C.M., Ryan,R.O. 2000. Pyrene excimer fluorescence: a spatially sensitive probe to monitor lipid-induced helical rearrangement of apolipophorin III. Biochemistry 39:6594-6601. Salviati,G., Betto,R., Danieli,Betto.D. (1982). Polymorphism of myofibrillar proteins of rabbit skeletal muscle fibers. Biochem J 207: 261~272. Schenkel,J., Jeremias,I., Kupatt,C., Martin-Villalba,H., Habazettl,J., Boekstegers,P., Debatin,K.M., (2000). Involvement of CD95/Apo1/Fas in cell death after myocardial ischemia. Circulation 102:915-920. Schiaffino,S. and Reggiani,C. (1996). Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev 76: 371-423. Shiraishi,F., Kambara,M. and Ohtsuki,I. (1992). Replacement of troponin components in myofibrils. J Biochem (Tokyo) 111:61-65. Sia,S.K., Li,M.X., Spyracopoulos,L., Gagnè,S.M., Liu,W., Putkey,J.A, and Sykes,B.D. (1997). Structure of cardiac muscle troponin C unexpectedly reveals a closed regulatory domain. J Biol Chem 272: 18216-18221. Silverman,H.S., Griffiths,E.J., Ocampo,C.j., Savage,J.S., Stern,M.D., (2000). Protective effects of low and high doses of cyclosporin A against reoxygenation injury in isolated rat cardiomyocytes are associated with differential effects on mitochondrial calcium levels. Cell Calcium. 27:87-95 Slupsky,C.M. and Sykes,B.D. (1995). NMR solution structure of calcium-saturated skeletal muscle troponin C. Biochemistry 34:15953-15964. Solaro,R.J., Wattanapermpool,J., Reiser,P.J. (1995). Troponin I isoforms and differential effects of acidic pH on soleus and cardiac myofilaments. Am J Physiol 268:323-330 Solaro,R.J. and Rarick,H.M. (1998). Troponin and tropomyosin: proteins that switch on and tune in the activity of cardiac myofilaments. Circ Res 85: 471-480. Solaro,R.J., Varghese,J., Marian,A.J. and Chandra,M. (2002). Molecular mechanisms of cardiac myofilament activation: modulation by pH and a troponin T mutant R92Q. Basic Res Cardiol 97 Suppl 1:I102-I110. Spyracoupoulos,L., Li,M.X., Sia,S.K., Gagnè,S.M., Chandra,M., Solaro, R.J., Sykes,B.D. (1997). Calcium-induced structural transition in the regulatory domain of human cardiac troponin C. Biochemistry 36: 12138-12146. Spyracoupoulos,L., Beier,N., Putkey,J.A., Sykes,B.D. (2000). Interaction of cardiac troponin C with Ca sensitizer EMD 57033 and cardiac troponin I inhibitory peptide. Biochemistry. 39:8782-8790. Squire,J.M. and Morris,E.P. (1998). A new look at thin filament regulation in vertebrate skeletal muscle. FASEB J 12:761-771. Squire, J. M (2001). Muscle Contraction Regulation. Encyclopedia of life science. P1-P9 Stefancsik,R., Jha,P.K. and Sarkar,S. (1998). Identification and mutagenesis of a highly conserved domain in troponin T responsible for troponin I binding: Potential role for coiled coil interaction. Proc Natl Acad Sci. USA 95, 957:962. Stephanou, A., Brar,B., Liao,Z., Scarabelli,T., Knight,R.A. and Latchman, D.S. (2001). Distint initiator caspases are require for the induction of apoptosis in cardiac myocytes during ischemia vrsus reperfusion injury. Cell Death and Differ 8:434-435 Stone,D.B., Timmins,P.A., Schneider,D.K., Krylova,I., Ramos,C.H.I., Reinach,F.C. and Mendelson,R.A. (1998). The effect of regulatory Ca2+ on the in situ structures of troponin C and troponin I: A neutron scattering study. J Mol Biol 281:689-704. Stryer,L. (1978). Fluorescence energy transfer as a spectroscopic ruler. Ann Rev Biochem 47:819-846. Strynadka,NCJ., Cherney,M., Sielecki,A.R., Li,M.X., Smillie,LB., James, MNG. (1997). Structural details of a calcium-induced molecular switch: X-ray crystallographic analysis of the calcium-saturated N-terminal domain of troponin C at 1.75 Å resolution. J Mol Biol 273:238-255. Swartz, D. R., R. L. Moss, and M. L. Greaser (1996). Calcium aloneDoes not fully activate the thin filament for S1 binding to rigor Myofibrils. Bipphys. J. 71: 1891-1904 Syska,H., Wilkinson,J.M., Grand,R.J., Perry,S.V. (1976). The relationship between biological activity and primary structure of troponin I from white skeletal muscle of the rabbit. J. Biochem (Tokyo) 153:375-387. Szynkiewicz,J., Stepkowski,D., Brzeska,H. and Drabikowski,W. (1985). Cardiac troponin-C: a rapid and effective method of purification. FEBS lett;181: 281-285. Tabor, S. (1990). (F.A. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, and K. Struhl, eds.) pp. 16.2.1-16.2.11. Greene Publishing and Wiley-Interscience, New York. Takeda,S., Yamashita,A., Maeda,K., Maeda,Y. (2003). Structure of the core domain of human cardiac troponin in the Ca2+ saturated form. Nature 424:35-41. Tao,T., Gowell,E., Strasburg,G.M., Gergely,J., Leavis,P.C. (1989). Ca2+ dependence of the distance between Cys-98 of troponin C and Cys-133 of troponin I in the ternary complex. Resonance energy transfer measurements. Biochemistry 28:5902-5908. Tao,T., Gong,B.J. and Leavis,P.C. (1990). Calcium-induced movement of troponin-I relative to actin in skeletal muscle thin filaments. Science 247:1339-1341. Tobacman,L.S. (1996). Thin filament-mediated regulation of cardiac contraction. Annu. Rev Physiol 58:447-481. Townsend,P.A., Scarabelli,T.M., Pasini,E., Gitti,G., Menegazzi,M., Suzuki, H., Knight,R.A., Latchman,D.S., Zamzami,N. and Takeda,S., Yamashita,A., Maeda,K. and Maeda,Y. (2003). Structure of core domain of human cardiac troponin in the Ca2+-saturated bform. Nature 424: 35-41. Tripet,B., Van,Eyk., J,E. & Hodges,R.S. (1997). Mapping of a second actin-tropomyosin and a second troponin C binding site within the C terminus of troponin I, and their importance in the Ca2+-dependent regulation of muscle contraction. J Mol Biol 271:728-750. Tung,S.C, Wall,M.E, Gallagher,S.C. and Trewhella,J. (2000). A model of troponin- in complex with troponin-C using hybrid experimental data: The inhibitory region is a β-hairpin. Protein Sci 9:1312-1326. Van Eerd,J.P. and Takahashi,K. (1975). The amino acid sequence of bovine cardiac troponin-C: comparison with rabbit skeletal troponin-C. Biochem. Biophys. Res Commun 64:122-127. Van Eyk,J.E. & Hodges,R.S. (1988). The biological importance of each amino acid residue of the troponin I inhibitory sequence 104-115 in the interaction with troponin C and tropomyosin-actin. J Biol Chem 263: 1726-1732. Van Dyke,D.A., Pryoy,B.A., Smith,P.G, Topp,M.R. (1998). Nasosecond time-resolved fluorescence spectroscopy in the physical chemistry laboratory: Formation of the pyrene excimer in solution. J Chem Educ 75: 615-620. Vassylyev,DG., Takeda,S., Wakatsuki,S., Maeda,K., and Maeda,Y. (1998). Crystal structure of troponin C in complex with troponin I fragment at 2.3-Å resolution. Proc Natl Acad Sci. USA 95:4847-4852. Verhagen,A.M., Silke,J., Hawkins,C.J., Ekert,P.G., Chew,J., Day,C.L., Pakusch,M., Vaux,d.l., (2002). The anti-apoptotic activity of XIAP is retained upon mutation of both the caspase 3- and caspase 9-interacting sites. J Cell Biol 157:115-124. Vinogradova,M.V., Stone,D.B., Malanina,G.G., Cooke,R., Mengelson,R.A., Fletterick,R.J., (2005). Ca(2+)-regulated structural changes in troponin. Proc Natl Acad Sci. USA 102:5038-5043. Wang,J, and Jin,J.P. (1997). Primary structure and developmental acidic to basic transition of 13 alternatively spliced mouse fast skeletal muscle troponin T isoforms. Gene 193:105-114. Wang,J. and Jin,J.P. (1998). Conformational modulation of troponin T by configuration of the NH2-terminal variable region and functional effects. Biochemistry 37:14519-14528. Weiss,J.N., Korge,P., Honda,H.M., Ping,P. (2003). Role of the mitochondrial permeability transition in myocardial disease. Circ Res 93:292-301 Westfall,M.V. and Metzger,J.M. (2001). Troponin I isoforms and chimeras: Tuning the molecular switch of cardiac contraction. News. Physiol. Sci. 16:278-281. Westfall,M.V., Borton,A.R, Albayya,F.P. and Metzger,J.M. (2002). Myofilament calcium sensitivity and cardiac disease: Insights from troponin I isoforms and mutants. Circ Res 91:525-531. Wilkinson,J.M. and Grand,R.J.A. (1978). Comparison of amino acid sequence of troponin I from different striated muscles. Nature 271:31-35. Wilkinson,J.M. (1976). The amino acid sequence of troponin C from chicken skeletal muscle. FEBS Lett 70:254-256. Zamzami,N., Daugas,E., Susin,S.A., Ferri,K.F., Irinopoulou,T., Larochette,N., Prevost,M.C., Leber,B., Andews,D., Penninger,J., Kroemer,G., (2000). FASEB J 14:729-739
摘要: 兒茶素(catechin)與表沒食子兒茶素沒食子酸酯(epigallocatechin gallate)是二種綠茶含量最高的多元酚類,約佔綠茶多酚總量30〜50 %。已知綠茶多酚有許多的益處,包括抗氧化能力、抗癌作用、抗發炎反應、抗菌作用、抗病毒、抗組織纖維化、降低血脂、以及保護心臟等功效。此外在缺血/復血動物模式證實心臟缺血會誘發STAT-1的路徑造成心肌細胞凋亡。然而發現EGCg能抑制 STAT-1的活化,保護心肌細胞免於缺血時引發細胞凋亡。傷害心肌的另一條路徑則是由於缺血引起細胞酸化效應降低心肌收縮鈣離子敏感性。本研究的目的,想瞭解綠茶多酚是否能保護心肌在酸化下鈣離子敏感性降低。在pH 7.0 綠茶多酚(兒茶素在 1mM,表沒食子兒茶素沒食子酸酯在 0.1 mM ) 會降低鈣離子水解ATP酵素活性,因此認為綠茶多酚能影響心肌鈣離子活性。藉由降低pH從 7.0〜6.0 比較有無綠茶多酚處理的心肌肌原纖維,發現有綠茶多酚之下鈣離子敏感性下降的趨勢有所改善。旋光蛋白次單元C 是一鈣離子結合蛋白,調控心肌與骨骼肌收縮的開關。在心肌旋光蛋白次單元C有三個酪氨酸內生性螢光特性(第5、111、150氨基酸位置),被用來監測鈣離子與綠茶多酚對心肌旋光蛋白次單元C的結合情形。結果顯示在有無鈣離子的存在下,綠茶多酚與心肌旋光蛋白次單元C結合比例約 1:1 。相較之下綠茶多酚沒有結合在骨骼肌旋光蛋白次單元C。無論綠茶多酚是否存在,心肌旋光蛋白次單元C與鈣離子結合皆受 pH酸化影響。然而在pH酸化時綠茶多酚確有減緩心肌旋光蛋白次單元C鈣離子結合降低的效果。為進一步證實綠茶多酚是結合在心肌旋光蛋白次單元C影響心肌肌原纖維鈣離子敏感性。利用外源性的心肌或骨骼肌旋光蛋白次單元C取代心肌肌原纖維內源性旋光蛋白次單元C,然後測試鈣離子水解 ATP 酵素活性。結果顯示綠茶多酚能改善置換了心肌旋光蛋白次單元C肌原纖維在酸化時鈣離子水解ATP酵素活性的下降。但是置換骨骼肌旋光蛋白次單元C的肌原纖維並沒如此結果。總結本實驗的結果:1.綠茶多酚可專一性結合在心肌旋光蛋白次單元C,2.綠茶多酚能改善由缺血引起細胞內酸化時心肌收縮鈣離子活性。
Two major green tea polyphenols are catechin and Epigallocatechin gallate (EGCg), accounting for 30~50 % of total polyphenols in green tea. The most well-known beneficial properties associated with green tea polyphenols include antioxidant, anticancer, anti-inflammatory, antibacterial, antiviral, antifibrotic, hypolipidemic, and cardioprotective agents. In addition, studies with ischemia/reperfusion animal model showed that ischemia induces myocardial apoptosis via STAT-1 pathway, while EGCg could inhibit intracellular STAT-1 activation and protect myocardium from apotosis induced by ischemia. An alternative pathway for myocardial damage by ischemia is through the effect of acidosis on the reduction of the Ca2+ sensitivity of cardiac muscle contraction. The major goal of this study was to determine if green tea polyphenols could protect myocardium from acidic effects on the reduced-Ca2+ sensitivity of cardiac muscle. At pH 7.0, green tea polyphenols (catechin in mM range; while EGCg in 0.1 mM range) caused a decrease in Ca2+-dependent myofibrillar actomyosin ATPase activity, suggesting that green tea polyphenols could affect the Ca2+ activation of myocardium. Lowering pH from 7.0 to 6.5 and/or 6.0, the degree of reduction of the Ca2+ sensitivity of cardiac myofibrils in the presence of green tea polyphenols is improved as compared with the experiments without supplementing green tea polyphenols. Troponin C, a Ca2+ binding protein, acts as a switch for the regulation of skeletal and cardiac muscle contraction. The intrinsic fluorescence of three tyrosine residues (Tyr 5, Try 111, and Tyr 150) in cardiac troponin C (cTnC) was used to monitor the binding of Ca2+ and green tea polyphenols to cTnC. Results obtained indicated that green tea polyphenols binds to cTnC in a 1:1 ratio with and/or without Ca2+. In contrast, green tea polyphenols could not bind to skeletal TnC (sTnC), in the presence and/or absence of green tea polyphenols, Ca2+ binding to cTnC is affected by acidic pH. However, the reduction of Ca2+ binding to cTnC by acidic pH is alleviated in the presence of green tea polyphenols. To further demonstrate the effects on the Ca2+ sensitivity of cardiac myofibrils is through the binding of green tea polyphenols to cTnC, we carrdied out the measurement of Ca2+ dependent myofibrillar ATPase activity in the cTnC and/or sTnC substituted cardiac myofibrils. The results showed that green tea polyphenols could improve the acidic pH effects on the reduction of the Ca2+ sensitivity of myofibrillar ATPase activity in cTnC substituted cardiac myofibrils, but not in sTnC substituted cardiac myofibrils. Taken together, results obtained from this study are: 1.) green tea polyphenols specifically binds to cTnC.; 2.) polyphenols improve the Ca2+ sensitivity of cardiac muscle during intracellular acidosis by ischemia.
URI: http://hdl.handle.net/11455/22417
其他識別: U0005-2508200611001800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2508200611001800
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.