Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22419
標題: 利用甲基化晶片剖析B型與C型肝炎病毒感染之肝細胞腫瘤間基因上遺傳層次之變異
Dissecting Epigenetic Alterations between Hepatitis B Virus and Hepatitis C Virus-infected Hepatocellular Carcinoma using CpG Island Microarray
作者: 陳暐恩
Chen, Wei-En
關鍵字: 肝細胞癌
Hepatocellular carcinoma
甲基化晶片
MS-PCR技術
Differential methylation hybridization (DMH)
Methylation-specific PCR
出版社: 生命科學系所
引用: Achille, A., M.O. Biasi, G. Zamboni, G. Bogina, A.R. Magalini, P. Pederzoli, M. Perucho, and A. Scarpa. 1996. Chromosome 7q allelic losses in pancreatic carcinoma. Cancer Res. 56: 3808-3813. Antequera, F. and A. Bird. 1993. Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci U S A 90: 11995-11999. Antequera, F., J. Boyes, and A. Bird. 1990. High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell 62: 503-514. Anzola, M., N. Cuevas, M. Lopez-Martinez, M. Martinez de Pancorbo, and J.J. Burgos. 2004. Patterns of methylation profiles as diagnostic markers for multiple hepatocellular carcinomas. Scand J Gastroenterol 39: 246-251. Arber, W. and S. Linn. 1969. DNA modification and restriction. Annu Rev Biochem 38: 467-500. Bednarek, A.K., C.L. Keck-Waggoner, R.L. Daniel, K.J. Laflin, P.L. Bergsagel, K. Kiguchi, A.J. Brenner, and C.M. Aldaz. 2001. WWOX, the FRA16D gene, behaves as a suppressor of tumor growth. Cancer Res. 61: 8068-8073. Belinsky, S.A., K.J. Nikula, W.A. Palmisano, R. Michels, G. Saccomanno, E. Gabrielson, S.B. Baylin, and J.G. Herman. 1998. Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci U S A 95: 11891-11896. Bernardini, S., R. Miano, R. Iori, E. Finazzi-Agro, G. Palmieri, S. Ballerini, C. Angeloni, A. Orlandi, L. Bellincampi, C. Cortese, and G. Federici. 2004. Hypermethylation of the CpG islands in the promoter region of the GSTP1 gene in prostate cancer: a useful diagnostic and prognostic marker? Clin Chim Acta 350: 181-188. Bestor, T.H., S.B. Hellewell, and V.M. Ingram. 1984. Differentiation of two mouse cell lines is associated with hypomethylation of their genomes. Mol. Cell Biol. 4: 1800-1806. Bird, A.P. 1986. CpG-rich islands and the function of DNA methylation. Nature 321: 209-213. Bonilla, F., I. Orlow, and C. Cordon-Cardo. 1998. Mutational study of p16CDKN2/MTS1/INK4A and p57KIP2 genes in hepatocellular carcinoma. Int. J. Oncol. 12: 583-588. Brock, G.J., T.H. Huang, C.M. Chen, and K.J. Johnson. 2001. A novel technique for the identification of CpG islands exhibiting altered methylation patterns (ICEAMP). Nucleic Acids Res. 29: E123. Chang, N.S., J. Mattison, H. Cao, N. Pratt, Y. Zhao, and C. Lee. 1998. Cloning and characterization of a novel transforming growth factor-beta1-induced TIAF1 protein that inhibits tumor necrosis factor cytotoxicity. Biochem Biophys Res Commun 253: 743-749. Chiba, T., O. Yokosuka, K. Fukai, Y. Hirasawa, M. Tada, R. Mikata, F. Imazeki, H. Taniguchi, A. Iwama, M. Miyazaki, T. Ochiai, and H. Saisho. 2005. Identification and investigation of methylated genes in hepatoma. Eur. J. Cancer 41: 1185-1194. Ciechanover, A., A. Orian, and A.L. Schwartz. 2000. Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays 22: 442-451. Citron, M., M. Graver, M. Schoenhaus, S. Chen, R. Decker, L. Kleynerman, L.B. Kahn, A. White, A.J. Fornace, Jr., and D. Yarosh. 1992. Detection of messenger RNA from O6-methylguanine-DNA methyltransferase gene MGMT in human normal and tumor tissues. J. Natl. Cancer Inst 84: 337-340. Cohen, O., E. Feinstein, and A. Kimchi. 1997. DAP-kinase is a Ca2+/calmodulin-dependent, cytoskeletal-associated protein kinase, with cell death-inducing functions that depend on its catalytic activity. Embo J. 16: 998-1008. Cohen, O., B. Inbal, J.L. Kissil, T. Raveh, H. Berissi, T. Spivak-Kroizaman, E. Feinstein, and A. Kimchi. 1999. DAP-kinase participates in TNF-alpha- and Fas-induced apoptosis and its function requires the death domain. J. Cell Biol. 146: 141-148. Cunningham, J.M., E.R. Christensen, D.J. Tester, C.Y. Kim, P.C. Roche, L.J. Burgart, and S.N. Thibodeau. 1998. Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res. 58: 3455-3460. De Zhu, J. 2005. The altered DNA methylation pattern and its implications in liver cancer. Cell Res. 15: 272-280. Deiss, L.P., E. Feinstein, H. Berissi, O. Cohen, and A. Kimchi. 1995. Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the gamma interferon-induced cell death. Genes Dev. 9: 15-30. Di Ilio, C., A. Aceto, T. Bucciarelli, S. Angelucci, M. Felaco, A. Grilli, A. Zezza, R. Tenaglia, and G. Federici. 1991. Glutathione transferase isoenzymes in normal and neoplastic human kidney tissue. Carcinogenesis 12: 1471-1475. Donato, F., P. Boffetta, and M. Puoti. 1998. A meta-analysis of epidemiological studies on the combined effect of hepatitis B and C virus infections in causing hepatocellular carcinoma. Int. J. Cancer 75: 347-354. Ehrlich, M., M.A. Gama-Sosa, L.H. Huang, R.M. Midgett, K.C. Kuo, R.A. McCune, and C. Gehrke. 1982. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res. 10: 2709-2721. Esteller, M., L. Catasus, X. Matias-Guiu, G.L. Mutter, J. Prat, S.B. Baylin, and J.G. Herman. 1999. hMLH1 promoter hypermethylation is an early event in human endometrial tumorigenesis. Am. J. Pathol. 155: 1767-1772. Esteller, M., S.R. Hamilton, P.C. Burger, S.B. Baylin, and J.G. Herman. 1999. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res. 59: 793-797. Esteller, M., M. Toyota, M. Sanchez-Cespedes, G. Capella, M.A. Peinado, D.N. Watkins, J.P. Issa, D. Sidransky, S.B. Baylin, and J.G. Herman. 2000. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis. Cancer Res. 60: 2368-2371. Esteller, M., M. Toyota, M. Sanchez-Cespedes, G. Capella, M.A. Peinado, D.N. Watkins, J.P. Issa, D. Sidransky, S.B. Baylin, and J.G. Herman. 2000. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis. Cancer Res. 60: 2368-2371. Fazzari, M.J. and J.M. Greally. 2004. Epigenomics: beyond CpG islands. Nat. Rev. Genet. 5: 446-455. Fearon, E.R. and B. Vogelstein. 1990. A genetic model for colorectal tumorigenesis. Cell 61: 759-767. Feinberg, A.P. and B. Tycko. 2004. The history of cancer epigenetics. Nat. Rev. Cancer 4: 143-153. Frommer, M., L.E. McDonald, D.S. Millar, C.M. Collis, F. Watt, G.W. Grigg, P.L. Molloy, and C.L. Paul. 1992. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89: 1827-1831. Gardiner-Garden, M. and M. Frommer. 1987. CpG islands in vertebrate genomes. J. Mol. Biol. 196: 261-282. Gerson, S.L., E. Allay, K. Vitantonio, and L.L. Dumenco. 1995. Determinants of O6-alkylguanine-DNA alkyltransferase activity in human colon cancer. Clin. Cancer Res. 1: 519-525. Gerson, S.L., J.E. Trey, K. Miller, and N.A. Berger. 1986. Comparison of O6-alkylguanine-DNA alkyltransferase activity based on cellular DNA content in human, rat and mouse tissues. Carcinogenesis 7: 745-749. Gitan, R.S., H. Shi, C.M. Chen, P.S. Yan, and T.H. Huang. 2002. Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res. 12: 158-164. Gonzalgo, M.L. and P.A. Jones. 1997. Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Res. 25: 2529-2531. Graff, J.R., J.G. Herman, R.G. Lapidus, H. Chopra, R. Xu, D.F. Jarrard, W.B. Isaacs, P.M. Pitha, N.E. Davidson, and S.B. Baylin. 1995. E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res. 55: 5195-5199. Greenwood, A.D. and D.T. Burke. 1996. Single nucleotide primer extension: quantitative range, variability, and multiplex analysis. Genome Res. 6: 336-348. Hatada, I., Y. Hayashizaki, S. Hirotsune, H. Komatsubara, and T. Mukai. 1991. A genomic scanning method for higher organisms using restriction sites as landmarks. Proc Natl Acad Sci U S A 88: 9523-9527. Heller, H., C. Kammer, P. Wilgenbus, and W. Doerfler. 1995. Chromosomal insertion of foreign (adenovirus type 12, plasmid, or bacteriophage lambda) DNA is associated with enhanced methylation of cellular DNA segments. Proc Natl Acad Sci U S A 92: 5515-5519. Herfarth, K.K., T.P. Brent, R.P. Danam, J.S. Remack, I.J. Kodner, S.A. Wells, Jr., and P.J. Goodfellow. 1999. A specific CpG methylation pattern of the MGMT promoter region associated with reduced MGMT expression in primary colorectal cancers. Mo. Carcinog. 24: 90-98. Herman, J.G. 1999. p16(INK4): involvement early and often in gastrointestinal malignancies. Gastroenterology 116: 483-485. Herman, J.G., J.R. Graff, S. Myohanen, B.D. Nelkin, and S.B. Baylin. 1996. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 93: 9821-9826. Herman, J.G., J. Jen, A. Merlo, and S.B. Baylin. 1996. Hypermethylation-associated inactivation indicates a tumor suppressor role for p15INK4B. Cancer Res. 56: 722-727. Herman, J.G., F. Latif, Y. Weng, M.I. Lerman, B. Zbar, S. Liu, D. Samid, D.S. Duan, J.R. Gnarra, W.M. Linehan, and et al. 1994. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci U S A 91: 9700-9704. Herman, J.G., A. Merlo, L. Mao, R.G. Lapidus, J.P. Issa, N.E. Davidson, D. Sidransky, and S.B. Baylin. 1995. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 55: 4525-4530. Hershko, A. and A. Ciechanover. 1998. The ubiquitin system. Annu Rev Biochem 67: 425-479. Hirano, S., S.T. Suzuki, and C. Redies. 2003. The cadherin superfamily in neural development: diversity, function and interaction with other molecules. Front Biosci. 8: d306-355. Hsieh, C.J., B. Klump, K. Holzmann, F. Borchard, M. Gregor, and R. Porschen. 1998. Hypermethylation of the p16INK4a promoter in colectomy specimens of patients with long-standing and extensive ulcerative colitis. Cancer Res. 58: 3942-3945. Huang, J., W. Shen, B. Li, Y. Luo, S. Liao, W. Zhang, and N. Cheng. 2000. [A study on the inactivation of p16 genes and the expression of P16 protein in primary hepatocellular carcinomas]. Hua Xi Yi Ke Da Xue Xue Bao 31: 306-309. Huang, T.H., M.R. Perry, and D.E. Laux. 1999. Methylation profiling of CpG islands in human breast cancer cells. Hum. Mol. Genet. 8: 459-470. Hui, A.M., M. Sakamoto, Y. Kanai, Y. Ino, M. Gotoh, J. Yokota, and S. Hirohashi. 1996. Inactivation of p16INK4 in hepatocellular carcinoma. Hepatology 24: 575-579. Iizuka, N., M. Oka, H. Yamada-Okabe, N. Mori, T. Tamesa, T. Okada, N. Takemoto, A. Tangoku, K. Hamada, H. Nakayama, T. Miyamoto, S. Uchimura, and Y. Hamamoto. 2002. Comparison of gene expression profiles between hepatitis B virus- and hepatitis C virus-infected hepatocellular carcinoma by oligonucleotide microarray data on the basis of a supervised learning method. Cancer Res. 62: 3939-3944. Iliopoulos, D., G. Guler, S.Y. Han, D. Johnston, T. Druck, K.A. McCorkell, J. Palazzo, P.A. McCue, R. Baffa, and K. Huebner. 2005. Fragile genes as biomarkers: epigenetic control of WWOX and FHIT in lung, breast and bladder cancer. Oncogene 24: 1625-1633. Inbal, B., O. Cohen, S. Polak-Charcon, J. Kopolovic, E. Vadai, L. Eisenbach, and A. Kimchi. 1997. DAP kinase links the control of apoptosis to metastasis. Nature 390: 180-184. Ionov, Y., M.A. Peinado, S. Malkhosyan, D. Shibata, and M. Perucho. 1993. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363: 558-561. Issa, J.P. 2004. CpG island methylator phenotype in cancer. Nat Rev Cancer 4: 988-993. Issa, J.P., Y.L. Ottaviano, P. Celano, S.R. Hamilton, N.E. Davidson, and S.B. Baylin. 1994. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat. Genet. 7: 536-540. Jang, C.W., C.H. Chen, C.C. Chen, J.Y. Chen, Y.H. Su, and R.H. Chen. 2002. TGF-beta induces apoptosis through Smad-mediated expression of DAP-kinase. Nat. Cell Biol. 4: 51-58. Jones, P.A. and S.B. Baylin. 2002. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 3: 415-428. Kaneto, H., S. Sasaki, H. Yamamoto, F. Itoh, M. Toyota, H. Suzuki, I. Ozeki, N. Iwata, T. Ohmura, T. Satoh, Y. Karino, T. Satoh, J. Toyota, M. Satoh, T. Endo, M. Omata, and K. Imai. 2001. Detection of hypermethylation of the p16(INK4A) gene promoter in chronic hepatitis and cirrhosis associated with hepatitis B or C virus. Gut. 48: 372-377. Katzenellenbogen, R.A., S.B. Baylin, and J.G. Herman. 1999. Hypermethylation of the DAP-kinase CpG island is a common alteration in B-cell malignancies. Blood 93: 4347-4353. Kim, J., H.S. Lee, S.I. Bae, Y.M. Lee, and W.H. Kim. 2005. Silencing and CpG island methylation of GSTP1 is rare in ordinary gastric carcinomas but common in Epstein-Barr virus-associated gastric carcinomas. Anticancer Res. 25: 4013-4019. Kissil, J.L., E. Feinstein, O. Cohen, P.A. Jones, Y.C. Tsai, M.A. Knowles, M.E. Eydmann, and A. Kimchi. 1997. DAP-kinase loss of expression in various carcinoma and B-cell lymphoma cell lines: possible implications for role as tumor suppressor gene. Oncogene 15: 403-407. Kita, R., N. Nishida, Y. Fukuda, H. Azechi, Y. Matsuoka, T. Komeda, T. Sando, K. Nakao, and K. Ishizaki. 1996. Infrequent alterations of the p16INK4A gene in liver cancer. Int. J. Cancer 67: 176-180. Klump, B., C.J. Hsieh, K. Holzmann, M. Gregor, and R. Porschen. 1998. Hypermethylation of the CDKN2/p16 promoter during neoplastic progression in Barrett''s esophagus. Gastroenterology 115: 1381-1386. Knudson, A.G., Jr. 1971. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 68: 820-823. Kohno, T., M. Kawanishi, J. Inazawa, and J. Yokota. 1998. Identification of CpG islands hypermethylated in human lung cancer by the arbitrarily primed-PCR method. Hum. Genet. 102: 258-264. Kohno, T., K. Morishita, H. Takano, D.N. Shapiro, and J. Yokota. 1994. Homozygous deletion at chromosome 2q33 in human small-cell lung carcinoma identified by arbitrarily primed PCR genomic fingerprinting. Oncogene 9: 103-108. Kokkinakis, D.M., M.M. Ahmed, R. Delgado, M.M. Fruitwala, M. Mohiuddin, and J. Albores-Saavedra. 1997. Role of O6-methylguanine-DNA methyltransferase in the resistance of pancreatic tumors to DNA alkylating agents. Cancer Res. 57: 5360-5368. Kondoh, N., T. Wakatsuki, A. Hada, M. Shuda, K. Tanaka, M. Arai, and M. Yamamoto. 2001. Genetic and epigenetic events in human hepatocarcinogenesis. Int J Oncol 18: 1271-1278. Kuo, K.C., R.A. McCune, C.W. Gehrke, R. Midgett, and M. Ehrlich. 1980. Quantitative reversed-phase high performance liquid chromatographic determination of major and modified deoxyribonucleosides in DNA. Nucleic Acids Res. 8: 4763-4776. Kuppuswamy, M.N., J.W. Hoffmann, C.K. Kasper, S.G. Spitzer, S.L. Groce, and S.P. Bajaj. 1991. Single nucleotide primer extension to detect genetic diseases: experimental application to hemophilia B (factor IX) and cystic fibrosis genes. Proc Natl Acad Sci U S A 88: 1143-1147. Lee, S., H.J. Lee, J.H. Kim, H.S. Lee, J.J. Jang, and G.H. Kang. 2003. Aberrant CpG island hypermethylation along multistep hepatocarcinogenesis. Am. J. Pathol. 163: 1371-1378. Lee, S., H.J. Lee, J.H. Kim, H.S. Lee, J.J. Jang, and G.H. Kang. 2003. Aberrant CpG island hypermethylation along multistep hepatocarcinogenesis. Am. J. Pathol. 163: 1371-1378. Li, E., C. Beard, and R. Jaenisch. 1993. Role for DNA methylation in genomic imprinting. Nature 366: 362-365. Li, X., A.M. Hui, L. Sun, K. Hasegawa, G. Torzilli, M. Minagawa, T. Takayama, and M. Makuuchi. 2004. p16INK4A hypermethylation is associated with hepatitis virus infection, age, and gender in hepatocellular carcinoma. Clin. Cancer. Res. 10: 7484-7489. Liew, C.T., H.M. Li, K.W. Lo, C.K. Leow, J.Y. Chan, L.Y. Hin, W.Y. Lau, P.B. Lai, B.K. Lim, J. Huang, W.T. Leung, S. Wu, and J.C. Lee. 1999. High frequency of p16INK4A gene alterations in hepatocellular carcinoma. Oncogene 18: 789-795. Ma, L. and L.L. Spremulli. 1995. Cloning and sequence analysis of the human mitochondrial translational initiation factor 2 cDNA. J. Biol. Chem. 270: 1859-1865. Major, G.N. and J.D. Collier. 1998. Repair of DNA lesion O6-methylguanine in hepatocellular carcinogenesis. J Hepatobiliary Pancreat Surg. 5: 355-366. Mannervik, B., P. Alin, C. Guthenberg, H. Jensson, M.K. Tahir, M. Warholm, and H. Jornvall. 1985. Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc Natl Acad Sci U S A 82: 7202-7206. Matsuda, Y., T. Ichida, J. Matsuzawa, K. Sugimura, and H. Asakura. 1999. p16(INK4) is inactivated by extensive CpG methylation in human hepatocellular carcinoma. Gastroenterology 116: 394-400. Matsukura, S., K. Miyazaki, H. Yakushiji, A. Ogawa, K. Harimaya, Y. Nakabeppu, and M. Sekiguchi. 2001. Expression and prognostic significance of O6-methylguanine-DNA methyltransferase in hepatocellular, gastric, and breast cancers. Ann. Surg. Oncol. 8: 807-816. Matsukura, S., H. Soejima, T. Nakagawachi, H. Yakushiji, A. Ogawa, M. Fukuhara, K. Miyazaki, Y. Nakabeppu, M. Sekiguchi, and T. Mukai. 2003. CpG methylation of MGMT and hMLH1 promoter in hepatocellular carcinoma associated with hepatitis viral infection. Br. J. Cancer 88: 521-529. Matsumoto, H., M. Nagao, S. Ogawa, H. Kanehiro, M. Hisanaga, S. Ko, N. Ikeda, H. Fujii, F. Koyama, T. Mukogawa, and Y. Nakajima. 2003. Prognostic significance of death-associated protein-kinase expression in hepatocellular carcinomas. Anticancer Res. 23: 1333-1341. McGlynn, K.A. and W.T. London. 2005. Epidemiology and natural history of hepatocellular carcinoma. Best Pract Res Clin Gastroenterol 19: 3-23. Merlo, A., J.G. Herman, L. Mao, D.J. Lee, E. Gabrielson, P.C. Burger, S.B. Baylin, and D. Sidransky. 1995. 5'' CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat. Med. 1: 686-692. Nelson, W.G., A.M. De Marzo, and W.B. Isaacs. 2003. Prostate cancer. N Engl J Med 349: 366-381. Okazaki, T., J. Takita, T. Kohno, H. Handa, and J. Yokota. 1996. Detection of amplified genomic sequences in human small-cell lung carcinoma cells by arbitrarily primed-PCR genomic fingerprinting. Hum. Genet. 98: 253-258. Otsuka, M., H. Aizaki, N. Kato, T. Suzuki, T. Miyamura, M. Omata, and N. Seki. 2003. Differential cellular gene expression induced by hepatitis B and C viruses. Biochem Biophys. Res. Commun. 300: 443-447. Overman, R.G., Jr., P.J. Enderle, J.M. Farrow, 3rd, J.E. Wiley, and M.A. Farwell. 2003. The human mitochondrial translation initiation factor 2 gene (MTIF2): transcriptional analysis and identification of a pseudogene. Biochim. Biophys. Acta. 1628: 195-205. Park, S.W., J. Ludes-Meyers, D.B. Zimonjic, M.E. Durkin, N.C. Popescu, and C.M. Aldaz. 2004. Frequent downregulation and loss of WWOX gene expression in human hepatocellular carcinoma. Br. J. Cancer 91: 753-759. Parkin, D.M., F. Bray, J. Ferlay, and P. Pisani. 2005. Global cancer statistics, 2002. CA Cancer J. Clin. 55: 74-108. Peinado, M.A., S. Malkhosyan, A. Velazquez, and M. Perucho. 1992. Isolation and characterization of allelic losses and gains in colorectal tumors by arbitrarily primed polymerase chain reaction. Proc Natl Acad Sci U S A 89: 10065-10069. Pelled, D., T. Raveh, C. Riebeling, M. Fridkin, H. Berissi, A.H. Futerman, and A. Kimchi. 2002. Death-associated protein (DAP) kinase plays a central role in ceramide-induced apoptosis in cultured hippocampal neurons. J. Biol. Chem. 277: 1957-1961. Peng, C.Y., T.C. Chen, S.P. Hung, M.F. Chen, C.T. Yeh, S.L. Tsai, C.M. Chu, and Y.F. Liaw. 2002. Genetic alterations of INK4alpha/ARF locus and p53 in human hepatocellular carcinoma. Anticancer Res. 22: 1265-1271. Pfeifer, G.P., S.D. Steigerwald, P.R. Mueller, B. Wold, and A.D. Riggs. 1989. Genomic sequencing and methylation analysis by ligation mediated PCR. Science 246: 810-813. Qin, Y., J.Y. Liu, B. Li, Z.L. Sun, and Z.F. Sun. 2004. Association of low p16INK4a and p15INK4b mRNAs expression with their CpG islands methylation with human hepatocellular carcinogenesis. World J. Gastroenterol. 10: 1276-1280. Quaresima, B., M.C. Faniello, F. Baudi, G. Cuda, C. Grandinetti, P. Tassone, F. Costanzo, and S. Venuta. 2001. Transcriptional regulation of the mismatch repair gene hMLH1. Gene 275: 261-265. Raveh, T., G. Droguett, M.S. Horwitz, R.A. DePinho, and A. Kimchi. 2001. DAP kinase activates a p19ARF/p53-mediated apoptotic checkpoint to suppress oncogenic transformation. Nat. Cell Biol. 3: 1-7. Raveh, T. and A. Kimchi. 2001. DAP kinase-a proapoptotic gene that functions as a tumor suppressor. Exp. Cell Res. 264: 185-192. Redies, C., K. Vanhalst, and F. Roy. 2005. delta-Protocadherins: unique structures and functions. Cell Mol. Life Sci. 62: 2840-2852. Riggs, A.D. and G.P. Pfeifer. 1992. X-chromosome inactivation and cell memory. Trends Genet. 8: 169-174. Robertson, K.D. 2005. DNA methylation and human disease. Nat. Rev. Genet. 6: 597-610. Roncalli, M., P. Bianchi, B. Bruni, L. Laghi, A. Destro, S. Di Gioia, L. Gennari, M. Tommasini, A. Malesci, and G. Coggi. 2002. Methylation framework of cell cycle gene inhibitors in cirrhosis and associated hepatocellular carcinoma. Hepatology 36: 427-432. Rushmore, T.H. and C.B. Pickett. 1993. Glutathione S-transferases, structure, regulation, and therapeutic implications. J. Biol. Chem. 268: 11475-11478. Satoh, A., M. Toyota, F. Itoh, T. Kikuchi, T. Obata, Y. Sasaki, H. Suzuki, A. Yawata, M. Kusano, M. Fujita, M. Hosokawa, K. Yanagihara, T. Tokino, and K. Imai. 2002. DNA methylation and histone deacetylation associated with silencing DAP kinase gene expression in colorectal and gastric cancers. Br. J. Cancer 86: 1817-1823. Schmitt, F., E.J. Oakeley, and J.P. Jost. 1997. Antibiotics induce genome-wide hypermethylation in cultured Nicotiana tabacum plants. J. Biol. Chem. 272: 1534-1540. Schultz, L., S. Khera, D. Sleve, J. Heath, and N.S. Chang. 2004. TIAF1 and p53 functionally interact in mediating apoptosis and silencing of TIAF1 abolishes nuclear translocation of serine 15-phosphorylated p53. DNA Cell Biol. 23: 67-74. Sekiguchi, M., Y. Nakabeppu, K. Sakumi, and T. Tuzuki. 1996. DNA-repair methyltransferase as a molecular device for preventing mutation and cancer. J Cancer Res. Clin. Oncol. 122: 199-206. Serrano, M., G.J. Hannon, and D. Beach. 1993. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366: 704-707. Silvestrini, R., S. Veneroni, E. Benini, M.G. Daidone, A. Luisi, M. Leutner, A. Maucione, R. Kenda, R. Zucali, and U. Veronesi. 1997. Expression of p53, glutathione S-transferase-pi, and Bcl-2 proteins and benefit from adjuvant radiotherapy in breast cancer. J. Natl. Cancer Inst. 89: 639-645. Simpkins, S.B., T. Bocker, E.M. Swisher, D.G. Mutch, D.J. Gersell, A.J. Kovatich, J.P. Palazzo, R. Fishel, and P.J. Goodfellow. 1999. MLH1 promoter methylation and gene silencing is the primary cause of microsatellite instability in sporadic endometrial cancers. Hum. Mol. Genet. 8: 661-666. Singer-Sam, J., J.M. LeBon, A. Dai, and A.D. Riggs. 1992. A sensitive, quantitative assay for measurement of allele-specific transcripts differing by a single nucleotide. PCR Methods Appl. 1: 160-163. Singer-Sam, J. and A.D. Riggs. 1993. X chromosome inactivation and DNA methylation. Exs. 64: 358-384. Strathdee, G., M.J. MacKean, M. Illand, and R. Brown. 1999. A role for methylation of the hMLH1 promoter in loss of hMLH1 expression and drug resistance in ovarian cancer. Oncogene 18: 2335-2341. Szabo, P.E. and J.R. Mann. 1995. Allele-specific expression and total expression levels of imprinted genes during early mouse development: implications for imprinting mechanisms. Genes Dev. 9: 3097-3108. Tang, X., F.R. Khuri, J.J. Lee, B.L. Kemp, D. Liu, W.K. Hong, and L. Mao. 2000. Hypermethylation of the death-associated protein (DAP) kinase promoter and aggressiveness in stage I non-small-cell lung cancer. J. Natl. Cancer Inst 92: 1511-1516. Thorgeirsson, S.S. and J.W. Grisham. 2002. Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 31: 339-346. Toyota, M., C. Ho, N. Ahuja, K.W. Jair, Q. Li, M. Ohe-Toyota, S.B. Baylin, and J.P. Issa. 1999. Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Res. 59: 2307-2312. Tozawa, T., G. Tamura, T. Honda, S. Nawata, W. Kimura, N. Makino, S. Kawata, T. Sugai, T. Suto, and T. Motoyama. 2004. Promoter hypermethylation of DAP-kinase is associated with poor survival in primary biliary tract carcinoma patients. Cancer Sci. 95: 736-740. Tremblay, K.D., J.R. Saam, R.S. Ingram, S.M. Tilghman, and M.S. Bartolomei. 1995. A paternal-specific methylation imprint marks the alleles of the mouse H19 gene. Nat. Genet. 9: 407-413. Tsuchida, S. and K. Sato. 1992. Glutathione transferases and cancer. Crit. Rev. Biochem. Mol. Biol. 27: 337-384. Vogelstein, B., E.R. Fearon, S.R. Hamilton, S.E. Kern, A.C. Preisinger, M. Leppert, Y. Nakamura, R. White, A.M. Smits, and J.L. Bos. 1988. Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 319: 525-532. Welsh, J. and M. McClelland. 1991. Genomic fingerprinting using arbitrarily primed PCR and a matrix of pairwise combinations of primers. Nucleic Acids Res. 19: 5275-5279. Widschwendter, M., G. Jiang, C. Woods, H.M. Muller, H. Fiegl, G. Goebel, C. Marth, E. Muller-Holzner, A.G. Zeimet, P.W. Laird, and M. Ehrlich. 2004. DNA hypomethylation and ovarian cancer biology. Cancer Res. 64: 4472-4480. Wilentz, R.E., J. Geradts, R. Maynard, G.J. Offerhaus, M. Kang, M. Goggins, C.J. Yeo, S.E. Kern, and R.H. Hruban. 1998. Inactivation of the p16 (INK4A) tumor-suppressor gene in pancreatic duct lesions: loss of intranuclear expression. Cancer Res. 58: 4740-4744. Wiley, A., D. Katsaros, H. Chen, I.A. Rigault de la Longrais, A. Beeghly, M. Puopolo, R. Singal, Y. Zhang, A. Amoako, D. Zelterman, and H. Yu. 2006. Aberrant promoter methylation of multiple genes in malignant ovarian tumors and in ovarian tumors with low malignant potential. Cancer 2006; [Epub ahead of print] Wutz, A., O.W. Smrzka, N. Schweifer, K. Schellander, E.F. Wagner, and D.P. Barlow. 1997. Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature 389: 745-749. Xiong, Z. and P.W. Laird. 1997. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 25: 2532-2534. Xirodimas, D.P., M.K. Saville, J.C. Bourdon, R.T. Hay, and D.P. Lane. 2004. Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell 118: 83-97. Yamamoto, M., T. Hioki, T. Ishii, S. Nakajima-Iijima, and S. Uchino. 2002. DAP kinase activity is critical for C(2)-ceramide-induced apoptosis in PC12 cells. Eur. J. Biochem. 269: 139-147. Yan, P.S., M.R. Perry, D.E. Laux, A.L. Asare, C.W. Caldwell, and T.H. Huang. 2000. CpG island arrays: an application toward deciphering epigenetic signatures of breast cancer. Clin. Cancer Res. 6: 1432-1438. Yang, B., M. Guo, J.G. Herman, and D.P. Clark. 2003. Aberrant promoter methylation profiles of tumor suppressor genes in hepatocellular carcinoma. Am. J. Pathol. 163: 1101-1107. Yang, B., M. Guo, J.G. Herman, and D.P. Clark. 2003. Aberrant promoter methylation profiles of tumor suppressor genes in hepatocellular carcinoma. Am. J. Pathol. 163: 1101-1107. Yu, J., M. Ni, J. Xu, H. Zhang, B. Gao, J. Gu, J. Chen, L. Zhang, M. Wu, S. Zhen, and J. Zhu. 2002. Methylation profiling of twenty promoter-CpG islands of genes which may contribute to hepatocellular carcinogenesis. BMC Cancer 2: 29. Yu, J., H.Y. Zhang, Z.Z. Ma, W. Lu, Y.F. Wang, and J.D. Zhu. 2003. Methylation profiling of twenty four genes and the concordant methylation behaviours of nineteen genes that may contribute to hepatocellular carcinogenesis. Cell Res. 13: 319-333. Zhang, Y.J., Y. Chen, H. Ahsan, R.M. Lunn, S.Y. Chen, P.H. Lee, C.J. Chen, and R.M. Santella. 2005. Silencing of glutathione S-transferase P1 by promoter hypermethylation and its relationship to environmental chemical carcinogens in hepatocellular carcinoma. Cancer Lett. 221: 135-143. Zhong, S., M.W. Tang, W. Yeo, C. Liu, Y.M. Lo, and P.J. Johnson. 2002. Silencing of GSTP1 gene by CpG island DNA hypermethylation in HBV-associated hepatocellular carcinomas. Clin. Cancer Res. 8: 1087-1092. Zhou, T., A.A. Evans, W.T. London, X. Xia, H. Zou, F. Shen, and M.L. Clapper. 1997. Glutathione S-transferase expression in hepatitis B virus-associated human hepatocellular carcinogenesis. Cancer Res 57: 2749-2753. Zochbauer-Muller, S., K.M. Fong, A.K. Virmani, J. Geradts, A.F. Gazdar, and J.D. Minna. 2001. Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Res. 61: 249-255.
摘要: 肝細胞癌(簡稱肝癌)的發生率在全球惡性腫瘤中排名第六且預後差,其死亡率是所有癌症中的第三位。肝癌的發生是多因素且多步驟的進程,不但病因複雜且臨床症狀不易顯現,目前已知全球肝癌發生之主要危險因子為B型肝炎病毒(HBV)和C型肝炎病毒(HCV)的感染,並經証實超過80%的肝癌與HBV和HCV感染有關且能使致癌率提升20倍。許多肝癌發生的研究報導顯示,遺傳事件與上遺傳事件(如DNA的甲基化)等基因體的改變,與基因的表現異常進而影響細胞轉型成惡性腫瘤的現象有關。本研究從台北榮民總醫院所提供的153位肝癌病患中,根據其臨床病理資料挑選出10個肝癌病患的檢體,利用甲基化晶片(DMH)技術進行基因體全面性偵測肝腫瘤組織的甲基化程度差異。根據初步晶片分析結果,肝腫瘤組織在HBV與HCV不同的病毒感染情況下,從約12000個基因中經篩選出有甲基化差異的總共95個,其中有較高基因甲基化程度的71個基因屬於HBV感染相關的檢體,另外24個基因則相反的在HCV感染相關的檢體中具有較高的基因甲基化程度。另外本研究也利用MS-PCR技術,針對不同病毒感染而有基因甲基化差異的基因群,進行單一基因甲基化程度的驗證。分析153位肝癌病患中Wwox、p16、GSTP1、DAPK、hMLH與MGMT等基因的結果中發現,其甲基化比例分別為39.87%、46.41% 、33.99%、39.22%、3.7%、與0%。上述的結果顯示MS-PCR之驗證與晶片呈現趨勢大致相同,其中Wwox基因為HBV相關之高度甲基化的基因,p16基因為HCV相關之高度甲基化的基因,GSTP1與DAPK 基因則為全面性的高度甲基化基因,hMLH以及MGMT是屬於沒有甲基化的基因。進一步針對8個肝癌細胞株裡的DAPK基因進行甲基化研究,在其5’調節區的CpG小島片段中設計了一段引子對並進行偵測,發現有三個細胞株具有高度甲基化情形,再針對細胞株HA22T/VGH進行5’-Aza-dC/TSA去甲基化試驗,證實DAPK基因去甲基後能使基因表現有明顯回復,這亦是第一次發現DAPK基因甲基化與基因表現降低相關。另外,根據晶片叢集分析發現基因甲基化的高低差異與其臨床病理有顯著相關,其基因甲基化愈高的檢體樣本不但發病年齡低且其腫瘤相對也較大。本研究希望藉由甲基化晶片分析獲得大量肝癌相關之異常甲基化基因群,並以進一步的分析試驗其甲基化意義,期能描繪出甲基化於肝癌發生所扮演的機制藍圖。
Hepatocellular carcinoma (HCC) is one of the most frequent human malignancies and a major cause of cancer-related deaths worldwide. Most HCCs exhibit characteristics compatible with chronic hepatitis and cirrhosis caused by persistent infection of hepatitis B virus (HBV) and/or hepatitis C virus (HCV). However, the molecular mechanisms of hepatocarcinogenesis associated with hepatitis viral infection have not been clarified. It is now clear that aberrant DNA methylation observed in cancer cells and also involved in tumor development. In order to investigate further this widespread epigenetic event in the tumor genome, we have applied an array-based method, called differential methylation hybridization (DMH), allowing for a genome-wide screening of CpG island hypermethylation in liver cancer. DMH microarrays containing about 12,000 CpG islands and subsequent selection yielded 95 clones for which methylation status differed between the two types of virus-infected HCCs. The methylation statuses of 74 of these 95 genes were serious in HBV-associated HCCs, and the remaining 21 hypermethylated genes were found in HCV-associated HCCs. In this study, we selected 6 candidate genes to validate their promoter region methylation status in 153 HCC tissues detecting by methylation-specific PCR (MS-PCR). Using this candidate gene approach, we showed that Wwox(39.87%) p16 (46.41%), GSTP1 (33.99%), DAPK (39.22%), hMLH (3.7%) and MGMT(0%) were have diverse methylation frequency in HCCs. The results from microarray and MS-PCR analysis were almost consistence. Wwox gene was the hypermethylated gene correlated with HBV-associated HCCs, and the p16 gene gene was the hypermethylated gene correlated with HCV-associated HCCs, and DAPK and GSTP1 genes were the universal hypermethylated genes in our examined HCCs. Besides, hMLH and MGMT gene were showed no methylation in HCCs. Furthermore, we defined a CpG-rich region of 5' regulatory region of DAPK gene and examined the methylation status in 8 hepatoma cell lines by MS-PCR. The demethylation assay was applied to investigate the relationship between methylation of DAPK and its mRNA transcription by treatment with 5-aza-2'deoxycytidine (5'-Aza-dC) and trichostatin A (TSA). Our data showed that the restoration of DAPK expression in heavily methylated hepatoma cell line (HA22T/VGH) was quite obvious after 4 days of 5'-Aza-dC treated. Our results suggested that the epigenetic control in DNA methylation level is an important mechanism for DAPK gene regulation. Moreover, we also discover another thrilling hierarchical clustering result from DMH microarray, which was the significant correlation between hypermethylated gene group and the relative younger age and larger tumor size. This early finding lays the groundwork for DMH study and demonstrates the need to develop a database for examining large-scale methylation data and for associating specific epigenetic signatures with clinical parameters in HCCs.
URI: http://hdl.handle.net/11455/22419
其他識別: U0005-2508200611420300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2508200611420300
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.