Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22446
標題: 豬隻同源於E. coli核糖體RNA甲基轉化酶Ftsj1與Ftsj2基因之新選殖與特性分析
Molecular Cloning and Characterization of Novel Porcine Ftsj1 and Ftsj2 Genes which are Homologous to E. coli Ribosomal RNA Methyltransferase
作者: 賴政威
Lai, Cheng-Wei
關鍵字: FtsJ
熱休克蛋白
heat shock protein
methyltransferase
甲基轉化酶
出版社: 生命科學系所
引用: 陸、參考文獻 林怡君。2004。台灣肝癌細胞位於第十六號染色體上腫瘤抑制基因群之核酸甲基化剖析。碩士論文。國立中興大學生物醫學研究所。 行政院農業委員會。2004。93年農業統計年報。pp. 18-19. Agris, P. F. 1996. The importance of being modified: roles of modified nucleosides and Mg2+ in RNA structure and function. Prog. Nucl. Acid Res. Mol. Biol. 53:79-129. Ahmed, R., and R. F. Duncan. 2004. Translational regulation of Hsp90 mRNA. AUG-proximal 5''-untranslated region elements essential for preferential heat shock translation. J. Biol. Chem. 279:49919-49930. Alastalo, T. P., M. Lonnstrom, S. Leppa, K. Kaarniranta, M. Pelto-Huikko, L. Sistonen, and M. Parvinen. 1998. Stage-specific expression and cellular localization of the heat shock factor 2 isoforms in the rat seminiferous epithelium. Exp. Cell Res. 240:16-27. Ang, D., K. Liberek, D. Skowyra, M. Zylicz, and C. Georgopoulos. 1991. Biological role and regulation of the universally conserved heat shock proteins. J. Biol. Chem. 266:24233-24236. Arsene, F., T. Tomoyasu, A. Mogk, C. Schirra, A. Schulze-Specking, and B. Bukau. 1999. Role of region C in regulation of the heat shock gene-specific sigma factor of Escherichia coli, sigma32. J. Bacteriol. 181:3552-3561. Arsene, F., T. Tomoyasu, and B. Bukau. 2000. The heat shock response of Escherichia coli. Int. J. Food Microbiol. 55:3-9. Avner, P., and E. Heard. 2001. X-chromosome inactivation: counting, choice and initiation. Nat. Rev. Genet. 2:59-67. Azad, A. A., and B. G. Lane. 1973. A possible role for 5 S rRNA as a bridge between ribosomal subunits. Can. J. Biochem. 51:1669-1672. Bachellerie, J. P., J. Cavaille, and A. Huttenhofer. 2002. The expanding snoRNA world. Biochimie 84:775-790. Baer, R. J., and D. T. Dubin. 1981. Methylated regions of hamster mitochondrial ribosomal RNA: structural and functional correlates. Nucl. Acids Res. 9:323-337. Ban, N., P. Nissen, J. Hansen, P. B. Moore, and T. A. Steitz. 2000. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289:905-920. Benjamin, I. J., and D. R. McMillan. 1998. Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circ. Res. 83:117-132. Blanchard, S. C., and J. D. Puglisi. 2001. Solution structure of the A loop of 23S ribosomal RNA. Proc. Natl. Acad. Sci. USA. 98:3720-3725 Blaszczak, A., M. Zylicz, C. Georgopoulos, and K. Liberek. 1995. Both ambient temperature and the DnaK chaperone machine modulate the heat shock response in Escherichia coli by regulating the switch between sigma 70 and sigma 32 factors assembled with RNA polymerase. EMBO J. 14:5085-5093. Bonnerot, C., L. Pintard, and G. Lutfalla. 2003. Functional redundancy of Spb1p and a snR52-dependent mechanism for the 2''-O-ribose methylation of a conserved rRNA position in yeast. Mol. Cell 12:1309-1315. Bowie, J. U., R. Luthy, and D. Eisenberg. 1991. A method to identify protein sequences that fold into a known three-dimensional structure. Science 253:164-170. Bügl, H., E. B. Fauman, B. L. Staker, F. Zheng, S. R. Kushner, M. A. Saper, J. C. Bardwell, and U. Jakob. 2000. RNA methylation under heat shock control. Mol. Cell 6:349-360. Bujnicki, J. M., and L. Rychlewski. 2002. In silico identification, structure prediction and phylogenetic analysis of the 2''-O-ribose (cap 1) methyltransferase domain in the large structural protein of ssRNA negative-strand viruses. Prot. Eng. 15:101-108. Bukau, B. 1993. Regulation of the Escherichia coli heat-shock response. Mol. Microbiol. 9:671-680. Caldas, T., E. Binet, P. Bouloc, A. Costa, J. Desgres, and G. Richarme. 2000a. The FtsJ/RrmJ heat shock protein of Escherichia coli is a 23 S ribosomal RNA methyltransferase. J. Biol. Chem. 275:16414-16419. Caldas, T., E. Binet, P. Bouloc, and G. Richarme. 2000b. Translational defects of Escherichia coli mutants deficient in the Um(2552) 23S ribosomal RNA methyltransferase RrmJ/FTSJ. Biochem. Biophys. Res. Commun. 271:714-718. Charette, M., and M. W. Gray. 2000. Pseudouridine in RNA: what, where, how, and why. IUBMB Life 49:341-351. Chernoff, Y. O., A. Vincent, and S. W. Liebman. 1994. Mutations in eukaryotic 18S ribosomal RNA affect translational fidelity and resistance to aminoglycoside antibiotics. EMBO J. 13:906-913. Chung, C.T., and R. H. Miller. 1988. A rapid and convenient method for the preparation and storage of competent bacterial cells. Nucl. Acids Res. 16:3580. Clark, S.J., J. Harrison, and P. L. Molloy. 1997. Sp1 binding is inhibited by (m)Cp(m)CpG methylation. Gene 195:67-71. Conrad, J., L. Niu, K. Rudd, B. G. Lane, and J. Ofengand. 1999. 16S ribosomal RNA pseudouridine synthase RsuA of Escherichia coli: deletion, mutation of the conserved Asp102 residue, and sequence comparison among all other pseudouridine synthases. RNA 5:751-763. Craig, E. A., and C. A. Gross. 1991. Is hsp70 the cellular thermometer? Trends. Biochem. Sci. 16:135-140. Decatur, W. A., and M. J. Fournier. 2003. RNA-guided nucleotide modification of ribosomal and other RNAs. J. Biol.Chem. 278:695-698 Del Campo, M., Y. Kaya, and J. Ofengand. 2001. Identification and site of action of the remaining four putative pseudouridine synthases in Escherichia coli. RNA 7:1603-1615. Egger, G., G. Liang, A. Aparicio, and P. A. Jones. 2004. Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457-463. Feder, M., J. Pas, L. S. Wyrwicz, and J. M. Bujnicki. 2003. Molecular phylogenetics of the RrmJ/fibrillarin superfamily of ribose 2''-O-methyltransferases. Gene 302:129-138. Fraga, M. F., E. Ballestar, M. F. Paz, S. Ropero, F. Setien, M. L. Ballestar, D. Heine-Suner, J. C. Cigudosa, M. Urioste, J. Benitez, M. Boix-Chornet, A. Sanchez-Aguilera, C. Ling, E. Carlsson, P. Poulsen, A. Vaag, Z. Stephan, T. D. Spector, Y. Z. Wu, C. Plass, and M. Esteller. 2005. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci. USA. 102:10604-10609. Freude, K., K. Hoffmann, L. R. Jensen, M. B. Delatycki, V. des Portes, B. Moser, B. Hamel, H. van Bokhoven, C. Moraine, J. P. Fryns, J. Chelly, J. Gecz, S. Lenzner, V. M. Kalscheuer, and H. H. Ropers. 2004. Mutations in the FTSJ1 gene coding for a novel S-adenosylmethionine-binding protein cause nonsyndromic X-linked mental retardation. Am. J. Hum. Genet. 75:305-309. Galardi, S., A. Fatica, A. Bachi, A. Scaloni, C. Presutti, and I. Bozzoni. 2002. Purified box C/D snoRNPs are able to reproduce site-specific 2''-O-methylation of target RNA in vitro. Mol. Cell Biol. 22:6663-6668. Grosjean, H., Z. Szweykowska-Kulinska, Y. Motorin, F. Fasiolo, and G. Simos. 1997. Intron-dependent enzymatic formation of modified nucleosides in eukaryotic tRNAs: a review. Biochimie 79:293-302. Gross, C. A. 1996. Function and regulation of the heat shock proteins. pp. 1382-1399. In: Neidhardt, F.C. (ed.) Escherichia coli and Salmonella. ASM Press, Washington. Hager, J., B. L. Staker, H. Bügl, and U. Jakob. 2002. Active site in RrmJ, a heat shock-induced methyltransferase. J. Biol. Chem. 277:41978-41986. Haslbeck, M. 2002. sHsps and their role in the chaperone network. Cell Mol. Life Sci. 59:1649-1657. Hess, M. A., and R. F. Duncan. 1996. Sequence and structure determinants of Drosophila Hsp70 mRNA translation: 5''UTR secondary structure specifically inhibits heat shock protein mRNA translation. Nucl. Acids Res. 24:2441-2449. Hodel, A. E., P. D. Gershon, X. Shi, and F. A. Quiocho. 1996. The 1.85 Ǻ structure of vaccinia protein VP39: a bifunctional enzyme that participates in the modification of both mRNA ends. Cell 85:247-256. Holm, L., and J. Park. 2000. DaliLite workbench for protein structure comparison. Bioinformatics 16:566-567. Jackson, R. J. 1996. A comparative view of initiation site selection mechanism. pp. 71-112. In: Hershey, J.W.B. M. B. Mathews. and N. Sonenberg. (eds.) Translational control. Cold Spring Harbor Laboratory Press, New York. Jaenisch, R., and A. Bird. 2003. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33:245-254. Kim, D. F., and R. Green. 1999. Base-pairing between 23S rRNA and tRNA in the ribosomal A site. Mol. Cell 4:859-864. Kregel, K. C. 2002. Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Physiol. 92:2177-2186. Lafontaine, D. L., and D. Tollervey. 1998. Birth of the snoRNPs: the evolution of the modification-guide snoRNAs. Trends Biochem. Sci. 23:383-388. Lane, B. G., J. Ofengand, and M. W. Gray. 1992. Pseudouridine in the large-subunit (23 S-like) ribosomal RNA. The site of peptidyl transfer in the ribosome? FEBS Lett. 302:1-4. Lane, B. G., J. Ofengand, and M. W. Gray. 1995. Pseudouridine and O2''-methylated nucleosides. Significance of their selective occurrence in rRNA domains that function in ribosome-catalyzed synthesis of the peptide bonds in proteins. Biochimie 77:7-15. Lapeyre, B. 2004. Conserved ribosomal RNA modification and their putative roles in ribosome biogenesis and translation. Curr. Genet. 12: 263-284. Lapeyre, B., and S. K. Purushothaman. 2004. Spb1p-directed formation of Gm2922 in the ribosome catalytic center occurs at a late processing stage. Mol. Cell 16:663-669. Lee, S., M. E. Sowa, J. M. Choi, and F. T. Tsai. 2004. The ClpB/Hsp104 molecular chaperone-a protein disaggregating machine. J. Struct. Biol. 146:99-105. Luthy, R., J. U. Bowie, and D. Eisenberg. 1992. Assessment of protein models with three-dimensional profiles. Nature 356:83-85. Maden, B. E. 1990. The numerous modified nucleotides in eukaryotic ribosomal RNA. Prog. Nucl. Acid Res. Mol. Biol. 39:241-303 Maurizi, M. R., and D. Xia. 2004. Protein binding and disruption by Clp/Hsp100 chaperones. Structure 12:175-183. Morita, M. T., Y. Tanaka, T. S. Kodama, Y. Kyogoku, H. Yanagi, and T. Yura. 1999. Translational induction of heat shock transcription factor sigma 32: evidence for a built-in RNA thermosensor. Genes Dev. 13:655-665. Nakahigashi, K., H. Yanagi, and T. Yura. 1995. Isolation and sequence analysis of rpoH genes encoding sigma 32 homologs from gram negative bacteria: conserved mRNA and protein segments for heat shock regulation. Nucl. Acids Res. 23:4383-4390. Nakai, A., M. Tanabe, Y. Kawazoe, J. Inazawa, R. I. Morimoto, and K. Nagata. 1997. HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol. Cell Biol. 17:469-481. Nazarenko, I. A., E. T. Peterson O. D. Zakharova, O. I. Lavrik, and O. C. Uhlenbeck. 1992. Recognition nucleotides for human phenylalanyl-tRNA synthetase. Nucl. Acids Res. 20:475-478.Noller, H. F., V. Hoffarth, and L. Zimniak. 1992. Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256:1416-1419. Nissen, P., J. Hansen, N. Ban, P. B. Moore, and T. A. Steitz. 2000. The structural basis of ribosome activity in peptide bond synthesis. Science 289:920-930. Noon, K. R., E. Bruenger, and J. A. McCloskey. 1998. Posttranscriptional modifications in 16S and 23S rRNAs of the archaeal hyperthermophile Sulfolobus solfataricus. J. Bacteriol. 180:2883-2888. Ofengand, J., A. Malhotra, J. Remme, N. S. Gutgsell, M. Del Campo, S. Jean-Charles, L. Peil, and Y. Kaya. 2001. Pseudouridines and pseudouridine synthases of the ribosome. Cold Spring Harb. Symp. Quant. Biol. 66:147-159. Ofengand, J. 2002. Ribosomal RNA pseudouridines and pseudouridine synthases. FEBS Lett. 514:17-25. Ogura, T., T. Tomoyasu, T. Yuki, S. Morimura, K. J. Begg, W. D. Donachie, H. Mori, H. Niki, and S. Hiraga. 1991. Structure and function of the ftsH gene in Escherichia coli. Res. Microbiol. 142:279-282. Page, R. D. M. and E. C. Holmes. 2004. Molecular evolution: a phylogenetic approach. 3rd ed. Blackwell Science Ltd Press, Malden. pp.182-185. Pintard, L., D. Kressler, and B. Lapeyre. 2000. Spb1p is a yeast nucleolar protein associated with Nop1p and Nop58p that is able to bind S-adenosyl-L-methionine in vitro. Mol. Cell Biol. 20:1370-1381. Pintard, L., J. M. Bujnicki, B. Lapeyre, and C. Bonnerot. 2002a. MRM2 encodes a novel yeast mitochondrial 21S rRNA methyltransferase. EMBO J. 21:1139-1147. Pintard, L., F. Lecointe, J. M. Bujnicki, C. Bonnerot, H. Grosjean, and B. Lapeyre. 2002b. Trm7p catalyses the formation of two 2''-O-methylriboses in yeast tRNA anticodon loop. EMBO J. 21:1811-1820. Pirkkala, L., P. Nykanen, and L. Sistonen. 2001. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J. 15:1118-1131. Prawitt, D., T. Enklaar, B. Gartner-Rupprecht, C. Spangenberg, E. Lausch, D. Reutzel, S. Fees, M. Korzon, I. Brozek, J. Limon, D. E. Housman, J. Pelletier, and B. Zabel. 2005. Microdeletion and IGF2 loss of imprinting in a cascade causing Beckwith-Wiedemann syndrome with Wilms'' tumor. Nat. Genet. 37:785-786 Pollastri, G., and A. McLysaght. 2005. Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics 21:1719-1720. Rallu, M., M. Loones, Y. Lallemand, R. Morimoto, M. Morange, and V. Mezger. 1997. Function and regulation of heat shock factor 2 during mouse embryogenesis. Proc. Natl. Acad. Sci. USA. 94:2392-2397. Richmond, C. S., J. D. Glasner, R. Mau, H. Jin, and F. R. Blattner. 1999. Genome-wide expression profiling in Escherichia coli K-12. Nucl. Acids Res. 27:3821-3835. Samaha, R. R., R. Green, and H. F. Noller. 1995. A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome. Nature 377:309-314. Samarsky, D. A., and M. J. Fournier. 1999. A comprehensive database for the small nucleolar RNAs from Saccharomyces cerevisiae. Nucl. Acids Res. 27:161-4. Sarge, K. D., O. K. Park-Sarge, J. D. Kirby, K. E. Mayo, and R. I. Morimoto. 1994. Expression of heat shock factor 2 in mouse testis: potential role as a regulator of heat-shock protein gene expression during spermatogenesis. Biol. Reprod. 50:1334-1343. Singh, H., and B. G. Lane. 1964. The alkali-stable dinucleotide sequences in 18S+28S ribonucleates from wheat germ. Can. J. Biochem. Physiol. 42:1011-1021. Stebbins, C. E., A. A. Russo, C. Schneider, N. Rosen, F. U. Hartl, and N. P. Pavletich. 1997. Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89:239-250. Sundaram, M., P. C. Durant, and D. R. Davis. 2000. Hypermodified nucleosides in the anticodon of tRNA(Lys) stabilize a canonical U-turn structure. Biochemistry 39:15652. Takai, D., and P. A. Jones. 2002. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc. Natl. Acad. Sci. USA. 99:3740-3745. Tanabe, M., A. Nakai, Y. Kawazoe, and K. Nagata. 1997. Different thresholds in the responses of two heat shock transcription factors, HSF1 and HSF3. J. Biol. Chem. 272:15389-15395. Tanabe, M., N. Sasai, K. Nagata, X. D. Liu, P. C. Liu, D. J. Thiele, and A. Nakai. 1999. The mammalian HSF4 gene generates both an activator and a repressor of heat shock genes by alternative splicing. J. Biol. Chem. 274:27845-27856. Tanabe, M., Y. Kawazoe, S. Takeda, R. I. Morimoto, K. Nagata, and A. Nakai. 1998. Disruption of the HSF3 gene results in the severe reduction of heat shock gene expression and loss of thermotolerance. EMBO J. 17:1750-1758. Tatsuta, T., T. Tomoyasu, B. Bukau, M. Kitagawa, H. Mori, K. Karata, and T. Ogura. 1998. Heat shock regulation in the ftsH null mutant of Escherichia coli: dissection of stability and activity control mechanisms of sigma32 in vivo. Mol. Microbiol. 30:583-593. Vivinus, S., S. Baulande, M. van Zanten, F. Campbell, P. Topley, J. H. Ellis, P. Dessen, and H. Coste. 2001. An element within the 5'' untranslated region of human Hsp70 mRNA which acts as a general enhancer of mRNA translation. Eur. J. Biochem. 268:1908-1917. Voellmy, R. 2004. On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperones 9:122-133. Voos, W., and K. Röttgers. 2002. Molecular chaperones as essential mediators of mitochondrial biogenesis. Biochim. Biophys. Acta. 1592:51-62. Vries, R. G., A. Flynn, J. C. Patel, X. Wang, R. M. Denton, and C. G. Proud. 1997. Heat shock increases the association of binding protein-1 with initiation factor 4E. J. Biol. Chem. 272:32779-32784. Wang, H., D. Boisvert, K. K. Kim, R. Kim, and S. H. Kim. 2000. Crystal structure of a fibrillarin homologue from Methanococcus jannaschii, a hyperthermophile, at 1.6 Ǻ resolution. EMBO J. 19:317-323. Weaver, R. F. 2002a. Molecular biology. 2nd ed. McGraw-Hill Press, New York. pp. 586. Weaver, R. F. 2002b. Molecular biology. 2nd ed. McGraw-Hill Press, New York. pp. 134-144. Weaver, R. F. 2002c. Molecular biology. 2nd ed. McGraw-Hill Press, New York. pp. 550-556. Wegele, H., L. Muller, and J. Buchner. 2004. Hsp70 and Hsp90--a relay team for protein folding. Rev. Physiol. Biochem. Pharmacol. 151:1-44 Widerak, M., R. Kern, A. Malki, G. Richarme. 2005. U2552 methylation at the ribosomal A-site is a negative modulator of translational accuracy. Gene 347:109-114. Wu, C. 1995. Heat shock transcription factors: structure and regulation. Annu. Rev. Cell Dev. Biol 11: 441–469. Xiong, Z., and P. W. Laird. 1997. COBRA: a sensitive and quantitative DNA methylation assay. Nucl. Acids Res. 25:2532-2534. Yueh, A., and R. J. Schneider. 1996. Selective translation initiation by ribosome jumping in adenovirus-infected and heat-shocked cells. Genes Dev. 10:1557-1567. Yueh, A., and R. J. Schneider. 2000. Translation by ribosome shunting on adenovirus and hsp70 mRNAs facilitated by complementarity to 18S rRNA. Genes Dev. 14:414-421. Yu, F., J. Thiesen, and W. H. Stratling. 2000. Histone deacetylase-independent transcriptional repression by methyl-CpG-binding protein 2. Nucl. Acids Res.28:2201-2206. Zebarjadian, Y., T. King, M. J. Fournier, L. Clarke, and J. Carbon. 1999. Point mutations in yeast CBF5 can abolish in vivo pseudouridylation of rRNA. Mol. Cell Biol. 19:7461-7472. Zou, J., Y. Guo, T. Guettouche, D. F. Smith, and R. Voellmy. 1998. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471-480.
摘要: 摘要 大腸桿菌RrmJ (ribosomal RNA large subunit methyltransferase J)屬於一個熱休克蛋白,其蛋白功能主要作用在23S rRNA之A-loop U2552 核苷酸位置,進行2’-O-ribose甲基轉化作用。缺乏A-loop U2552位置之2’-O-ribose甲基化會造成轉譯作用的效率降低,以及大腸桿菌的生長缺陷。大腸桿菌RrmJ同時也是一個高保留性的蛋白質,從原核生物到哺乳動物中均具有此同源蛋白的存在;其中在人類基因體裡已被確認出含有Ftsj1、Ftsj2以及Ftsj3三個類似RrmJ的同源基因,然而在其他哺乳動物中並未有任何相關之研究報告。本研究即利用RT-PCR、degenerated PCR及3’-RACE方式新選殖出位於豬隻中之Ftsj1與Ftsj2 mRNA,分別含有1867與1589個核苷酸,並可轉譯出含有329與245個胺基酸之蛋白質。在利用演化樹分析、蛋白質序列比對以及蛋白質三級結構的預測結果,顯示豬隻FTSJ1與FTSJ2蛋白質與大腸桿菌RrmJ具有很高度的相似性,並且亦推測兩者於其在酵母菌中之同源蛋白Trm7p與Mrm2p具有相同的功能,分別作用於tRNA的anticodon loop與粒線體rRNA的A-loop位置。而利用半定量RT-PCR進行豬隻中13個組織的Ftsj1與Ftsj2 mRNA表現量結果,顯示所有的組織中均有Ftsj1與Ftsj2 mRNA的表現,並且呈現不同程度的表現量。進一步利用real-time RT-PCR分別對25oC、30oC與35oC環境溫控畜舍中處理一週之豬隻進行Ftsj1與Ftsj2 mRNA表現量之測定,其結果顯示在少數組織中Ftsj1與Ftsj2 mRNA的表現量會隨著溫度的提升而有上升的趨勢;而在大多數的組織中其表現則是呈現不變或受到抑制的情形,顯示在少數組織中Ftsj1與Ftsj2基因仍保留著熱休克蛋白的特性,然而在大部分的組織中則已喪失了這項功能。另外在Ftsj2基因甲基化的實驗顯示,其intron1在各組織中均呈現高度甲基化,因而在Ftsj2基因表現之抑制作用中,並沒有明顯的受到該檢測區段之甲基化機制所調控;相反的,Ftsj2在35oC下mRNA表現量上升的組織中則具有甲基化程度下降的趨勢。而在更廣泛的基因調控區域中,如基因之啟動子,甲基化程度受到環境效應之變化,更值得繼續進行更深入之研究。
Abstract An E. coli heat shock protein called RrmJ (ribosomal RNA large subunit methyltransferase J) is responsible for the 2'-O-ribose methylation of A-loop U2552 in the 23S rRNA. Absence of this methlyation causes to reduce either the efficiency of protein synthesis or the growth rate of E. coli. The RrmJ is also a highly conserved protein from eubacteria to mammalia. In human, three closed homologs of RrmJ have been identified and designated as FTSJ1, FTSJ2 and FTSJ3 proteins. In this study, we have cloned two novel porcine Ftsj1 and Ftsj2 full length cDNAs by RT-PCR, degenerated PCR and 3'-RACE, which encoded two polypeptides with 329 and 245 amino acids, respectively. Under bioinformatic analysis, the significantly similarity of porcine FTSJ1 and FTSJ2 to E. coli RrmJ has been demonstrated that both proteins may perform a similar characteristic to RrmJ. Semi-quantitative RT-PCR results showed that porcine Ftsj1 and Ftsj2 mRNA were expressed in all examined thirteen tissues with different levels. Growing piglets were kept at 25oC, 30oC and 35oC thermal-controlled environment for one week and tissue mRNAs were extracted for detection of the Ftsj1 and Ftsj2 genes expression. Using real-time RT-PCR technique, the results of Ftsj1 and Ftsj2 mRNA expression in the thermal-controlled piglet tissues indicate that porcine Ftsj1 and Ftsj2 mRNA expressions were up regulation in only few tissues, and the roles of FTSJ1 and FTSJ2 in mammalia might be different from E. coli under heat shock stress. DNA methylation status was also examined to understand the correlation between Ftsj2 gene methylation and Ftsj2 mRNA downregulation under heat shock stress. The results showed that all the selected tissues are highly methylated in Ftsj2 intron1, and did not regulated the mechanism of Ftsj2 mRNA expression inhibition; conversely, the methylation status was decreased in the tissues where Ftsj2 mRNA were expression increasely. But if Ftsj2 gene still contains other CpG islands, likely promoter region, which involve the regulation of Ftsj2 expression will be study further.
URI: http://hdl.handle.net/11455/22446
其他識別: U0005-2708200614472200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2708200614472200
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.