Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22461
標題: 鯊魚、線鰻與雞磷酸葡萄糖異構酶的選殖,並推論磷酸葡萄糖異構酶在脊椎動物的演化
Cloning of Phosphoglucose Isomerase of Shark, Snipe Eel and Chicken, and Inferring the Evolution of PGI in Vertebrates
作者: 曾惠芸
Tseng, Hui-Yun
關鍵字: phosphoglucose isomerase
磷酸葡萄糖異構酶基因複製
gene duplication
molecular clock
分子時鐘
出版社: 生命科學系所
引用: Abascal, F., R. Zardoya, and D. Posada. 2005. ProTest: selection of best-fit modelsof protein evolution. Bioinformatics 21(9): 2104-2105. Abi-Rahed, L., A. Gilles, T. Shiina, P. Pontarotti, and H. Inoko. 2002. Evidence of en bloc duplication in vertebrate genomes. Nature Genetics 31: 100-105. Amores, A., A. Force, Y. L. Yan, L. Joly, C. Amemiya, A. Fritz, R. K. Ho, J. Langeland, V. Prince, Y. L. Wang, M. Westerfield, M. Ekker, and J. H. Postlethwait. 1998. Zebrafish hox clusters and vertebrate genome evolution. Science 282: 1711-1714. Al-Hassan, L. A. J. 1985. A study on phosphoglucose isomerase enzyme in some elasmobranch fishes collected from Khor Al-Zubair, north west of the Arabian Gulf, Iraq. Comp. Biochem. Physiol. 82B(2): 371-374. Arnason, U., J. A. Adegoke, K. Bodin, E.W. Born, Y. B. Esa, A. Gullberg, M. Nilsson, R. V. Short, X. Xu, and A. Janke. 2002. Mammalian mitogenomic relationships and the root of the eutherian tree. Proc. Natl. Acad. Sci. USA 99: 8151-8156. Avise, J. C., and R. K. Selander. 1972. Evolutionary genetics of cave-dwelling fishes of the genus Astyanax. Evolution 26: 1. Avise, J. C., and G. B. Kitto. 1973. Phosphoglucose isomerase gene duplication in the bony fishes: an evolutionary history. Biochem. Genet. 8 (2): 113-132. Basden, A. M., G. C. Young, M. I. Coates, and A. Rutchie. 2000. The most primitive osteichthyan braincase? Nature 403: 185-188. Benton, M. J. 1990. Phylogeny of the major tetrapod groups: morphological data and divergence dates. J. Mol. Evol. 30: 409-424. Cater, N. D., and C. W. Parr. 1967. Isoenzymes of phosphoglucose isomerase in mice. Nature 216: 511. Christoffels, A., E. G. L. Koh, J. Chia, S. Brenner, S. Aparicio, and B. Venkatesh. 2004. Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol. Biol. Evol. 21(6): 1146-1151. Clack, J. A. 2002. Gaining ground: the origin and evolution of tetrapods. Indiana University Press, Ithaca, NY. Crow, K. D., P. F. Stadler, V. J. Lynch, C. Amemiya, and G. P. Wagner. 2006. The “fish-specific” Hox cluster duplication is coincident with the origin of teleosts. Mol. Biol. Evol. 23(1): 121-136. Dando. P. R. 1974. Distribution of multiple glucose phosphate isomerases in teleostean fishes. Comp. Biochem. Physiol. 47B: 663-679. Dando. P. R. 1980. Duplication of the glucose phosphate isomerase locus in vertebrates. Comp. Biochem. Physiol. 66B: 373-378. Davies, C., and H. Muirhead. 2002. Crystal structure of phosphoglucose isomerase from pig muscle and its complex with 5-phosphoarabinonate. Proteins 50: 577-579. Deter, J. C., P. O. Ways, E. R. Giblett, M. A. Baughman, D. A. Hopkinson, S. Povey, and H. Harris. 1968. Inherited variations in human phosphohexose isomerase. Ann. Hum. Genet. 31: 329. Escriva, H., L. Manzon, J. Youson, and V. Laudet. 2002. Analysis of lamprey and hagfish genes reveals a complex history of gene duplications during early vertebrate evolution. Mol. Biol. Evol. 19(9): 1440-1450. Felsenstein, J. 1981.Evolutionary tree from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17: 368-376. Fisher, S. E., J. B. Shaklee, S. D. Ferris, and G. S. Whitt. 1980. Evolution of five multilocus isozyme systems in the chordates. Genetica 52/53: 73-85. Frye, M. S., and S. B. Hedges. 1995. Monophyly of the order Rodentia inferred from mitochondrial DNA sequences of the genes for 12S rRNA, 16S rRNA, and tRNA-Valine. Mol. Biol. Evol. 12: 168-176. Gurney, M. E., B. R. Apatoff, G. T. Spear, M. J. Baumel, J. P. Antel, M. B. Bania, and A. T. Reder. 1986. Neuroleukin: A lymphokine product of lectin-stimulated T cells. Science 234: 574-581. Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41: 95-98. Huelsenbeck, J. R., F. R. Ronquist. 2001. MrBayes: Bayesian inference of phylogenetic trees. Biometrics 17: 754-755. Hughes, A. L. 1999. Phylogenies of developmentally important proteins do not support the hypothesis of two rounds of genome duplication early in vertebrate history. Mol. Evol. 48: 565-576. Hulo, N., A. Bairoch, V. Bulliard, L. Cerutti, E. de Castro, P. S. Langendijk-Genevaux, M. Pagni, and C. J. A. Sigrist. 2006. The PROSITE database. Nucleic Acids Res. 34: D227-230. Jacobs, L. L., and W. R. Downs. 1994. The evolution of murine rodents in Asia. National Science Museum Monograph, Takyo. Pp. 149-156. Jobb, G., A. von Haeseler, and K. Strimmer. 2004. Treefinder: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol. Biol. 4: 18-26. Jobb, G. 2005. TREEFINDER version of October 2005. Munich, Germany. Kao, H. W., and S. C. Lee. 2002. Phosphoglucose isomerases of hagfish, zebrafish, gray mullet, toad, and snake, with reference to the evolution of the genes in verterbrates. Mol. Biol. Evol. 19(4): 267-374. Katz, L. A. 1996. Trans-kingdom transfer of the phosphoglucose isomerase gene. J. Mol. Evol. 43: 453-459. Kugler, W., K. Breme, P. Laspe, H. Muirhead, C. Davies, H. Winkler, W. Schröter, and M. Lakomek. 1998. Molecular basis of neurological dysfunction coupled with haemolytic anaemia in human glucose-6-phosphate isomerase (GPI) deficiency. Hum. Genet. 103: 450-454. Kumar, S., and B. Hedges. 1998. A molecular timescale for vertebrate evolution. Nature 392: 917-920. Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5:150-163. Lee, J. H., and C. J. Jeffery. 2005. The crystal structure of rabbit phosphoglucose isomerase complexed with D-sorbitol-6-phosphate, an analog of the open chain form of D-glucose-6-phosphate. Protein Sci. 14: 727-734. Lin, J. J., T. H. Yang, S. D. Wahlstrand, P. A. Fields, and G. N. Somero. 2002. Phylogenetic relationships and biochemical properties of the duplicated cytosolic and mitochondrial isoforms of malate dehydrogenase from a teleost fish, Sphyraena idiastes. J. Mol. Evol. 54(1): 107-117. Madsen, O., M. Scally, C. J. Douady, D. J. Kao, R. W. DeBry, R. Adkins, H. M. Amrine, M. J. Stanhope, W. W. de Jong, and M. S. Springer. 2001. Parallel adaptive radiations in two major clades of placental mammals. Nature 409: 610-614. Merrit, T. J. S., and J. M. Quattro. 2003. Evolution of the vertebrate cytosolic malate dehydrogenase gene family: duplication and divergence in actinopterygian fish. J. Mol. Evol. 56: 265-276. Murphy, W. J., E. Eizirik, S. J. O'Brien, O. Madsen, M. Scally, C. J. Douady, E. Teeling, O. A. Ryder, M. J. Stanhope, W. W. de Jong, and M. S. Springer. 2001a. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294: 2348-2951. Murphy, W. J., E. Eizirik, W. E. Johnson, Y. P. Zhang, O. A. Ryder, and S. J. O'Brien. 2001b. Molecular phylogenetics and the origins of placental mammals. Nature 409: 614-618. Naruse, K., S. Fukamachi, H. Mitani, M. Kondo, T. Matsuoka, S. Kondo, N. Hanamura, Y. Morita, K. Hasegawa, R. Nishigaki, A. Shimada, H. Wada, T. Kusakabe, N. Suzuki, M. Kinoshita, A. Kanamori, T. Terado, H. Kimura, M. Nonaka, and A. Shima. 2000. A Detailed Linkage Map of Medaka, Oryzias latipes: Comparative Genomics and Genome Evolution. Genetics 154: 1773-1784. Nelson, J. S. 1994. Fishes of the world. J. Wiley, New York. Nottebohm, F., and R. K. Selander. 1972. Vocal dialects and gene frequencies in the Chingolo sparrow (Zonotrichia capensis). Condor 74: 137. Ohno, S. 1970. Evolution by gene duplication. Springer-Verlag, Berlin. Page, R. D. M. 1996. TREEVIEW: An application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12: 357-358 Philipp, D. P., W. F. Childers, and G. S. Whitt. 1979. Evolution of patterns of differential gene expression: A comparison of the temporal and spatial patterns of isozyme locus expression in two closely related fish species(northern largemouth bass, Micropterus salmoides salmoides, and smallmouth bass, Micropterus dolomieiu). J. Exp. Zool, 210: 473-488. Posada, D., and K. A. Crandall. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics. 14(9): 817-818. Posada, D., and T. R. Buckley. 2004. Model selection and model averaging in phylogenetics: advantages of Aakaike information criterion and Bayesian approaches over likelihood ratio test. Syst. Biol. 53(5): 793-808. Raaum. R. L., K. N. Sterner, C. M. Noviello, C-B. Stewart, and T. R. Disotell. 2005. Catarrhine primate divergence dates estimated from complete mitochondrial genomes: concordance with fossil and nuclear DNA evidence. J. Hum. Evol. 48: 237-257. Robinson, M., F. Catzeflis, J. Briolay, and D. Mouchiroud. 1997. Molecular phylogeny of rodents, with special emphasis on murids: evidence from nuclear DNA evidence. Mol. Phylogenet. Evol. 8: 423-434. Robinson-Rechavi, M., O. Marchand, H. Escriva, and V. Laudet. 2001. An ancestral whole-genome duplication may not have been responsible for the abundance of duplicated fish genes. Current Biology 11(12): R458-R459. Robinson-Rechavi, M., B. Boussau, and V. Laudet. 2004. Phylogenetic dating and characterization of gene duplications in vertebrates: the cartilaginous fish reference. Mol. Biol. Evol. 21(3): 580-586. Sanderson, M. J. 1997. A nonparametric approach to estimating divergence times in the absence of rate constancy. Mol. Biol. Evol. 14(12): 1218-1231. Sansom, I. J., M. M. Smith, and M. P. Smith. 1996. Scales of thelodont and shark-like fishes from the Ordovician of Colorado. Nature 379: 628-630. Schwantes, M. B. L., and A. R. Schwantes. 1982. Adaptive features of ectothermic enzymes. Ⅰ. Temperature effects on the malate dehydrogenase from temperate fish Leiostomus xanthurus. Comp. Biochem. Physiol. 72B: 48-50. Selander, R. K., W. E. Johnson, and J. C. Avise. 1971. Biochemical population genetics of fidler crabs (Uca). Biol. Bull. 141: 402. Sun, Y. J., C. C. Chou, W. S. Chen, R. T. Wu, and M. Meng. 1999. The crystal structure of a multifunctional protein: phosphoglucose isomerase / autocrine motility factor / neuroleukin. Proc. Natl. Acad. Sci. USA 96: 5412-5417. Swofford D. L. 2002. PAUP: Phylogenetic Analysis Using Parsimony, ver. 4.0b10. Sinauer, Massachusetts. Takezaki, N., F. Figueroa, Z. Zaleska-Rutczynska, N. Takahata, and J. Klein. 2004. The phylogenetic relationship of tetrapod, coelacanth, and lungfish revealed by the sequences of forty-four nuclear gene. Mol. Biol. Evol. 21(8): 1512-1524. Taylor, J. S., Y. Van de Peer, and A. Meyer. 2001. Genome duplication, divergent resolution and speciation. Trends Genet. 17: 299-301. Taylor, J. S., I. Braasch, T. Frickey, A. Meyer, and Y. Van de peer. 2003. Genome duplication, a trait shared by 22000 species of ray-finned fish. Genome Res. 13: 382-390. Vandepoele, K., W. De Vos, J. S. Taylor, A. Meyer, and Y. Van de Peer. 2004. Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc. Natl. Acad. Sci. USA 98: 11382-11387. Wang, Y., and X. Gu. 2000. Evolution patterns of gene families generated in the early stage of vertebrates. J. Mol. Evol. 51: 88-96. Wagner, A. 1998. The fate of duplicated genes: loss or new function? BioEssays 20: 785-788. Wagner, A. 2001. Birth and death of duplicated genes in completely sequenced eukaryotes. Trends Genet. 17: 237-239. Walker, J. M. 2005. The proteomics protocols handbook. Human Press. Totowa, New Jersey. Watanabe, H., K. Takehana, M. Date, T. Shinozaki, and A. Raz. 1996. Tumor cell autocrine motility factor is the neuroleukin/phosphohexose isomerase polypeptide. Cancer Res. 56: 2960-2963. Webster, T. P., R. K. Selander, and S. Y. Yang. 1972. Genetic variability and similarity in the Anolis lizards of Bimini. Evolution 26: 523-535. Wheat, T. E., W. I. Childers, E. T. Miller, and G. S. Whitt. 1971. Genetic and in vitro molecular hybridization of malate dehydrogenase isozymes in interspecific bass(Micropterus) hybrids. Anim. Blood Grps. Biochem. Genet. 2: 3-14. Wu, C.-I., and W.-H. Li. 1985. Evidence for higher rates for nucleotide substitution in rodents than in man. Proc. Natl. Acad. Sci. USA 82: 1741-1745. Xia, X., and Z. Xie. 2001. DAMBE: Date analysis in molecular biology and evolution. J. Hered 92: 371-373. Xia, X., Z. Xie, M. Salemi, L. Chen, and Y. Wang. 2003. An index of substitution saturation and its application. Mol. Phylogenet. Evol. 26: 1-7. Xu, W., K. Seiter, E. T. ahmede, and J. W. Chiao. 1996. The differentiation and maturation mediator for human myeloid leukemia cells share homology with neuroleukin or phosphoglucose isomerase. Blood 87:4502-4506. Yoder, A. D., and Z. Yang. 2000. Estimation of primate speciation dates using local molecular clock. Mol. Biol. Evol. 17(7): 1081-1090. Yoder, A. D., and Z. Yang. 2004. Divergence dates for Malagasy lemurs estimated from multiple gene loci: geological and evolutionary context. Mol. Evol. 13: 757-773. Zhu, M., Y. Xiaobo, and P. Janvier. 1999. A primitive fossil fish sheds light on the origin of bony fishes. Nature 397: 607-610. Zuckerkandl, E., and L. Pauling. 1962. Molecular disease, evolution, and genetic heterogeneity. Academic Press, New York.
摘要: 基因複製(gene duplication)會造成基因數目的增加,使原先一個基因變為兩個。其中一個基因可能維持原先的功能,另一個則可能沒有功能或演化成製造不同功能的蛋白質。過去研究認為基因複製是造成真骨魚類種類與形態多樣性的可能原因,因此許多學者利用同功異構酶電泳(Isozyme electrophoresis)及利用不同基因建構演化樹的方式,推論基因複製發生於哪些魚類系群之間,以及推論基因複製發生的時間。 以往研究中並未選殖如海鰱魚首目(Elopomorpha)等較原始的真骨魚類(teleostei)PGI基因,也未選殖軟骨魚類(Chondrichthyes)的PGI,因此無法推論基因複製發生於硬骨魚類和軟骨魚類分化之前或之後。由於磷酸葡萄糖異構酶(phosphoglucose isomerase, E.C. 5.3.1.9,以下簡稱PGI)主要功能為醣解作用(glycolysis)及生醣作用(gluconeogenesis),在真核生物、細菌上都同樣有此種蛋白質,因此為很好的研究材料。本研究除了選殖軟骨魚類梭氏蜥鮫(Galeus sauteri)的PGI外,也加入海鰱魚首目的線鰻(Nemichthys scolopaceus)進行分析,以更準確地推論PGI在硬骨魚類基因複製的時間。此外,鳥類常被用來作為尺度點分析分子時鐘,選殖鳥綱的雞(Gallus gallus)有助於推論PGI基因複製時間。 利用反轉錄聚合酶連鎖反應(RT-PCR)及Rapid amplification of cDNA ends(RACE)技術增幅及選殖PGI的cDNA序列,結果顯示梭氏蜥鮫及雞僅有一個基因座(locus)的PGI,而線鰻有兩個。梭氏蜥鮫的PGI序列長度為1668 bp,共可轉譯成555個氨基酸;雞及線鰻的PGI序列長度為1662 bp,共553個氨基酸。建構PGI演化樹後,不論用DNA或氨基酸序列所構築的演化樹,軟骨魚類的PGI並未和硬骨魚類的PGI-A或PGI-B歸群在一起,顯示魚類基因複製發生於硬骨魚類和軟骨魚類分化之後。在物種親緣關係方面,利用PGI所建構的演化樹中哺乳類彼此間的親緣關係和其它學者分析的結果並不完全相同;在魚類方面,鰻目(Anguilliformes)和鯉形目(Cypriniformes)魚類的關係在演化樹中的關係較不穩定。 利用Nonparametric rate smoothing(NPRS)方法估算分子時鐘,並利用多個尺度點(calibration point)(鳥類和四足類分化時間3億1千萬年前、家鼠和挪威鼠分化時間為1千4百萬年前、人和黑猩猩分化的時間為6百萬年前、紅毛猩猩與黑猩猩分化的時間為1千4百萬年前、食蟹獼猴和人類分化的時間為2千3百萬年前、硬骨魚和軟骨魚分化時間為4億7千萬年前以及硬骨魚類和哺乳類分化時間為4億年前)估算磷酸葡萄糖異構酶複製的時間,結果顯示基因複製發生於2億9千4百萬年前。若分別利用不同尺度點估算,利用哺乳類作為尺度點推估的結果和其它推估的時間有很大的差異。
Gene duplication can double the number of genes. One gene may maintain its original function, and the other gene may evolve a new function. Previous studies suggested that gene duplication may increase the species and morphological diversity in teleosts, and therefore isozyme electrophoresis and different genes were used to date the event of gene duplication. Because the basal teleostei (e.g., Elopomorpha) and Chondrichthyes were not included in previous studies, these studies can't determine whether gene duplication occurred before or after the split of Chondrichthyes and teleostei. Phosphoglucose isomerase (PGI) is a multifunctional protein which exists from bacteria to eukaryotes, and becomes a good molecular marker for studying evolution. In the present study, we test the hypothesis that PGI gene duplication was occurred before or after the chondrichthyan/teleostei split, and infer the time of gene duplication in teleostei. I described the cloning the full-length PGIs from blacktip sawtail catshark (Galeus sauteri) and snipe eel (Nemichthys scolopaceus) to test this hypothesis. Birds play a important role in vertebrate evolution, so cloning of chicken (Gallus gallus)'s PGI was also included in this study. Reverse transcription-PCR (RT-PCR) and rapid amplification of cDNA ends (RACE) were used to amplify PGI cDNA. Two copies of PGI genes were found in snipe eel, whereas only one copy is in blacktip sawtail catshark and chicken. The nucleotide sequence length of the blacktip sawtail catshark PGI was 1668 bp, which encoded 555 amino acids. The nucleotide sequence length of the snipe eel and chicken's PGIs were both 1662 bp, and encoded 553 amino acids. In all phylogenetic trees constructed from DNA and protein sequences, Chondrichthyes PGI was not clustered with teleostei PGI-A or PGI-B. The result suggests that gene duplication was occurred after the split of chondrichthyan and teleostei. This phylogenetic tree is not consistent with mammals and fishes phylogeny proposed by other workers. I selected multiple calibration points (Aves/Mammalian, 310 Mya; mouse/rat, 14 Mya; human/chimpanzee, 6 Mya; orangutan/chimpanzee, 14 Mya; macaque/human, 23 Mya; teleostei/Chondrichthyes, 470 Mya; fish/mammal, 400 Mya) for use in the nonparametric rate smoothing method to calibrate PGI gene duplication. The result suggested that gene duplication was occurred about 294 Mya. Compared with the results using different calibration points, the result which using calibration point in mammals was different to others.
URI: http://hdl.handle.net/11455/22461
其他識別: U0005-2906200610514800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2906200610514800
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.