Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22470
標題: 以分子生物技術解析與建構厭氧產氫系統
Analysis and construction of a biohydrogen -producing system using molecular biological techniques
作者: 張瑞仁
Chang, Jui-Jen
關鍵字: 產氫酶反轉錄聚合酶連鎖反應
DGGE(denaturing gradient gel electrophoresis), Clostridium
即時定量聚合酶連鎖反應
原位反轉錄聚合酶連鎖反應
螢光原位雜交
流式細胞儀
能源微生物
hydrogenase
RT-PCR (reverse transcriptase polymerase chain reaction)
real-time PCR
in situ RT-PCR
FISH (fluorescence in situ hybridization)
flow cytometry
energy bug.
出版社: 生命科學系所
引用: 參考文獻 白明德,1999。厭氧生物產氫機制與程序操作策略之研究,國立成功大學,碩士論文。 李俊穎,2006,應用混合實驗設計探討Clostridium butyricum M1、Clostridium beijerinckii L9與Bacillus thermoamyvorans I對產氫之影響,碩士論文 陳楚婷,2004。氫發電代用能源。通識教育 ( 環境 )專題報告。 黃正怡、張一岑、賴俊吉,2001。營養鹽濃度對於含梭狀牙胞桿菌知植種材料利用有機廢棄物產氫之影響,p.3-98。中華民國環境工程學會第十三屆年會及研討會論文摘要集。中華民國環境工程學會第十三屆年會第十六屆廢棄物處理技術研討會,台灣。 黃敏男,2002。以流式細胞儀結合螢光原位雜交技術分析活性污泥之菌群結構。碩士論文。 賴俊吉,2002。潔淨生質能源研究發展計劃(2/5)。經濟部能源科技研究發展計劃九十年度執行報告。 詹宏宜,2006,優勢產氫菌共培養之特性分析,碩士論文 Ackrell, B. A., R. N. Asato, and H. F. Mower. 1966. Multiple forms of bacterial hydrogenases. J Bacteriol 92:828-38. Amann, R. I., B. J. Binder, R. J. Olson, S. W. Chisholm, R. Devereux, and D. A. Stahl. 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919-25. Aoyama, K., M. miyake, J. Yamada, J. Miyake, I. Uemura, T. Hoshino,and Y. Asada. 1996. Application of vector pKE4-9 carrying a strong promoter to the expression of foreign proteins in Synechococcus PCC7942. J Mar Biotechnology 4:64-67. Asada, Y., Y. Koike, J. Schnackenberg, M. Miyake, I. Uemura, and J. Miyake. 2000. Heterologous expression of clostridial hydrogenase in the Cyanobacterium synechococcus PCC7942. Biochim Biophys Acta 1490:269-78. Auling, G., F. Pilz, H. J. Busse, S. Karrasch, M. Streichan, and G. Schon. 1991. Analysis of the polyphosphate-accumulating microflora in phosphorus-eliminating, anaerobic-aerobic activated sludge systems by using diaminopropane as a biomarker for rapid estimation of Acinetobacter spp. Appl Environ Microbiol 57:3585-92. Biebl, H., and C. Sproer. 2002. Taxonomy of the glycerol fermenting clostridia and description of Clostridium diolis sp. nov. Syst Appl Microbiol 25:491-7. Baker, A. N., and Wolf, J. 1977. Spore research. Academic Press, London. BOÏCHENKO, V. A. a. H. P. 1994. Photosynthetic hydrogen production in Prokaryoties and Eukaryotes: Occurrence, mechanism, and functions. Photosynthetica 30(4):527-552. Cammack, R. 1999. Hydrogenase sophistication. Nature 397:214-5. Chen, F., B. Binder, and R. E. Hodson. 2000. Flow cytometric detection of specific gene expression in prokaryotic cells using in situ RT-PCR. FEMS Microbiol Lett 184:291-6. Chen, J. S., and L. E. Mortenson. 1974. Purification and properties of hydrogenase from Clostridium pasteurianum W5. Biochim Biophys Acta 371:283-98. Chen, Z., B. J. Lemon, S. Huang, D. J. Swartz, J. W. Peters, and K. A. Bagley. 2002. Infrared studies of the CO-inhibited form of the Fe-only hydrogenase from Clostridium pasteurianum I: examination of its light sensitivity at cryogenic temperatures. Biochemistry 41:2036-43. Claassen, P. A., M, J .B. van Lier, A. M. Lopez Contreras, E. W. J. van Niel, L. Sijtsma, A. J. M. Stams, S. S. de Vries,and R. A. Weusthuis. 1999. Utilisation of biomass for supply of energy carriers. 52:741-755. Cloete, T. E., and P. L. Steyn. 1988. A combined membrane filter-immunofluorescent technique for the in situ identification and enumeration of Acinetobacter in activated sludge. . Water Res 22:961-969. Cohen, S. N., A. C. Chang, and L. Hsu. 1972. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A 69:2110-4. Collins, M. D., P. A. Lawson, A. Willems, J. J. Cordoba, J. Fernandez-Garayzabal, P. Garcia, J. Cai, H. Hippe, and J. A. Farrow. 1994. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812-26. Combet-Blanc, Y., Ollivier, B., Streicher, C., Patel, B. K. C., Dwivedi, P. P., Pot, B., Prensier, G., and Garcia, J. L. 1995. “Bacillus thermoanylovorans sp. Nov., a Moderately Thermophilic and Amylolytic Bacterium”, Int. J. Systematic Bacteriology:9-16. Deguchi, Y., Morishita, T. and Mutai, M. 1985. Comparative studies on synthesis of water-soluble vitamins among human species of bifidobacteria. Agric. Biol. Chem. 49(1):13-19. Dabrock, B., H. Bahl, and G. Gottschalk. 1992. Parameters Affecting Solvent Production by Clostridium pasteurianum. Appl Environ Microbiol 58:1233-1239. Devereux, R., and G. W. Mundfrom. 1994. A phylogenetic tree of 16S rRNA sequences from sulfate-reducing bacteria in a sandy marine sediment. Appl Environ Microbiol 60:3437-9. Devers, M., G. Soulas, and F. Martin-Laurent. 2004. Real-time reverse transcription PCR analysis of expression of atrazine catabolism genes in two bacterial strains isolated from soil. J Microbiol Methods 56:3-15. El-Fantroussi, S., W. Verstraete, and E. M. Top. 2000. Enrichment and molecular characterization of a bacterial culture that degrades methoxy-methyl urea herbicides and their aniline derivatives. Appl Environ Microbiol 66:5110-5. Erbeznik, M., C. R. Jones, K. A. Dawson, and H. J. Strobel. 1997. Clostridium thermocellum JW20 (ATCC 31549) is a coculture with Thermoanaerobacter ethanolicus. Appl Environ Microbiol 63:2949-51. Fan, Y., X. Liao, H. Lu, H. Hou, and J. J. Lai. 2003. [Study on biohydrogen production by anaerobic biological fermentation of organic wasters]. Huan Jing Ke Xue 24:132-5. Fang, H. H., T. Zhang, and H. Liu. 2002. Microbial diversity of a mesophilic hydrogen-producing sludge. Appl Microbiol Biotechnol 58:112-8. Gaudy, A. F., and Gaudy, E. T. 1980. “Microbiology for environment scientists and engineers”, Mc-Graw Hill. Gerhardt, P., R. G. E. Murray, W. A. Wood ,and N. R. Krieg. 1994. Methods for general and molecular bacteriology, U.S.A.. Ginkel, S. V., S. Sung, and J. J. Lay. 2001. Biohydrogen production as a function of pH and substrate concentration. Environ Sci Technol 35:4726-30. Golden, S. S., and L. A. Sherman. 1984. Optimal conditions for genetic transformation of the cyanobacterium Anacystis nidulans R2. J Bacteriol 158:36-42. Gorwa, M. F., C. Croux, and P. Soucaille. 1996. Molecular characterization and transcriptional analysis of the putative hydrogenase gene of Clostridium acetobutylicum ATCC 824. J Bacteriol 178:2668-75. Gosden, J. R. 1997. PRINS and in situ PCR Protocols. Humana Press. Totowa. NJ. Gu, J. 1995. In situ PCR – An Overview. In: In situ Polymerase Chain Reaction and Related Technology (Gu, J., Ed.). Eaton Publishing Co., Nalick, MA:1-21. Haase, A. T., E. F. Retzel, and K. A. Staskus. 1990. Amplification and detection of lentiviral DNA inside cells. Proc Natl Acad Sci U S A 87:4971-5. Hartmann, G. C., A. R. Klein, M. Linder, and R. K. Thauer. 1996. Purification, properties and primary structure of H2-forming N5 ,N10 -methylenetetrahydromethanopterin dehydrogenase from Methanococcus thermolithotrophicus. Arch Microbiol 165:187-93. Hawkes, F. R., Dinsdale, R, Hawkes, D. L., Hussy, I. 2002. Sustainable fermentative biohydrogen: challenges for process optimization. Int J Hydrogen Energy 27:1339–47. Hodson, R. E., W. A. Dustman, R. P. Garg, and M. A. Moran. 1995. In situ PCR for visualization of microscale distribution of specific genes and gene products in prokaryotic communities. Appl Environ Microbiol 61:4074-82. Howgrave-Graham, A. R., and P. L. Steyn. 1988. Application of the Fluorescent-Antibody Technique for the Detection of Sphaerotilus natans in Activated Sludge. Appl Environ Microbiol 54:799-802. Jorgensen, S. L. I. a. M. H. 1995. Azocasein assay for alkaline protease in complex fermentation broth. BIOTECHNOLOGY TECHNIQUES 9 NO.8:573-576. JULIA STEUBER, W. K., MICHAEL BOTT, AND PETER DIMROTH*. Jan. 1999. A Membrane-Bound NAD(P)1-Reducing Hydrogenase Provides Reduced Pyridine Nucleotides during Citrate Fermentation by Klebsiella pneumoniae. JOURNAL OF BACTERIOLOGY:241–245. Kataoka, N., A. Miya, and K. Kiriyama. 1997. Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria. Water Sci Technol 36:41-47. Kemperman R., K. A., Karsens H., Nauta A., Kuipers O., Kok J. 2003. acteriocins are agents which are encoded in the genetic material carried by plasmids, with the purpose of killing or inhibiting closely related species or even different strains of the same species. Appl Environ Microbiol 69(3):1589-97. Larimer, F. W., P. Chain, L. Hauser, J. Lamerdin, S. Malfatti, L. Do, M. L. Land, D. A. Pelletier, J. T. Beatty, A. S. Lang, F. R. Tabita, J. L. Gibson, T. E. Hanson, C. Bobst, J. L. Torres, C. Peres, F. H. Harrison, J. Gibson, and C. S. Harwood. 2004. Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 22:55-61. Lay, J. J. 2001. Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnol Bioeng 74:280-7. Lay, J. J. 2000. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol Bioeng 68:269-78. Lay, J. J., C. J. Tsai, C. C. Huang, J. J. Chang, C. H. Chou, K. S. Fan, J. I. Chang, and P. C. Hsu. 2005. Influences of pH and hydraulic retention time on anaerobes converting beer processing wastes into hydrogen. Water Sci Technol 52:123-9. Lay, J. J., Lee, Y. J., and Noike, T. 1999. “Feasibility of biological hydrogen production from organic fraction of municipal soild waste”. Water Res:2579-2590. Lee, S. Y., J. Bollinger, D. Bezdicek, and A. Ogram. 1996. Estimation of the abundance of an uncultured soil bacterial strain by a competitive quantitative PCR method. Appl Environ Microbiol 62:3787-93. Lemon, B. J., and J. W. Peters. 1999. Binding of exogenously added carbon monoxide at the active site of the iron-only hydrogenase (CpI) from Clostridium pasteurianum. Biochemistry 38:12969-73. Leyden, J. J. 2001. The evolving role of Propionibacterium acnes in acne. Semin Cutan Med Surg 20:139-43. Liu, W. T., O. C. Chan, and H. H. Fang. 2002. Characterization of microbial community in granular sludge treating brewery wastewater. Water Res 36:1767-75. Maier, R. J. O., A. Maier,S. Soni,S. and Gunn,J. . 2004. Respiratory Hydrogen Use by Salmonella enterica Serovar Typhimurium Is Essential for Virulence. INFECTION AND IMMUNITY: 6294–6299. Meyer, J., and J. Gagnon. 1991. Primary structure of hydrogenase I from Clostridium pasteurianum. Biochemistry 30:9697-704. Mikula, M., A. Dzwonek, K. Jagusztyn-Krynicka, and J. Ostrowski. 2003. Quantitative detection for low levels of Helicobacter pylori infection in experimentally infected mice by real-time PCR. J Microbiol Methods 55:351-9. Miyake, M., and Y. Asada. 1997. Direct electroporation of clostridial hydrogenase into cyanobacterial cells. Biotechnology Techniques 11(11):787-790. Miyake, M., J. Yamada, K. Aoyama, I. Uemura, T. Hoshino, J. Miyake ,and Y. Asada. 1996. Strong expression of foreign protein in Synechococcus PCC7942. J. Marine Biotechnol 4:61-63. Mura, G. M., P. Pedroni, C. Pratesi, G. Galli, L. Serbolisca, and G. Grandi. 1996. The [Ni-Fe] hydrogenase from the thermophilic bacterium Acetomicrobium flavidum. Microbiology 142 ( Pt 4):829-36. Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695-700. Nandi, R., and S. Sengupta. 1998. Microbial production of hydrogen: an overview. Crit Rev Microbiol 24:61-84. Nielsen, A. T., W. T. Liu, C. Filipe, L. Grady, Jr., S. Molin, and D. A. Stahl. 1999. Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor. Appl Environ Microbiol 65:1251-8. Palmer, C. J., Y. L. Tsai, C. Paszko-Kolva, C. Mayer, and L. R. Sangermano. 1993. Detection of Legionella species in sewage and ocean water by polymerase chain reaction, direct fluorescent-antibody, and plate culture methods. Appl Environ Microbiol 59:3618-24. Patterson, B. K., M. Till, P. Otto, C. Goolsby, M. R. Furtado, L. J. McBride, and S. M. Wolinsky. 1993. Detection of HIV-1 DNA and messenger RNA in individual cells by PCR-driven in situ hybridization and flow cytometry. Science 260:976-9. Peters, J. W. 1999. Structure and mechanism of iron-only hydrogenases. Curr Opin Struct Biol 9:670-6. Peters, J. W., W. N. Lanzilotta, B. J. Lemon, and L. C. Seefeldt. 1998. X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282:1853-8. Rainey, F. A., N. L. Ward, H. W. Morgan, R. Toalster, and E. Stackebrandt. 1993. Phylogenetic analysis of anaerobic thermophilic bacteria: aid for their reclassification. J Bacteriol 175:4772-9. Rockstroh, T. 1977. [Changes in the nomenclature of bacteria after the 8th edition of Bergey''s Manual of the Determinative Bacteriology]. Z Arztl Fortbild (Jena) 71:545-50. Santangelo, J. D., P. Durre, and D. R. Woods. 1995. Characterization and expression of the hydrogenase-encoding gene from Clostridium acetobutylicum P262. Microbiology 141 ( Pt 1):171-80. Schink, B., and Friedrich, M. 1994. “Energetics of syntrophic fatty acid oxidation”. FEMS Microbiology Reviews:15-85. Satta, G., P. Canepari, G. Botta, and R. Fontana. 1980. Control of cell septation by lateral wall extension in a pH-conditional morphology mutant of Klebsiella pneumoniae. J Bacteriol 142:43-51. Snaidr, J., R. Amann, I. Huber, W. Ludwig, and K. H. Schleifer. 1997. Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol 63:2884-96. Stal, L. J., Moezelaar, R. 1997. “Fermentaion in cyanobacteria”. FEMS microbiology Reviews:179-211. Schwenninger, S. M., and L. Meile. 2004. A mixed culture of Propionibacterium jensenii and Lactobacillus paracasei subsp. paracasei inhibits food spoilage yeasts. Syst Appl Microbiol 27:229-37. Stanier, R. Y., E. A. Aderlberg, and J. L. Ingeraham. 1976. The microbial world, fourth edition. Tokuda, G., I. Yamaoka, and H. Noda. 2000. Localization of symbiotic clostridia in the mixed segment of the termite Nasutitermes takasagoensis (Shiraki). Appl Environ Microbiol 66:2199-207. Ueno, Y., S. Haruta, M. Ishii, and Y. Igarashi. 2001. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl Microbiol Biotechnol 57:555-62. Van Dyke, M. I., and A. J. McCarthy. 2002. Molecular biological detection and characterization of Clostridium populations in municipal landfill sites. Appl Environ Microbiol 68:2049-53. Volbeda, A., M. H. Charon, C. Piras, E. C. Hatchikian, M. Frey, and J. C. Fontecilla-Camps. 1995. Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373:580-7. Volsch, A., W. F. Nader, H. K. Geiss, G. Nebe, and C. Birr. 1990. Detection and analysis of two serotypes of ammonia-oxidizing bacteria in sewage plants by flow cytometry. Appl Environ Microbiol 56:2430-5. Wallner, G., R. Amann, and W. Beisker. 1993. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14:136-43. Wallner, G., R. Erhart, and R. Amann. 1995. Flow cytometric analysis of activated sludge with rRNA-targeted probes. Appl Environ Microbiol 61:1859-66. Weber, S., S. Stubner, and R. Conrad. 2001. Bacterial populations colonizing and degrading rice straw in anoxic paddy soil. Appl Environ Microbiol 67:1318-27. Westlake, K., D. B. Archer, and D.R. Boone. 1995. Diversity of cellulolytic bacteria in landfill. J. Appl. Bacteriol 79:73-78. Wilson, M. S., C. Bakermans, and E. L. Madsen. 1999. In situ, real-time catabolic gene expression: extraction and characterization of naphthalene dioxygenase mRNA transcripts from groundwater. Appl Environ Microbiol 65:80-7. Yazawa, K., M. Fujimori, T. Nakamura, T. Sasakiun, J. Amano, Y. Kano, and S. i. Taniguchi. 2001. Bifidobacterium longum as a delivery system for gene therapy of chemically induced rat mammary tumors. Breast Cancer Research and Treatment 66:165–170. Yokoi, H., T. Ohkawara, J. Hirose, S. Hyashi, and Y. Takasaki. 1995. Characteristics of Hydrogen Production by Aciduric Enterobacter aerogenes strain HO-39. J. Ferment. Bioeng 80(6):571~574. Zdanovsky, A. G., and M. V. Zdanovskaia. 2000. Simple and efficient method for heterologous expression of clostridial proteins. Appl Environ Microbiol 66:3166-73. Zhang, T., and H. P. Fang. 2000. Digitization of DGGE (denaturing gradient gel electrophoresis) profile and cluster analysis of microbial communities. Biotechnol Lett 22:399-405. Zoetendal, E. G., K. Ben-Amor, H. J. Harmsen, F. Schut, A. D. Akkermans, and W. M. de Vos. 2002. Quantification of uncultured Ruminococcus obeum-like bacteria in human fecal samples by fluorescent in situ hybridization and flow cytometry using 16S rRNA-targeted probes. Appl Environ Microbiol 68:4225-32. 郭博堯. 2002.全球化石能源危機時代與我國所面臨挑戰.國改研究報告永續(研)091-029號 郭恆祺2006,替代能源產業商機看好比爾蓋茲下一隻金雞母. 理財周刊 Vol.288 楊志忠. 林頌恩. 韋文誠. 2003.燃料電池的發展現況. 科學發展367期,30~33頁 楊中强,張宏. 2005.為21世紀中國“加油”—中國石油安全戰略的構建. 中國國情國力第6期 施亞鈞 .2000.氫氣.中國大百科全書 National Center for Biotechnology Information (Blast; http://www.ncbi.nlm.nih.gov/BLAST/) KEGG PATHWAY Database http://www.genome.ad.jp/dbget-bin/www_bget?path:bsu00190 http://www.genome.ad.jp/dbget-bin/www_bget?path:bsu00010
摘要: 本研究從以廢草堆肥為植種源並以啤酒廠廢酵母粉為培養基質,進行批次厭氧醱酵產氫培養系統中取樣,以16S rRNA變性梯度膠體電泳( DGGE ) 技術進行菌相解析的結果,發現梭狀芽孢桿菌屬(Clostridium)細菌為系統內數量上佔優勢的菌群之一。進一步自培養菌液萃取RNA,針對Clostridium屬的產氫酶(hydrogenase)基因進行反轉錄聚合酶連鎖反應(RT-PCR)與即時定量聚合酶連鎖反應(real time PCR),所得的結果顯示產氫酶基因序列和C. pasteurianum 或C. saccharobutylicum相似的兩種Clostridium屬細菌是系統中的產氫優勢菌,且產氫酶基因的表現與產氫狀況相符。另外,利用對產氫酶基因具有專一性的螢光分子探針進行螢光原位雜交(FISH),再用流式細胞儀計數偵測,結果也顯示產氫酶基因序列和C. pasteurianum相似的菌株是系統中數量上與產氫活性上的優勢菌種,而與C. saccharobutylicum相似的菌株則僅在產氫活性的表現上較為優勢,其數量在系統中並不多。進一步以此序列當作為篩選能源微生物線索,從系統中篩選出產氫酶基因序列和C. saccharobutylicum相似的菌株,並經菌種鑑定後命名為C. butyricum M1。將此株菌和另從系統中分離得到的兩株優勢菌(C. beijerinckii L9 與B. thermoamylovorans I)進行共培養醱酵產氫,結果發現具有比原本的系統更高的產氫效益。以本研究利用的分子生物技術所發展出來的方法,再配合原位反轉錄聚合酶連鎖反應(in situ PCR),已經開發出一套以產氫酶基因活性(能源微生物活性)作為指標來評估產氫系統效能的工具。將此工具應用到一個容量為1000公升,以糖蜜作為基質的大型醱酵產氫系統進行微生物產氫活性偵測,再根據偵測結果進行系統操作策略的改良,發現的確是對系統的穩定化操作有很大的幫助。
16S rRNA targeted DGGE was used to analyze the microbial community structure of our fermentative hydrogen-producing system using brewery yeast waste as substrate and straw compost as inoculum. Experimental results indicated that clostridia was the most quantitatively predominant bacteria population in the system. In this study, we developed an approach to monitor quantitatively and qualitatively the clostridial hydrogenase mRNA that may be substantially progressing in hydrogen production by using RT-PCR and real-time PCR. Comparing the results of this study with the results obtained from active microbe by FISH and flow cytometry analysis, it was found that the predominant hydrogen-producing clostridia possess either C. pasteurianum-like or C. saccharobutylicum-like hydrogenase gene. The strain possessing C. saccharobutylicum-like hydrogenase and expressing high level of hydrogenase mRNA but might not be dominant in population was isolated. The strain was designated as C. butyricum M1 after identifying by 16S rDNA sequenceing. When C. butyricum M1 was co-cultured with two other predominant hydrogen producers (C. beijerinckii L9 and Bacillus thermoamylovorans I) which were also isolated from this system, high hydrogen productivity was obtained. We have developed one set of (molecular biological) methodology that can use hydrogenase gene as an energy bug bio-index to evaluate the efficiency of a hydrogen-producing system. This methodology has been applied to a 1000-liter hydrogen-producing system using molasses as substrate and provide appeared to substantial information for improving the system operation.
URI: http://hdl.handle.net/11455/22470
其他識別: U0005-3107200614404700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3107200614404700
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.