Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22473
標題: 利用小孢子再生之轉殖水稻探討外來基因遺傳之表現及穩定性
Exploring gene expression and stability of foreign gene by microspore embryogenesis in the transgenic rice
作者: 黃詩鈺
Huang, Shih-Yu
關鍵字: haploid
單倍體
microspore
duplication
小孢子
倍增
出版社: 生命科學系所
引用: 李彥芬。1999。轉殖玉米C4光合酵素基因啟動子表現的研究。國立中 興大學植物學系碩士論文。 林建吏。2002。C4光合作用基因轉殖水稻的氣體交換能力及C4光合酵 素活性之分析。國立中興大學植物學系碩士論文。 陳嬿州。2007。水稻小孢子的分離純化與培養系統的建立。國立中興 大學生命科學系碩士論文。 柳沢誠。2007。Production and physiological characteristics of transgenic rice simultaneously overexpressing PEP carboxylase, pyruvate, Pi dikinase and NADP-malic enzyme。國立嘉義大學農業生物技術研究 所。 王啟正。2000。花蓮區農業專訊。34:20-22。 Adams K.L. and Wendel J.F. (2005). Polyploid and genome evolution in plants. Current Opinion in Plant Biol.. 8, 135-141 Adams K.L., Percifield R. and Wendel J.F. (2004). Organ-specific silencing of duplicated genes in a newly synthesized cotton allotetraploid. Genetics, 168, 2217-2226. Adams K.L. and Wendel J.F. (2004). Exploring the genomic mysteries of polyploidy in cotton. Biol. J.Linn. Soc., 82, 573-581. Agetsuma M., Furumoto T., Yanagisawa S. and Izui K. (2005). The ubiquitin – proteasome pathway is involved in rapid degradation of phosphoenolpyruvate carboxylase kinase for C4 photosynthesis. Plant Cell Physiol. 46, 389–398 Bailey J.A., Gu Z., Clark R.A., Reinert K. and Samonte R.V. (2002). Recent segmental duplications in the human genome. Science 297, 1003–7 Carlson A.R., Letarte J., Chen J. and Kasha K.J. (2001). Visual screening of microspore-derived transgenic barley (Hordeum vulgare L.) with green-fluorescent protein. Plant Cell Rep 20,331–337. Chapman K.(2005). Production of medicinal plants in Asia. Acta Hort. 679,45-59. Chen Z. J.(2007).Genetic and Epigenetic Mechanisms for Gene Expression and Phenotypic Variation in Plant Polyploids. Annu. Rev. Plant Biol. 58,377–406. Comai L., Madlung A., Joseffson C. and Tyagi A.(2003) Do the different parental ‘‘heteromes’’ cause genomic shock in newly formed allopolyploids. Philos Trans R Soc Lond B Biol Sci. 358,1149-1155. Dai Z., Ku M.S.B. and Edwards G.E. (1993). C4 photosynthesis : The CO2 concentrating mechanism and photorespiration. Plant Physiol. 103,83-90. Emanuel B.S. and Shaikh T.H.( 2002). Segmental duplications: an ‘expanding’ role in genomic instability and disease. Nat. Rev. Genet. 2,791–800. Ferie A. M. R., Bethune T., and Kernan Z..(2005). An overview of preliminary studies on the development of doubled haploid protocols for nutraceutical species. Acta Physiologiae Plantarum 27,735-741. Fukayama H., Tamai T., Tsuchida H., Agarie S. and Miyao-Tokutomi M. (2001). Effects of overproduction of the maize C4-specific phosphoenolpyruvate carboxylase on photosynthesis and respiration. Proceedings of the12th international congress on photosynthesis (S17–012), Brisbane, Australia, 18–25. Fukayama, H., Hatch, M.D., Tamai, T., Tsuchida, H., Sudoh, S., Furbank, R.T. and Miyao, M. (2003). Activity regulation and physiological impacts of maize C4-specific phosphoenolpyruvate carboxylase overproduced in transgenic rice plants. Photosynth. Res. 77, 227–239. Fukayama H., Tamai1T., Taniguchi1Y., Sullivan S., Miyao M. and Nimmo H.G.(2006). Characterization and functional analysis of phosphoenolpyruvate carboxylase kinase genes in rice. Plant J. .47, 258–268 Fukuoka H., Ogawa T., Matsuoka M., Ohkawa Y., Yano H. (1998). Direct gene delivery into isolated microspores of rapeseed (Brassica napus L.) and production of fertile transgenic plants. Plant Cell Rep 17,323–328. Hausler R. E., Hirsch H. J., Kreuzaler F. and Peterhansel C. (2002). Overexpression of C4-cycle enzymes in transgenic C3 plants: biotechnological approach to improve C3-photosynthesis. J. Exp. Bot. 53,591-607. Hudspeth R.L., Grula J.W., Dai Z., Edwards G.E. and Ku M.S.B. (1992). Expression of maize phosphoenolpyruvate carboxylase in: effects on biochemistry and physiology. Plant Physiol 98, 458-464. Hudspeth R.L. and Grula J.W. (1989). Structure and expression of the maize gene encoding the phosphoenolpyruvate carboxylase isozyme involved in C4 photosynthesis. Plant Mol Biol 12,579-589. Hu T.C. and Kasha K. J. (1999).A cytological study of pretreatments used to improve isolated microspore cultures of wheat ( Triticum aestivum L.). cv. Chris. Genome 42,432-441. Ishimaru K., Ishikawa I., Matsuoka M and Ohsugi R. (1998). Analysis of a C4 maize pyruvate, orthophosphate dikinase expressed in C3 transgenic Arabidopsis plant. Plant Science 129, 57-64. Ishimaru K., Okawa Y., Ishige T., Tobias D.J. and Ohsugi R.(1998). Elevated pyruvate, orthophosphate dikinase (PPDK) activity alters carbon metabolism in C3 transgenic potatoes with a C4 maize PPDK gene. Physiol. Plant. 103, 340-346. Izui K., Matsumura H., Furumoto T. and Kai Y.(2004) PHOSPHOENOLPYRUVATE CARBOXYLASE: A New Era ofStructural Biology. Annu. Rev. Plant Biol.55:69–84 Jiao D., Huang X., Li X., Chi W., Kuang T., Zhang Q., Ku M.S.B., Cho D. (2002). Photosynthetic charateristics and tolerance to photo-oxidation of transgenic rice expressing C4 photosynthesis enzymes. Photosynthesis Res. 72, 85-93. Ku, M.S.B., Agarie, S., Nomura, M., Fukayama, H., Tsuchida, H.,Ono, K., Hirose, S., Toki, S., Miyao, M. and Matsuoka, M. (1999). High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat. Biotechnol. 17, 76–80. Ku M.S.B., Cho D., Li X., Jiao D.M., Pinto M., Miyao M. and Matsuoka M.(2001). Introduction of genes encoding C4 photosynthesis enzymes into rice plants: physiological consequences. In: rice biotechnology :improving yield, stress tolerance and grain quality. Novaritis Foundation, 236, 100-116. Lepiniec L., Keryer E., Philippe H., Gadal P. and Cretin C.(1993).Sorghum phosphoenolpyruvate carboxylase gene family :structure, regulation and molecular evolution. Plant Mol Biol 21,487-502. Liu B. and Wendel J.F.(2003). Epigenetic phenomena and the evolution of plant allopolyploids. Mol Phylogenet Evol .29,365-379. Matsuoka M., Furbank RT., Fukayama H. and Miyao M. (2001).Molecular engineering of C4 photosynthesis. Annu. Rev. Plant Physiol Plant Mol. Biol. 52,297–314. Matsuoka M., Kyozuka J., Shimamoto K., Murakami Y.K.(1994). The promoters of two carboxylase in C4 plant (maize) direct cell-specific, light-regulated expression in C3 plant (rice). Plant J 6,311-319. Matsuoka M. and Minami E.( 1989). Complete structure of phosphoenolpyruvate carboxylasefrom C3 and C4 plant. Eur J Biochem 181,593-398. Moore P.(1982).Evolution of photosynthetic pathways in flowering plants. Nature 295,647-648. Nomura M., Sentoku N., Tajima S. and Matsuoka M.( 2000). Expression patterns of cytoplasmic pyruvate, orthophosphate dikinase of rice (C3) and maize (C4) in a C3 plant, rice. Aust. J. of Plant Physiol. 27, 343-347. Osborn T.C., Pires J.C., Birchler J.A., Auger D.L., Chen Z.J., Lee H.S.,Comai L., Madlung A., Doerge R.W., Colot V.(2003). Understanding mechanisms of novel gene expression in polyploids. Trends Genet. 19,141-147. Rademacher T. , Häusler R. E., Hirsch H.J., Zhang L., Lipka V., Weier D., Kreuzaler F. and Peterhänsel C. (2002). An engineered phosphoenolpyruvate carboxylase redirects carbon and nitrogen flow in transgenic potato plants. Plant J. 32(1),25-39. Rosario S. and Francisco J. C.( 2003). Identification and expression analysis of a gGene encoding a bacterial-type phosphoenolpyruvate carboxylase from arabidopsis and rice. Plant Physiology. 132, 949–957. Se´mon M. and Wolfe K.H.(2007). Consequences of genome duplication. Current Opinion in Genetics & Development. 17,1–8 Sheen J-Y and Bogorad L.(1987). Differential expression of C4 pathway genes in mesophyll and bundle sheath cell of greening maize leaves. J Biol Chem 262,11726-11730. Sheriff A., Meyer H., Riedel E., Schmitt J.M. and Lapke C.(1988). The influence of plant pyruvate, orthophosphate dikinase on a C3 plant with respect to the intracellular location of the enzyme. Plant Science 136, 43-57. Stöger E, Fink C, Pfosser M, Heberle-Bors E (1995). Plant transformation by particle bombardment of embryogenic pollen. Plant Cell Rep 14,273–278. Tagu D., Cretin C., Bergounioux C., Lepiniec L. and Gadal P. (1991). Transcription of a sorghum phosphoenolpyruvate carboxylase. Plant Physiol 85,243-246. Taybi T., Nimmo H.G. and Borland A. M.(2004). Expression of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxylase kinase genes. Implications for genotypic capacity and phenotypic plasticity in the expression of crassulacean acid metabolism. Plant Physiol.135, 587–598. Touraev A.,Vicente O. and Herberle-Bors E.( 1997).Initiation of microspore embryogenesis by stress. Trends Plant Sci. 2,297-302. Touraev A, Pfosser M, Heberle-Bors E (2001) The microspore: a haploid multipurpose cell. Adv. Bot. Res. 35,53–109
摘要: 基因的穩定度對性狀的遺傳是相當重要的。本論文利用含有兩個 玉米光合作用基因(phosphoenolpyruvate carboxylase, PEPC, pyruvate,Pi dikinase, PPDK)之轉殖水稻(CK 轉殖水稻)為材料,探討這二個外來基因在小孢子再生雙倍體(dihaploid)之穩定度與表達強度。從小孢子再生的雙倍體選出32 個品系, 針對這兩個轉基因(transgenes) 進行分子、生化、生理分析。西方墨點法顯示,與未轉殖株比較所有的再生雙倍體葉片都有較高的PPDK 蛋白累積量。PCR 也都可以偵測到玉米PPDK 基因的存在。可是只有1/3 的再生雙倍體葉片有PEPC 蛋白的累積,而這些品系也都可以偵測到玉米PEPC 基因的存在。值得注意的是,這些品系的PEPC 酵素活性比CK 轉殖水稻高出30-90%。然而,有三個品系含有玉米PEPC 基因,但 並無PEPC 蛋白的累積與酵素活性。生理上,有一些再生雙倍體品系 的穗重、穀粒重與總乾重值比CK 轉殖水稻有明顯的增加。這與原來 的預測,小孢子再生過程中,經由單倍體自行倍加所產生的同型接合 子(homozygous)後代,會產生大量的變異是相符的。從這兩個玉米 轉基因再生雙倍體的表現來看,基因的穩定度與表達量有很大的變 異,基因會有遺失或缺失的可能。
The stability of genes is very important for genetic traits. In this study,a CK transgenic rice which overexpresses two maize C4 photosynthesis genes encoding phosphoenolpyruvate carboxylase(PEPC) and pyruvate Pi dikinase(PPDK) was used to test the stability and expression level of these two transgenes in dihaploid line derived from microspore embryogenesis. A tatal of thiry-two dihaploid lines were obtained for molecular, biochemical and physiological analysis related to the two genes. Western immuno-blot analysis showed that all lines have high levels of PPDK protein, consistent with the detection of the maize gene in the genome by PCR. However, only eleven lines exhibited high levels of PEPC protein, and the maize gene was also detected in these lines by PCR. Notably, the activities of PEPC in these lines were much higher (30-90%) than that of the parental CK transgenic rice. Interestingly, three dihaploid lines retainrd the maize PEPC gene in their genomes, but did not express PEPC protein and enzyme activity. Physiologically, some dihaploid lines had superior agronomic traits than the parental CK transgenic rice, including panicle weight, tiller number and total biomass while other lines had no significant changes. Taken together, these results III are consistent with the theory that genetic rearrangement will occur during embryogenesis and/or chromosome doubling and generate large variation in phenotype in dihaploid lines derived from microspores.
URI: http://hdl.handle.net/11455/22473
其他識別: U0005-0102200816434500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0102200816434500
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.