Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22487
標題: Cdk5激酶在人類髓質型甲狀腺癌細胞中經由GDNF誘導之細胞增生所扮演的角色
The role of Cdk5 in GDNF-induced proliferation of human medullary thyroid carcinoma cells
作者: 邱治源
Chiu, Chih-Yuan
關鍵字: human medullary thyroid carcinoma cells
人類髓質型甲狀腺癌細胞
Cdk5
Cdk5激酶
出版社: 生命科學系所
引用: 1. Liska, J., Altanerova, V., Galbavy, S., Stvrtina, S., and Brtko, J. Thyroid tumors: histological classification and genetic factors involved in the development of thyroid cancer. Endocrine Regulations, 39: 73-83, 2005. 2. Lin, J. D., Chan, E. C., Chao, T. C., Chen, K. T., Hsueh, C., Ho, Y. S., and Weng, H. F. Expression of sodium iodide symporter in metastatic and follicular human thyroid tissues. Ann Oncol, 11: 625-629, 2000. 3. Leboulleux, S., Baudin, E., Travagli, J. P., and Schlumberger, M. Medullary thyroid carcinoma. Clin Endocrinol (Oxf), 61: 299-310, 2004. 4. Khurana, R., Agarwal, A., Bajpai, V. K., Verma, N., Sharma, A. K., Gupta, R. P., and Madhusudan, K. P. Unraveling the amyloid associated with human medullary thyroid carcinoma. Endocrinology, 145: 5465-5470, 2004. 5. Morais-de-Sa, E., Pereira, P. J., Saraiva, M. J., and Damas, A. M. The crystal structure of transthyretin in complex with diethylstilbestrol: a promising template for the design of amyloid inhibitors. J Biol Chem, 279: 53483-53490, 2004. 6. Drosten, M., Hilken, G., Bockmann, M., Rodicker, F., Mise, N., Cranston, A. N., Dahmen, U., Ponder, B. A., and Putzer, B. M. Role of MEN2A-derived RET in maintenance and proliferation of medullary thyroid carcinoma. J Natl Cancer Inst, 96: 1231-1239, 2004. 7. Asai, N., Jijiwa, M., Enomoto, A., Kawai, K., Maeda, K., Ichiahara, M., Murakumo, Y., and Takahashi, M. RET receptor signaling: dysfunction in thyroid cancer and Hirschsprung''s disease. Pathol Int, 56: 164-172, 2006. 8. Takahashi, M., Ritz, J., and Cooper, G. M. Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell, 42: 581-588, 1985. 9. Maeda, K., Murakami, H., Yoshida, R., Ichihara, M., Abe, A., Hirai, M., Murohara, T., and Takahashi, M. Biochemical and biological responses induced by coupling of Gab1 to phosphatidylinositol 3-kinase in RET-expressing cells. Biochem Biophys Res Commun, 323: 345-354, 2004. 10. Hayashi, H., Ichihara, M., Iwashita, T., Murakami, H., Shimono, Y., Kawai, K., Kurokawa, K., Murakumo, Y., Imai, T., Funahashi, H., Nakao, A., and Takahashi, M. Characterization of intracellular signals via tyrosine 1062 in RET activated by glial cell line-derived neurotrophic factor. Oncogene, 19: 4469-4475, 2000. 11. Choi-Lundberg, D. L. and Bohn, M. C. Ontogeny and distribution of glial cell line-derived neurotrophic factor (GDNF) mRNA in rat. Brain Res Dev Brain Res, 85: 80-88, 1995. 12. Hellmich, H. L., Kos, L., Cho, E. S., Mahon, K. A., and Zimmer, A. Embryonic expression of glial cell-line derived neurotrophic factor (GDNF) suggests multiple developmental roles in neural differentiation and epithelial-mesenchymal interactions. Mech Dev, 54: 95-105, 1996. 13. Treanor, J. J., Goodman, L., de Sauvage, F., Stone, D. M., Poulsen, K. T., Beck, C. D., Gray, C., Armanini, M. P., Pollock, R. A., Hefti, F., Phillips, H. S., Goddard, A., Moore, M. W., Buj-Bello, A., Davies, A. M., Asai, N., Takahashi, M., Vandlen, R., Henderson, C. E., and Rosenthal, A. Characterization of a multicomponent receptor for GDNF. Nature, 382: 80-83, 1996. 14. Unsicker, K. GDNF: a cytokine at the interface of TGF-betas and neurotrophins. Cell Tissue Res, 286: 175-178, 1996. 15. Lindsay, R. M. and Yancopoulos, G. D. GDNF in a bind with known orphan: accessory implicated in new twist. Neuron, 17: 571-574, 1996. 16. Sanicola, M., Hession, C., Worley, D., Carmillo, P., Ehrenfels, C., Walus, L., Robinson, S., Jaworski, G., Wei, H., Tizard, R., Whitty, A., Pepinsky, R. B., and Cate, R. L. Glial cell line-derived neurotrophic factor-dependent RET activation can be mediated by two different cell-surface accessory proteins. Proc Natl Acad Sci U S A, 94: 6238-6243, 1997. 17. Myers, S. M. and Mulligan, L. M. The RET receptor is linked to stress response pathways. Cancer Res, 64: 4453-4463, 2004. 18. Santoro, M., Melillo, R. M., Carlomagno, F., Visconti, R., De Vita, G., Salvatore, G., Lupoli, G., Fusco, A., and Vecchio, G. Molecular biology of the MEN2 gene. J Intern Med, 243: 505-508, 1998. 19. Strock, C. J., Park, J. I., Rosen, M., Dionne, C., Ruggeri, B., Jones-Bolin, S., Denmeade, S. R., Ball, D. W., and Nelkin, B. D. CEP-701 and CEP-751 inhibit constitutively activated RET tyrosine kinase activity and block medullary thyroid carcinoma cell growth. Cancer Res, 63: 5559-5563, 2003. 20. Cohen, M. S., Hussain, H. B., and Moley, J. F. Inhibition of medullary thyroid carcinoma cell proliferation and RET phosphorylation by tyrosine kinase inhibitors. Surgery, 132: 960-966; 2002. 21. Liu, Z., Falola, J., Zhu, X., Gu, Y., Kim, L. T., Sarosi, G. A., Anthony, T., and Nwariaku, F. E. Antiproliferative effects of Src inhibition on medullary thyroid cancer. J Clin Endocrinol Metab, 89: 3503-3509, 2004. 22. Sariola, H. and Saarma, M. Novel functions and signalling pathways for GDNF. J Cell Sci, 116: 3855-3862, 2003. 23. Oppenheim, R. W., Houenou, L. J., Johnson, J. E., Lin, L. F., Li, L., Lo, A. C., Newsome, A. L., Prevette, D. M., and Wang, S. Developing motor neurons rescued from programmed and axotomy-induced cell death by GDNF. Nature, 373: 344-346, 1995. 24. Grondin, R. and Gash, D. M. Glial cell line-derived neurotrophic factor (GDNF): a drug candidate for the treatment of Parkinson''s disease. J Neurol, 245: P35-42, 1998. 25. Airaksinen, M. S. and Saarma, M. The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci, 3: 383-394, 2002. 26. Fukuda, T., Asai, N., Enomoto, A., and Takahashi, M. Activation of c-Jun amino-terminal kinase by GDNF induces G2/M cell cycle delay linked with actin reorganization. Genes Cells, 10: 655-663, 2005. 27. Murakami, H., Yamamura, Y., Shimono, Y., Kawai, K., Kurokawa, K., and Takahashi, M. Role of Dok1 in cell signaling mediated by RET tyrosine kinase. J Biol Chem, 277: 32781-32790, 2002. 28. Melillo, R. M., Santoro, M., Ong, S. H., Billaud, M., Fusco, A., Hadari, Y. R., Schlessinger, J., and Lax, I. Docking protein FRS2 links the protein tyrosine kinase RET and its oncogenic forms with the mitogen-activated protein kinase signaling cascade. Mol Cell Biol, 21: 4177-4187, 2001. 29. Kurokawa, K., Iwashita, T., Murakami, H., Hayashi, H., Kawai, K., and Takahashi, M. Identification of SNT/FRS2 docking site on RET receptor tyrosine kinase and its role for signal transduction. Oncogene, 20: 1929-1938, 2001. 30. Panta, G. R., Nwariaku, F., and Kim, L. T. RET signals through focal adhesion kinase in medullary thyroid cancer cells. Surgery, 136: 1212-1217, 2004. 31. Leppanen, V. M., Bespalov, M. M., Runeberg-Roos, P., Puurand, U., Merits, A., Saarma, M., and Goldman, A. The structure of GFRalpha1 domain 3 reveals new insights into GDNF binding and RET activation. EMBO J, 23: 1452-1462, 2004. 32. Dhavan, R. and Tsai, L. H. A decade of CDK5. Nat Rev Mol Cell Biol, 2: 749-759, 2001. 33. Tang, D., Yeung, J., Lee, K. Y., Matsushita, M., Matsui, H., Tomizawa, K., Hatase, O., and Wang, J. H. An isoform of the neuronal cyclin-dependent kinase 5 (Cdk5) activator. J Biol Chem, 270: 26897-26903, 1995. 34. Lim, A. C. and Qi, R. Z. Cyclin-dependent kinases in neural development and degeneration. J Alzheimers Dis, 5: 329-335, 2003. 35. Tarricone, C., Dhavan, R., Peng, J., Areces, L. B., Tsai, L. H., and Musacchio, A. Structure and regulation of the CDK5-p25(nck5a) complex. Mol Cell, 8: 657-669, 2001. 36. Qi, Z., Huang, Q. Q., Lee, K. Y., Lew, J., and Wang, J. H. Reconstitution of neuronal Cdc2-like kinase from bacteria-expressed Cdk5 and an active fragment of the brain-specific activator. Kinase activation in the absence of Cdk5 phosphorylation. J Biol Chem, 270: 10847-10854, 1995. 37. Poon, R. Y., Lew, J., and Hunter, T. Identification of functional domains in the neuronal Cdk5 activator protein. J Biol Chem, 272: 5703-5708, 1997. 38. Zukerberg, L. R., Patrick, G. N., Nikolic, M., Humbert, S., Wu, C. L., Lanier, L. M., Gertler, F. B., Vidal, M., Van Etten, R. A., and Tsai, L. H. Cables links Cdk5 and c-Abl and facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron, 26: 633-646, 2000. 39. Sasaki, Y., Cheng, C., Uchida, Y., Nakajima, O., Ohshima, T., Yagi, T., Taniguchi, M., Nakayama, T., Kishida, R., Kudo, Y., Ohno, S., Nakamura, F., and Goshima, Y. Fyn and Cdk5 mediate semaphorin-3A signaling, which is involved in regulation of dendrite orientation in cerebral cortex. Neuron, 35: 907-920, 2002. 40. Patrick, G. N., Zukerberg, L., Nikolic, M., de la Monte, S., Dikkes, P., and Tsai, L. H. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature, 402: 615-622, 1999. 41. Patzke, H. and Tsai, L. H. Calpain-mediated cleavage of the cyclin-dependent kinase-5 activator p39 to p29. J Biol Chem, 277: 8054-8060, 2002. 42. Noble, W., Olm, V., Takata, K., Casey, E., Mary, O., Meyerson, J., Gaynor, K., LaFrancois, J., Wang, L., Kondo, T., Davies, P., Burns, M., Veeranna, Nixon, R., Dickson, D., Matsuoka, Y., Ahlijanian, M., Lau, L. F., and Duff, K. Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron, 38: 555-565, 2003. 43. Cruz, J. C. and Tsai, L. H. Cdk5 deregulation in the pathogenesis of Alzheimer''s disease. Trends Mol Med, 10: 452-458, 2004. 44. Lin, H., Juang, J. L., and Wang, P. S. Involvement of Cdk5/p25 in digoxin-triggered prostate cancer cell apoptosis. J Biol Chem, 279: 29302-29307, 2004. 45. Lin, H., Chen, M. C., Chiu, C. Y., Song, Y. M., and Lin, S. Y. Cdk5 regulates STAT3 activation and cell proliferation in medullary thyroid carcinoma cells. J Biol Chem, 282: 2776-2784, 2007. 46. Ledda, F., Paratcha, G., and Ibanez, C. F. Target-derived GFRalpha1 as an attractive guidance signal for developing sensory and sympathetic axons via activation of Cdk5. Neuron, 36: 387-401, 2002. 47. Paratcha, G., Ibanez, C. F., and Ledda, F. GDNF is a chemoattractant factor for neuronal precursor cells in the rostral migratory stream. Mol Cell Neurosci, 31: 505-514, 2006. 48. Becker, S., Groner, B., and Muller, C. W. Three-dimensional structure of the Stat3beta homodimer bound to DNA. Nature, 394: 145-151, 1998. 49. Chen, X., Vinkemeier, U., Zhao, Y., Jeruzalmi, D., Darnell, J. E., Jr., and Kuriyan, J. Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell, 93: 827-839, 1998. 50. Mao, X., Ren, Z., Parker, G. N., Sondermann, H., Pastorello, M. A., Wang, W., McMurray, J. S., Demeler, B., Darnell, J. E., Jr., and Chen, X. Structural bases of unphosphorylated STAT1 association and receptor binding. Mol Cell, 17: 761-771, 2005. 51. Neculai, D., Neculai, A. M., Verrier, S., Straub, K., Klumpp, K., Pfitzner, E., and Becker, S. Structure of the unphosphorylated STAT5a dimer. J Biol Chem, 280: 40782-40787, 2005. 52. Darnell, J. E., Jr. STATs and gene regulation. Science, 277: 1630-1635, 1997. 53. Ihle, J. N. The Stat family in cytokine signaling. Curr Opin Cell Biol, 13: 211-217, 2001. 54. Kisseleva, T., Bhattacharya, S., Braunstein, J., and Schindler, C. W. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene, 285: 1-24, 2002. 55. Levy, D. E. and Darnell, J. E., Jr. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol, 3: 651-662, 2002. 56. Akira, S., Nishio, Y., Inoue, M., Wang, X. J., Wei, S., Matsusaka, T., Yoshida, K., Sudo, T., Naruto, M., and Kishimoto, T. Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell, 77: 63-71, 1994. 57. Lutticken, C., Wegenka, U. M., Yuan, J., Buschmann, J., Schindler, C., Ziemiecki, A., Harpur, A. G., Wilks, A. F., Yasukawa, K., Taga, T., and et al. Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal transducer gp130. Science, 263: 89-92, 1994. 58. Wegenka, U. M., Buschmann, J., Lutticken, C., Heinrich, P. C., and Horn, F. Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level. Mol Cell Biol, 13: 276-288, 1993. 59. Zhong, Z., Wen, Z., and Darnell, J. E., Jr. Stat3 and Stat4: members of the family of signal transducers and activators of transcription. Proc Natl Acad Sci U S A, 91: 4806-4810, 1994. 60. Liu, L., McBride, K. M., and Reich, N. C. STAT3 nuclear import is independent of tyrosine phosphorylation and mediated by importin-alpha3. Proc Natl Acad Sci U S A, 102: 8150-8155, 2005. 61. Reich, N. C. and Liu, L. Tracking STAT nuclear traffic. Nat Rev Immunol, 6: 602-612, 2006. 62. Plaza Menacho, I., Koster, R., van der Sloot, A. M., Quax, W. J., Osinga, J., van der Sluis, T., Hollema, H., Burzynski, G. M., Gimm, O., Buys, C. H., Eggen, B. J., and Hofstra, R. M. RET-familial medullary thyroid carcinoma mutants Y791F and S891A activate a Src/JAK/STAT3 pathway, independent of glial cell line-derived neurotrophic factor. Cancer Res, 65: 1729-1737, 2005. 63. Panta, G. R., Du, L., Nwariaku, F. E., and Kim, L. T. Direct phosphorylation of proliferative and survival pathway proteins by RET. Surgery, 138: 269-274, 2005. 64. Krauss, W. C., Park, J. W., Kirpotin, D. B., Hong, K., and Benz, C. C. Emerging antibody-based HER2 (ErbB-2/neu) therapeutics. Breast Dis, 11: 113-124, 2000. 65. Olayioye, M. A., Neve, R. M., Lane, H. A., and Hynes, N. E. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J, 19: 3159-3167, 2000. 66. Harari, D., Tzahar, E., Romano, J., Shelly, M., Pierce, J. H., Andrews, G. C., and Yarden, Y. Neuregulin-4: a novel growth factor that acts through the ErbB-4 receptor tyrosine kinase. Oncogene, 18: 2681-2689, 1999. 67. Li, B. S., Ma, W., Jaffe, H., Zheng, Y., Takahashi, S., Zhang, L., Kulkarni, A. B., and Pant, H. C. Cyclin-dependent kinase-5 is involved in neuregulin-dependent activation of phosphatidylinositol 3-kinase and Akt activity mediating neuronal survival. J Biol Chem, 278: 35702-35709, 2003.
摘要: Medullary thyroid carcinoma arises from parafollicular cells and accounts for 5-10% of all thyroid cancers. The pathological mechanism and therapy are so far unclear. The RET proto-oncogene which encodes a receptor tyrosine kinase is expressed in MTC cells. GDNF increases MTC cell proliferation through binding to its specific receptor (GFRα1) and activates downstream receptor tyrosine kinase, RET. Cdk5 is a member of cyclin-dependent kinase (CDK) family. According to our published results, Cdk5 activity which requires binding with its activator, p35, is important to MTC cell proliferation. Our recent data indicated that GDNF treatment could stimulate RET activity within 30 minutes and the proliferation of MTC cells was also increased after 4-day treatment. Protein interaction of RET and Cdk5 was first identified. RET-dependent Cdk5 phosphorylation were triggered by GDNF after 1.5-h treatment. Subsequently, Cdk5-dependent phosphorylation of STAT3 at Ser727 was also found. On the other hand, p35 expression was increased by GDNF after 3-day treatment and possibly mediated by Erk-dependent Egr-1 pathway. In conclusion, we suggest that the role of RET/Cdk5 is important to support GDNF-induced MTC cell proliferation.
URI: http://hdl.handle.net/11455/22487
其他識別: U0005-0507200716412800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0507200716412800
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.