Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorChen, Po-Anen_US
dc.identifier.citationAdelaar, T., Bouwman, H., & Steinfield, C. (2004). Enhancing customer value through click-and-mortar e-commerce: implications for geographical market reach and customer type. [doi: DOI: 10.1016/S0736-5853(03)00055-8]. Telematics and Informatics, 21(2), 167-182. Ajzen, I. (1985). From intentions to actions: a theory of planned behaviour, in Kuhl, J., Beckmann, J. (Eds), Action Control: From Cognition to Behavior, Springer, 11-39. Ahire, S. L., Golhar, D. Y., & Waller, M. A. (1996). Development and validation of TQM implementation constructs. Decision Sciences, 27(1), 23-56. Anderson, J. C., & Gerbing, D. W. (1988). Structural Equation Modeling in Practice: A Review and Recommended Two-Step Approach. [doi:]. Psychological Bulletin, 103(3), 411-423. Bagge, D. (2007). Multi-channel retailing: The route to customer focus. [Article]. European Retail Digest(53), 57-70. Bagozzi, R. P. (1991). Further thoughts on the validity of measures of elation, gladness, and joy. Journal of Personality and Social Psychology, 61(1), 98-104. Barclay, D., Higgins, C., & Thompson, R. (1995). The partial least squares (PLS) approach to casual modeling: personal computer adoption and use as an illustration. Technology Studies (2)2, 285-309. Bhattacherjee, A. (2002). Individual Trust in Online Firms: Scale Development and Initial Test. [Article]. Journal of Management Information Systems, 19(1), 211-241. Chang, S. E., & Pan, Y.-H. V. (2009). Exploring factors influencing mobile users'' intention to adopt multimedia messaging service. Behaviour & Information Technology. iFirst article (published online November 19, 2009), 1-14 “Facebook Marketing Statistics, Demographics, Reports, and News - CheckFacebook” available at [January 14th, 2010) Chin, W.W. (1998). The previous term partial least squares next term approach for structural equation modeling. In: G.A. Marcoulides, Editor, Modern Methods for Business Research, Lawrence Erlbaum Associates, Hillsdale, NJ (1998). Chin, W. W. (1998). Issues and Opinion on Structural Equation Modeling. MIS Quarterly, 22(1),1-11. Chin, W. W., & Newsted, P. R. (1999). Structural equation modeling analysis with small samples using partial least squares. In R. H. Hoyle (ed.), Statistical Strategies for Small Sample Research, Sage Publications, Thousand Oaks, CA, 1999. Chin, W. W., Marcolin, B. L., & Newsted, P. R. (2003). A Partial Least Squares Latent Variable Modeling Approach for Measuring Interaction Effects: Results from a Monte Carlo Simulation Study and an Electronic-Mail Emotion/Adoption Study. Information Systems Research, 14(2), 189-217. Churchill Jr, G. A. (1979). A Paradigm for Developing Better Measures of Marketing Constructs. Journal of Marketing Research (JMR), 16(1), 64-73. Coelho, F., & Easingwood, C. (2008). A model of the antecedents of multiple channel usage. Journal of Retailing and Consumer Services, 15(1), 32-41. Cohen, J. (1988). Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum. Crosby, L. A., Evans, K. A., & Cowles, D. (1990). Relationship quality in services selling: An interpersonal influence perspective. Journal of Marketing, 54(3), 68-81. Enders, A., Hungenberg, H., Denker, H.-P., & Mauch, S. (2008). The long tail of social networking.: Revenue models of social networking sites. European Management Journal, 26(3), 199-211. Evans, P.F. (2010). US and Western European online retail will grow double digit year-on-year over the next five years. [Web document]. Available: [2010, May 4th] Fishbein, M., & Ajzen, I. Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research. Reading, MA: Addison-Wesley, 1975. Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39-50. Forrester Research (2010). US Online Retail Forecast, 2009 To 2014. [Web document].Available: [2010, April 30th] Gallo, M. (2010). Discriminant partial least squares analysis on compositional data. Statistical Modelling: An International Journal, 10(1), 41-56. Gangadharbatla, H. (2008). Facebook Me: Collective Self-Esteem, Need to Belong, and Internet Self-Efficacy as Predictors of the iGeneration''s Attitudes toward Social Networking Sites. Journal of Interactive Advertising, 8(2), 1-28. Gassenheimer, J. B., Hunter, G. L., & Siguaw, J. A. (2007). An evolving theory of hybrid distribution: Taming a hostile supply network. Industrial Marketing Management, 36(5), 604-616. Gefen, D., & Straub, D. W. (2004). Consumer trust in B2C e-Commerce and the importance of social presence: experiments in e-Products and e-Services. Omega, 32(6), 407-424. Gefen, D., & Straub, D. W. (2005). A Practical Guide to Factorial Validity Using PLS-Graph: Tutorial and Annotated Example. Communications of AIS (16), 91-109. Gerbing, D. W., & Anderson, J. C. (1988). An Updated Paradigm for Scale Development Incorporating Unidimensionality and Its Assessment. Journal of Marketing Research, 25(2), 186-192. Grewal, D., Iyer, G. R., & Levy, M. (2004). Internet retailing: enablers, limiters and market consequences. Journal of Business Research, 57(7), 703-713. Guenzi, P., & Georges, L. (2010). Interpersonal trust in commercial relationships: Antecedents and consequences of customer trust in the salesperson. European Journal of Marketing, 44(1/2), 114-138. Hahn, K. H., & Kim, J. (2009). The effect of offline brand trust and perceived internet confidence on online shopping intention in the integrated multi-channel context. International Journal of Retail & Distribution Management, 37(2), 126-141. Jöreskog, K.G. & Sörbom, D. (1989). LISREL 7: Guide to the Program and Applications (second ed), SPSS Inc., Chicago, IL. Jun, M., & Cai, S. (2010). Examining the relationships between internal service quality and its dimensions, and internal customer satisfaction. Kerlinger, F.N. (1992). Foundations of behavioral research. Orlando, FL: Harcourt Brace & Company. Kim, J., & Park, J. (2005). A consumer shopping channel extension model: attitude shift toward the online store. Journal of Fashion Marketing & Management, 9(1), 106-121. Lee, H. H., & Kim, J. (2008). The effects of shopping orientations on consumers'' satisfaction with product search and purchases in a multi-channel environment. Journal of Fashion Marketing and Management, 12(2), 193-216. Li, N., & Zhang, P. (2002). “Consumer online shopping attitudes and behavior: an assessment of research”, Proceedings of 8th Americas Conference on Information System, 508-517 Liljander, V., Polsa, P., & van Riel, A. (2009). Modelling consumer responses to an apparel store brand: Store image as a risk reducer. Journal of Retailing and Consumer Services, 16(4), 281-290. Lim, K. H., Sia, C. L., Lee, M. K. O., & Benbasat, I. (2006). Do I Trust You Online, and If So, Will I Buy? An Empirical Study of Two Trust-Building Strategies. Journal of Management Information Systems, 23(2), 233-266. Lipke, D. J. (2000). Mystery shoppers. [Feature]. American Demographics, 22(12), 41-43. Lu, Y., Zhao, L., & Wang, B. (2009). From virtual community members to C2C e-commerce buyers: Trust in virtual communities and its effect on consumers'' purchase intention. Electronic Commerce Research and Applications, In Press, Corrected Proof. Müller-Lankenau, C., Wehmeyer, K., & Klein, S. (2005). Multi-Channel Strategies: Capturing and Exploring Diversity in the European Retail Grocery Industry. International Journal of Electronic Commerce, 10(2), 85-122. Macintosh, G., & Lockshin, L. S. (1997). Retail relationships and store loyalty: A multi-level perspective.International Journal of Research in Marketing, 14(5), 487-497. Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). AN INTEGRATIVE MODEL OF ORGANIZATIONAL TRUST. Academy of Management Review, 20(3), 709-734. Total Quality Management & Business Excellence, 21(2), 205-223. Morgan, R. M., & Hunt, S. D. (1994). The Commitment-Trust Theory of Relationship Marketing. Journal of Marketing, 58(3), 20-38. News Digest. (2009).[Article]. New Media Age, 10-11. Nunnally, J. C. (1967), Psychometric Theory, N.Y.: McGraw-Hill, Inc. p.226. Nunnally, J. C. (1978), Psychometric theory (2nd ed.), McGraw-Hill, New York Otto, J. R., & Chung, Q. B. (2000). A Framework for Cyber-Enhanced Retailing: Integrating E-Commerce Retailing with Brick-and-Mortar Retailing. Electronic Markets, 10(3), 185 - 191. Pearse, J. (2009). Social media presents yet another new world to explore. [Article]. New Media Age, 02-02. Ringle, C.M./Wende, S./Will, S.: SmartPLS 2.0 (M3) Beta, Hamburg 2005, Schröder, H., & Zaharia, S. (2008). Linking multi-channel customer behavior with shopping motives: An empirical investigation of a German retailer. Journal of Retailing and Consumer Services, 15(6), 452-468. Seongwoon, K. I. M., Inseong, L. E. E., Kiho, L. E. E., Seungki, J., Joonah, P., & Yeun Bae, (2010). Mobile Web 2.0 with Multi-Display Buttons. Communications of the ACM, 53(1), 136-141. Shea, B. (2008). User Generated Content. AIIM E - Doc Magazine, 22(4), 16-16. Shim, S., Eastlick, M. A., Lotz, S. L., & Warrington, P. (2001). An online prepurchase intentions model: The role of intention to search: Best Overall Paper Award--The Sixth Triennial AMS/ACRA Retailing Conference, 2000[small star, filled]. Journal of Retailing, 77(3), 397-416. Shim, S., & Lee, B. (2009). Internet portals'' strategic utilization of UCC and Web 2.0 Ecology. [Article]. Decision Support Systems, 47(4), 415-423. Smith, C. (2009). Facebook Is the Future of CRM. [Article]. CRM Magazine, 13(11), 12-12. Smith, T. (2009). The social media revolution. International Journal of Market Research, 51(4), 559-561. SONY VAIO Taiwan, SONY VAIO Notebooks [online]. Taiwan, available from (accessed April 15th, 2010) Streukens, S., Wetzels, M., Daryanto, A., & De Ruyter, K. (2005). Analyzing factorial data using PLS: an alternative approach and application in an online complaining context. In: Aluja, T., Casanovas, J., Esposito Vinzi, V., Morineau, A., Tenenhaus, M. (Eds.), Proceedings of the 4th International Symposium on PLS and Related Methods. Barcelona. Tenenhaus, M., Vinzi, V. E., Chatelin, Y.-M., & Lauro, C. (2005). PLS path modeling. Computational Statistics & Data Analysis, 48(1), 159-205. Vazquez, D., & Xingang, X. (2009). Investigating linkages between online purchase behaviour variables. International Journal of Retail & Distribution Management, 37(5), 408-419. Venkatesan, R., Kumar, V., & Ravishanker, N. (2007). Multichannel Shopping: Causes and Consequences. Journal of Marketing, 71(2), 114-132. Wallace, D. W., Giese, J. L., & Johnson, J. L. (2004). Customer retailer loyalty in the context of multiple channel strategies. Journal of Retailing, 80(4), 249-263. White, J. C., Varadarajan, P. R., & Dacin, P. A. (2003). Market Situation Interpretation and Response: The Role of Cognitive Style, Organizational Culture, and Information Use. Journal of Marketing, 67(3), 63-79. Wold, H.(1975). Soft modelling by latent variables: the nonlinear iterative partial least squares (NIPALS) approach. In Honor of M. S. Bartlett—(Gani ed.) Perspectives in Probability and Statistics. London: Academic Press, 117-44. Wold, H. (1981). The fix-point approach to interdependent systems: reviews and current outlook", in Wold, H. (Eds),The Fix-point Approach to Interdependent Systems, North-Holland, Amsterdam, 1-35. Yang, S., Park, J., & Park, J. (2007). Consumers'' channel choice for university-licensed products: Exploring factors of consumer acceptance with social identification. Journal of Retailing and Consumer Services, 14(3), 165-174.zh_TW
dc.description.abstract此探索性研究檢驗對於在多通路零售的情境下,消費者接受社交網絡網站情形的行為研究。根據過去相似情境的行銷研究,本研究採用量化並使用部分最小平方法(PLS)路徑模式來測試本研究提出十個假設與彼此的對應關係,以及檢測測量模式與結構模式。此項關於態度的實證研究中的203位受訪者指出,多數已經加入由零售店成立的Facebook粉絲專頁的消費者會有更高的意願至該店家的實體商店購買商品,並有較高的意願於網路上搜尋商品資訊,同時也提高到該店家的線上商店購買的意願。本實證研究使用線上問卷來研究消費者在多通路的零售情境下的態度與行為,並提出一個研究模型。 此經過驗證的研究模型將可做為零售店管理人員在實施多通路策略與使用線上免費平台做為網路行銷的一項參考,以協助其銷售與提高利潤。未來的研究可在特定的產業與Facebook使用者已達大規模數量之國家來檢驗此模型,並有必要透過更多實證研究來檢驗。後續研究並可調查Facebook粉絲專頁是否為一個增加消費者線上再購意願的有力因素。zh_TW
dc.description.abstractThis exploratory research examines consumer behavior for accepting social network sites in the multi-channel retailing channel context. Based on prior marketing studies with the similar context, a quantitative approach was utilized and ten hypotheses were tested by simultaneously testing the proposed relationships using Partial Least Squares (PLS) path modeling to test the proposed measurement model and structural model. This empirical research into the attitude of 203 social networking site users shows that most customers who have joined the Facebook Fans page established by retailing stores will be more willing to purchase in physical stores and have much more intention to search for product information online, and it will increase their intention to purchase online via retailers' online shops. A research model was proposed to study the attitude and behaviors of consumers under multi-channel retailing channel context after an empirical study conducted by using an online questionnaire. The validated research model can be referenced by retailing store managers who are conducting multi-channel strategy and use the free online platform as the electronic marketing tool to assist sales and increase profit. The future study could be conducted under a more specific industry to examine this proposed model and is suggested to be evaluated in more countries where Facebook users reach to a considerable amount. More empirical studies to examine this new model will be essential, and it is suggested to investigate if Facebook Fans page will be a predominant factor to increase consumers' repurchase intention online.en_US
dc.description.tableofcontentsCHAPTER 1 INTRODUCTION 1 1.1 Research background and Motivation 1 1.2 Research Question 3 1.3 Organize this Research 4 CHAPTER 2 THEORETICAL DEVELOPMENT 6 2.1 Web 2.0 6 2.2 User Generated Content (UGC) 7 2.3 Social Networking Services: 8 2.4 Facebook 10 CHAPTER 3 RESEARCH FRAMEWORK AND HYPOTHESES 12 3.1 Trust 12 3.2 Attitude toward purchase via the offline store 13 3.3 Facebook fans pages 13 3.4 Information search intention 15 3.5 Purchase intention online 16 CHAPTER 4 RESEARCH DESIGN AND METHOD 19 4.1 The research framework and questionnaire 19 4.2 Data collection and sampling procedure 19 CHAPTER 5 EMPIRICAL RESULTS AND ANALYSIS 21 5.1 Test for unidimensionality of all blocks 22 5.2 Test of the measurement model (outer model) 27 5.3Test of the structural model (inner model) 31 CHAPTER 6 DISCUSSION AND MANAGERIAL IMPLICATION 34 CHAPTER 7 CONCLUSION AND FUTURE WORK 40 REFERENCES 42en_US
dc.subjectMulti-channel retailing (MCR)en_US
dc.subjectpurchase intentionen_US
dc.subjectelectronic commerceen_US
dc.titleConsumers' Attitude and Acceptance toward Social Networking Sites in the Multi-channel Retailing Channel Context - A Study on Facebook Fans Pageen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:科技管理研究所


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.