Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorLiu, Mao-Chenen_US
dc.identifier.citation[1] H.C. Nathanson, W.E. Newell, R.A. Wickson and J.R. Davis, “The resonant gate transistor,” IEEE Transactions on Electron Devices, Vol. 14, pp. 117-133, 1967. [2] T.R. Hsu, MEMS & Microsystems Design and Manufacture, McGraw-Hill, Boston, 2002. [3] 鄭英周, 積體電路相容微機電技術及其在微光學鏡面裝置上的應用, 台灣大學, 博士論文, 2003. [4] J. Bernstein, S. Cho, T. King, A. Kourepenis, P. Maciel and M. Weinberg,“A micromachined comb-drive tuning fork rate gyroscope,”Digest IEEE/ASME Micro ElectroMechanical Systems (MEMS) Workshop Fort Lauderdale, pp. 143–148, 1993. [5] H. Qu, D. Fang, H. Xie, “A Single-Crystal Silicon 3-axis CMOS-MEMS Accelerometer,” IEEE Sensors Conference, Vol. 2, pp. 661-664, 2004. [6] C.L. Dai, “A capacitive humidity sensor integrated with micro heater and ring oscillator circuit fabricated by CMOS-MEMS technique,” Sensors and Actuators B, Vol. 122, pp. 375-380, 2007. [7] C.H. Chen, R.Z. Hwang, L.S. Huang, S. Lin, H.C. Chen, Y.C. Yang, Y.T. Lin, S.A. Yu, Y.H. Wang, N.K. Chou, and S.S. Lu, “ A Wireless Bio-MEMS Sensor for C-Reactive Protein Detection Based on Nanomechanics,”IEEE International Solid-State Circuits Conference, No.30.6, pp. 562-564, 2006. [8] C.L. Dai, C.H. Kuo, M.C. Chiang, “Microelectromechanical resonator manufactured using CMOS-MEMS technique,” Microelectronics Journal, Vol.38, pp. 672-677, 2007. [9] C.L. Dai, C.H. Tsai, “Fabrication of integrated chip with microinductors and micro-tunable capacitors by complementary metal-oxide-semiconductor postprocess,” Japanese Journal of Applied Physics, Vol. 44, No. 4A, pp. 2030-2036, 2005. [10] C.L. Dai, J.H. Chen, “Low voltage actuated RF micromechanical switches fabricated using CMOS-MEMS technique,” Microsystem Technologies, Vol.12, pp. 1143-1151, 2006. [11] S. Kawamura, N. Sasaki, T. Iwai, R. Mukai, M. Nakano, and M. Takagi,”Electrical Characteristics of Three-Dimensional SOI/CMOS ICs,” IEEE Electron device letter, Vol. 5, pp.248-250, 1984. [12] T. Nishimura, Y. Inoue, K. Sugahara, S. Kusunoki, T. Kumamoto, S. Nakagawa, M.Nakaya, Y.Horiba, and Y.Akasaka, “Three dimensional IC for high performance image signal processor,” IEEE Electron Devices Meeting, Vol. 33, pp.111-114, 1987. [13] H. Yamazaki, K. Sakanushi, S. Nakatake, Y. Kajitani, “The 3DPacking by Meta Data Structure and Packing Heuristics,” IEICE transactions on fundamentals of electronics, communications and computer sciences, Vol. E83-A, pp.639-645, 2000. [14] Yole Developpement, 3-D TSV Interconnects - Devices & Systems 2008 report. [15] M. Iqbal, M.J. McFadden, and M.W. Haney, “Intrachip global interconnects and the saturation of Moore''s law,” Proceed-ings of IEEE-LEOS Summer Topical: Optical Interconnects and VLSI Photonics, Vol. WB1.3, pp.71-72, 2004. [16] P.S. Peercy, “The Drive to Miniaturization,” Nature, Vol. 406, pp. 1023-1026, 2000. [17] I.J. Bahl, Lumped Elements for RF and Microwave Circuits, Artech House, 2003. [18] I.J. Bahl, “Improved quality factor spiral inductors on GaAs substrates,”IEEE Microwave and Guided Wave Letters, Vol. 9, pp. 398-400, 1999. [19] C.P. Yue and S.S. Wong, “On-chip spiral inductors with patterned ground shields for Si-based RFIC’s,” IEEE International Solid-State Circuits Conference, Vol.33, pp. 743-752, 1998. [20] K.T. Chan, C.H. Huang, A.Chin, M.F. Li, and D.L. Kwong, S.P. McAlister, D.S. Duh and W.J. Lin, “Large Q-factor Improvement for Spiral Inductors on Silicon using Proton Implantation,” IEEE Microwave and Wireless Components Letters, Vol.13, pp. 460-462, 2003. [21] H. Lakdawala, X. Zhu, H. Luo, S. Santahannan, L.R. Carley and G.K. Fedder, “Micromachined high-Q inductors in a 0.18-μm copper interconnect low-k dielectric CMOS process,” IEEE Journal of Solid State Circuit, Vol. 37, pp. 394-403, 2002. [22] E. Beyne, “3D interconnection and packaging: impending reality or still a dream?,” IEEE International Solid-State Circuits Conference, Vol. 1, pp.138-139, 2004. [23] J. Neysmith and D. F. Baldwin. “Generic, non-hermetic, direct-chip-attach packaging of microsystems,” International Conference on High-Density Interconnect and Systems Packaging, Vol.4217, pp.214-219, 2000. [24] T.R. Anthony, “Forming Electrical Interconnections Through Semiconductor Wafers,” Journal of Applied Physics, Vol.52, pp.5340-5349, 1981. [25] D.J. Ehrlich, D.J. Silversmith, R.W. Mountain and J. Tsao, “Fabrication of Through-Wafer Via Conductors in Si by Laser Photochemical Processing,”IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol.4, pp.520-521, 1982. [26] Y. Fujita, Y. Kawamura, and K. Mizuishi, “Feasibility Study on Through-Wafer Interconnecting Method for Hybrid Wafer-Scale-Integration,” In Proceedings of 43rd Electronic Components and Technology Conference, pp.1081-1084, 1993. [27] R. Zhang, K. Roy, C.K. Koh and D.B. Janes, “Stochastic interconnect modeling, power trends, and performancecharacterization of 3-D circuits,” IEEE Electron Devices, Vol. 48, pp.638-652, 2001. [28] D. Mizoguchi, Y.B. Yusof, N. Miura, T. Sakura and T. Kuroda, “A 1.2Gb/s/pin wireless superconnect based on inductive inter-chip signaling (IIS),” IEEE International Solid-State Circuits Conference, Vol. 1, pp. 142-517, 2004. [29] B. Charlet, L.D. Cioccio, J. Dechamp, M. Zussy, T. Enot, R. Canegallo, A. Fazzi, R. Guerrieri and L. Magagni, “Chip-to-chip interconnections based on the wireless capacitive coupling for 3D integration,” Microelectronic Engineering, Vol. 83, pp.5195-5199, 2006.Circuits, Vol. 37, pp. 394-403, 2002. [30] W.H. Brattain and J. Bardeen, “Gas adsorption onto a semiconductor,” Bell Labs Technical Journal, Vol.32, pp. 1-12, 1953. [31] N. Taguchi, US Patentt. 3676820 USA, (1972) [32] D. Kohl, “Surface processes in the detection of reducing gases with SnO2-based devices,” Sensors and Actuators, Vol.18, pp.71-113, 1989. [33] M.A. Huff, S.D. Senturia, and R.T. Howe, “A Thermally Isolated Microstructure Suitable for Gas Sensing Applications,” 3rd IEEE Solid-State Sensors and Actuators Workshop, pp. 47-50, 1988. [34] M. Parameswaren, H.P. Baltes, L.j. Ristic, A.C. Dhaded, and A.M. Robinson, “A new approach for the fabrication of micromachined structures,” Sensors and Actuators, Vol. 19, pp.289-307, 1989. [35] S.R. Morrisor, ”Selectivity in semiconductor gas sensor,” Sensors and Actuators, Vol.12, pp.425-440, 1987. [36] C.L. Dai, M.C. Liu, F.S. Chen, C.C. Wu, M.W. Chang, “A nanowire WO3 humidity sensor integrated with micro heater and inverting amplifier circuit on chip manufactured using CMOS-MEMS technique,” Sensors and Actuators B, Vol. 123, pp. 896-901, 2007. [37] X.L. Cheng, H. Zhao, L.H. Huo, S. Gao, J.G. Zhao, “ZnO nanoparticulate thin film: preparation, characterization and gas-sensing property,” Sensors and Actuators B, Vol.102, pp.248-252, 2004. [38] J. Ding, T.J. McAvoy, R.E. Cavicchi, “Semancik, Surface state trapping model for SnO2-based microhotplate sensors,” Sensors and Actuators B, Vol.77, pp.597-631, 2001. [39] S.M. Sunderarajan, The Design, Modeling and Optimization of On-Chip Inductor and Transformer Circuits, Ph. D. dissertation, Stanford University, 1999. [40] P. Lorrain, D. Corson and F. Lorrain, Electromagnetic Fields and Waves, W. H. Freeman, 1987. [41] D.K. Cheng, Field and Wave Electromagnetics, 2nd, Addison-Wesley,1989. [42] C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, New York, 1995. [43] D.A. Neamen, Semiconductor Physics and Devices: Basic Principle, McGraw-Hill, 2003. [44] P.P. Sengupta, S. Barik and B. Adhikari, “Polyaniline as a Gas-Sensor Material,”Materials and Manufacturing Processes, Vol. 21, pp.263-270, 2006. [45] S. Brovelli, N. Chiodini, A. Lauria, F. Meinardi and A. Paleari, ”Energy-transfer to erbium ions from wide-band-gap SnO2 nanocrystals in silica,” Physical Review B, Vol.73, 2006. [46] M. Batzill, U. Diebold, “The surface and materials science of tin oxide,”Surface Science, Vol. 79, pp.147-154, 2005. [47] N. Barsan and U. Weimar, ”Conduction model of metal oxide gas sensors,”Journal of Electroceramics, Vol.7, pp.143-167, 2001. [48] T.W. Capehart, “The interaction of tin oxide films with O2, H2, NO, and H2S,”Journal of Vacuum Science and Technology, Vol. 18, pp.393-397, 1981. [49] R.C. Bauer, J.P. Birk, P.S. Marks and K. Kawagoe, Introduction to Chemistry: A Conceptual Approach, McGraw-Hill, 2009. [50] S.R. Morrison and T. Freund, “Chemical role of holes and electrons in zinc oxide photocatalysis,” Journal of Chemical Physics, Vol.47, pp. 1543-1552, 1967. [51] V. Lantto, P. Romppainen and S. Leppavuori, “A study of the temperature dependence of the barrier energy in porous tin dioxide,” Sensors and Actuators, Vol.14, pp.149-163, 1988. [52] T.S. Rantala, V. Lantto and T.T. Rantala, “Rate equation simulation of the height of Schottky barriers at the surface of oxidic semiconductors,” Sensors and Actuators , pp.234-237, 1993. [53] H. Kim, C.M. Gilmore, A. Pique, J.S. Horwitz, H. Mattoussi, H. Murata, Z.H. Katati, and D.B. Chrisey, “Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices,” Journal of Applied Physics, Vol.86, pp.6451-6461, 1999.zh_TW
dc.description.abstract以標準CMOS製程為基礎,製作微元件與積體電路,其中微元件包含微電感與微可變電容,使用訊號產生器施加弦波訊號,至傳輸電感以產生磁場,並測試磁場與微元件間的耦合現象。後製程方面,使用乾蝕刻與濕蝕刻,乾蝕刻主要為移除矽基材,濕蝕刻主要為蝕刻結構的犧牲層,以釋放結構。利用乾蝕刻移除矽基材的蝕刻深度,以探討電感與矽基材的耦合關係。堆疊晶片使用傳輸電感所產生的磁場,獲得在低頻時晶片間的訊號傳遞方式;同時探討,傳輸電感施加交流訊號時,對感測器與積體電路穩定性的影響,並了解彼此物理性質與施加頻率的關係,最後以凝膠溶膠法製作氣體感測薄膜,當薄膜與晶片整合時,因磁場影響而產生錯誤動作,並且以此薄膜於受磁場與光功率激發時的發電狀態。 使用乾蝕刻移除矽基材,並利用濕蝕刻調整蝕刻深度,以控制基材與元件偶合效應,當蝕刻深度為70 μm,可使電感接近理想值,論文也提出,蝕刻深度與電感性能的關係,目的為可使電感與IC工作頻率搭配。晶片堆疊後,使用傳輸電感所產生的磁場,做堆疊晶片間的訊號傳遞與對CMOS元件、微感測器與微致動器的影響。其中接收訊號元件使用電感與電阻,由實驗結果可知,接收元件未工作於共振頻率時,電阻的接收效率優於電感,原因磁偶合型態時,電阻值決定輸出電壓量,此外並使用電感與電阻並聯以接收訊號,再以共源極放大電路,放大接收訊號。傳輸電感產生的磁場,對CMOS元件在低頻時,造成電感與電阻的電阻值隨頻率增加而下降;元件在高頻時,電感電感值不變,但電感電阻值隨頻率增加而增加。在微結構的電容方面,無論平板(變化面積)、指叉(變化介電係數)與金屬板(變化間距)形式,皆受磁場影響,甚至造成電容誤差9%。在氣體感測器方面,使用凝膠溶膠法製作氣體感測薄膜,並利用類電解方式,獲得於室溫中更靈敏的薄膜電阻變化量,使用此薄膜與IC整合,整合結果因感測薄膜與感測器電阻,皆受到磁場耦合影響,多晶矽電阻隨頻率上升而下降,感測薄膜則電阻無法預估,造成整合後的感測器,因磁場的關係,無法準確反應環境氣體的變化量。並使用氣體感測薄膜,以磁場與光功率激發,且將感測膜塗佈於,以CMOS晶片所製作的槽中,激發結果產生具方向性的發電效果。zh_TW
dc.description.abstractThe study investigates the influence of magnetic coupling in the stacked chips of IC (integrated circuits) and micro-devices. The micro-devices that include micro-inductors and micro-sensors are fabricated by using the commercial CMOS (complementary metal oxide semiconductor) process and the post-CMOS process. In order to obtain the suspended structures, the micro-devices use the post-CMOS process of dry and wet etching to etch the sacrificial layers and silicon substrate. The dry etching of RIE (reactive ion etching) is employed to remove the silicon substrate under the inductors in order to increase the resistance of the silicon substrate. The larger resistance can reduce the parasitic effect between the inductors and silicon substrate. The experiments show that the inductors are nearly ideal condition when the etching depth of the silicon substrate under the inductors is 70 μm. When the function generator applies a sine-wave to the transmission inductor of the stacked chips, the magnetic field is generated that it is used to investigate the effect of magnetic coupling for the micro-sensors and to transport the signals between two chips. The inductors and resistors are employed to receive the ac signals. The receiver components work with non-resonant frequency and the induced voltage is determined by the resistance of devices. Using parallel inductance and resistance, the method is not only enlarging the output signal but also increasing the received range. The common source circuit is used to amplify the output signal. The magnetic field of transmission inductor results in the CMOS components to change the physical properties, and the resistance value of the components at low frequency decreases with increasing the frequency of transmission inductor. At high frequency, the inductance value maintains a constant with increasing the frequency of transmission inductor. However, the resistance value of the inductor rise with increasing the transmission inductor frequency. In this work, the capacitive pressure sensors are manufactured and the sensors use the spacing change to detect the pressure. However, the magnetic field of the transmission inductor influences the capacitance of the capacitive sensors, and leading to the sensors can not work. According to our experiments, the capacitance of the capacitive pressure sensors produces a change of 9 percent owing to the magnetic field of the transmission inductor.en_US
dc.description.tableofcontents誌謝 I 摘要 III Abstract IV 目錄 V 圖目錄 VII 表目錄 X 符號對照表 XI 第1章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1 降低基材寄生效應 2 1-2-2 堆疊晶片整合 3 1-2-3 氣體感測器 5 1-3 研究動機 6 1-4 論文架構 7 第2章 磁偶合與微元件的理論與分析 8 2-1 矽基材蝕刻深度與電感性能之關係 8 2-2 磁場與微電感之關係 17 2-3 磁場與電阻之關係 17 2-4 磁場與電容之關係 20 2-5 磁場對微感測器和電路的影響 21 第3章 微元件的製作 26 3-1 微電感與微電阻的製作 26 3-2 微氣體感測器之製作 28 3-3 微電容之製作 29 3-4 二氧化錫薄膜之製備 30 3-5 堆疊IC之建構 32 第4章 磁偶合與微元件的實驗結果 33 4-1 矽基材蝕刻深度與電感性能測試 33 4-2 低頻時之電感性能 43 4-3 高頻時之電感性能 45 4-4 磁耦合與微電阻之測試 46 4-5 磁耦合與微電容之測試 49 4-5-1 磁耦合對平板式電容之測試 49 4-5-2 磁耦合對指叉狀電容之測試 51 4-5-3 磁耦合對金屬板電容之測試 53 4-6 磁耦合與電路之測試 57 4-7 磁耦合與微氣體感測器之測試 60 第5章 磁耦合作為堆疊IC傳遞訊號之應用 70 5-1 堆疊IC中的傳輸訊號 71 5-2 堆疊IC傳輸訊號的量測方式 73 5-3 堆疊IC中傳輸訊號測試結果 74 5-3-1 變換接收電感位置的輸出電壓 74 5-3-2 電感的感應接收電壓 76 5-3-3 電阻的感應接收電壓 77 5-3-4 接收電感與放大電路 78 5-4 降低元件磁耦合的方式 82 第6章 磁耦合與光激發作為薄膜發電之應用 87 6-1 氣體感測薄膜之穿透與吸收率 88 6-2 傳輸電感磁場對薄膜發電效果 90 6-3 光功率對薄膜發電效果 92 第7章 結論與未來發展 94 7-1結論 94 7-2未來發展 95 參考文獻 97 論文作者著述目錄 102zh_TW
dc.subjectstack ICen_US
dc.subjectmagnetic couplingen_US
dc.subjectCMOS MEMSen_US
dc.titleInfluence and application of magnetic coupling for stack ICen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:機械工程學系所


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.