Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22606
標題: 氮肥及缺水處理對水稻TNG 67號及其香味突變體SA0420脯胺酸代謝及香味成分之影響
Effects of nitrogen fertilizer and drought on proline metabolism and flavor compound in rice Tainung 67 and its aromatic mutant SA0420
作者: 黃玉辰
Huang, Yu-Chen
關鍵字: 2-acetyl-1-pyrroline
2-AP
drought
nitrogen sources
proline metabolism
SA0420
SA0420
脯胺酸代謝
氮肥
缺水
出版社: 生命科學系所
引用: 台灣稻作發展史。1999。p. 181-208。台灣省政府農林廳。台灣。 汪呈因 (1974) 稻作學與米。徐氏基金會。臺北。 林光展 (2006) 水稻台農67號及其香味突變體SA0420脯胺酸的含量與其相關代謝酵素活性之關係。國立中興大學生命科學研究所碩士論文。 周思儀 (2004) 利用蛋白質體技術探討水稻台農67號及其香味突變體SA0420之差異性蛋白。國立中興大學農藝研究所碩士論文。 陳治官、黃真生 (1984) 疊氮化鈉對水稻台農67號之誘變效應。中華農業研究。33: 345-353。 郭淑明 (2005) 水稻台農67號及其香味突變體SA0420香味相關基因之探討。台中健康暨管理學院生物科技研究所碩士論文。 鄭汀琦(2003)香米主要香氣成分2-acetyl-1-pyrroline合成相關基因之選殖及基因表現分析。國立屏東科技大學食品科學研究所碩士論文。 劉宗華 (2004) 利用水稻衛星分子標誌標定台農67號突變體SA0420之香味基因。國立中興大學農藝研究所碩士論文。 Ahn, S.N., Bollich, C.N., and Tanksley, S.D. (1992) RFLP tagging of a gene for aroma in rice. Theor. Appl. Genet. 84: 825-828. Ayliffe, M.A., Mitchell, H.J., Deuschle, K., Pryor, A.J. (2005) Comparative analysis in cereals of a key proline catabolism gene. Mol. Genet. Genom. 274: 494-505. Armengaud, P., Thiery, L., Buhot, N., Grenier-De March, G., Savoure, A. (2004) Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features. Physiol. Plant 120:442–450. Bates, L.S., Waldren, R.P., and Teare, I.D. (1973) Rapid determination of free praline for water-stress studies. Plant Soil. 39:205-207. Blum, A. and Ebercon, A. (1976) Genotypic responses in sorghum to drought stress-free proline accumulation and drought resistance. Crop Sci. 16: 428-431. Bohnert, H.J. and Jensen, R.G. (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotechnol. 14: 89-97. Bradbury, L.M., Fitzgerald, T.L., Henry, R.J., Jin, Q., and Water, D.L.E. (2005) The gene for fragrance in rice. Plant Biotechnol. J. 3: 363-370. Buffo, R.A., Probst, K., Zehentbauer, G., Luo, Z., and Reineccius, G.A. (2002) Effects of agglomeration on the properties of spray-dried encapsulated flavors. Flavour Fragrance J. 17: 292-299. Chen, H.H. and Murata, N. (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr. Opin. Plant Biol. 5: 250-257. Cordeiro, G.M., Christopher, M.J., Henry, R.J., and Reinke, R.F. (2002) Identification of microsatellite markers for fragrance in rice by analysis of the rice genome sequence. Mol. Breed. 9: 245-250. D''Aguanno, S., Noguez-Gonzalez, I., Simmaco, M., Contestabile, R., and John, R. A. (2003) Stereochemistry of the reactions of glutamate 1- semialdehyde aminomutase with 4,5-diaminovalerate. J. Biol. Chem. 277: 40521-40426. Delauney, A.J., Hu, C, Kishor, K, and Verma, D.P. (1993) Cloning of ornithine δ-aminotransferase cDNA by trans-complementation in Escherichia coli and regulation of proline biosynthesis. J. Biol. Chem. 268: 18673–18678. Delauney, A.J. and Verma, D.P. (1993) Proline biosynthesis and osmoregulation in plants. Plant J. 4:215–223. Deuschle, K., Funck, D., Forlani, G., Stransky, H., Biehl, A., Leister, D., De Graaff, E., Kunze, R., and Frommer, W.B. (2004) The role of △1-pyrroline-5-caboxylate dehydrogenase in proline degradation. Plant Cell 16: 3413-3425. Deuschle, K., Funck, D., Hellmann, H., Daschner, K., Binder, S., and Frommer, W.B. (2001) A nuclear gene encoding mitochondrial △1-pyrroline-5-caboxylate dehydrogenase and its potential role in protection from toxicity. Plant J. 27: 345-355. Donald, S.P., Sun, X.Y., Hu, C.A., Yu, J., Mei, J.M., Valle, D., and Phang, J.M. (2001) Proline oxidase, encoded by p53-induced gene-6, catalyzes the generation of proline-dependent reactive oxygen species. Cancer Res. 61: 1810–1815. Garland, S., and Henry, R. (2001) Application of molecular marker to rice breeding in Australia molecular markers for the sd-1 and fgr genes. RIRDC. 38: 1-21. Garrity, D.P., and O''Toole, J.C. (1994) Screening rice for drought resistance at the reproductive stage. Field Crops Res. 39: 99-110. Grimm, C.C., Bergman, C., Delgado, J.T., and Bryant, R. (2001) Screening for 2-acetyl-1-pyrroline in the headspace of rice using SPEM/GC-MS. J. Agric. Food Chem. 49: 245-249. Hare, P.D., and Cress, W.A. (1997) The involvement of cytokinins in plant responses to environmental stress. Plant Growth Regul. 23: 79-103. Hare, P.D., Cress, W.A., and Van Staden, J. (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ. 21: 535-554. Hare, P.D., Cress, W.A., and Van Staden, J. (1999) Proline synthesis and degradation: a model system for elucidating stress-related signal transduction. J. Exp. Bot. 333: 413-434. Hashizume, K., Tamaki, M., Itani, T., Hayata, Y., and Fushimi, T. (2004) Variation of 2-acetyl-1-pyrroline concentration in aromatic rice grains collected in the same region in Japan and factors affecting its concentration. Plant Prod. Sci. 7: 178-183. Hayashi, F., Ichino, T., Osanai, M., and Wada, K. (2000) Oscillation and regulation of proline content by P5CS and ProDH gene expressions in the light/dark cycles in the Arabidopsis thaliana. Plant Cell Physiol. 41: 1096-1011. Hori, K., Purboyo, R.B.R.A., Akinaga, Y., Okita, T., and Itoh, K. (1992) Knowledge and preference of aromatic rice by consumers in Eastand Southeast Asia. J. Consum. Stud. Home Econ. 16:199-206. Hori, K., Purboyo, R.B.R.A., Jo, M., Kim, S., Akinaga, Y., Okita, T., and Kang, M. (1994) Comparison of sensory evaluation of aromatic rice by consumers in Eastand Southeast Asia. J. Consum. Stud. Home Econ. 18:135-139. Hoshikawa, K. (1989) The growing rice plant: an anatomical monograph. Nobunkyo, Tokyo, Japan. Hu, C.A., Donald, S.P., Yu, J., Lin, W.W., Liu, Z., Steel, C., Obie, C., Valle, D., and Phang, J.M. (2007) Overexpression of proline oxidase induces proline-dependent and mitochondria-mediated apoptosis. Mol. Cell. 295: 85–92. Huang, T.C., Huang, Y.W., Huang, H.J., Ho, C.T., and Wu, M.L. (2007) δ1-Pyrroline-5-caboxylic acid formed by praline dehydrogenase from the Bacillus subtills ssp. natto expressed in Escherchia coli as a precursor for 2-acetyl-1-pyrroline. J. Agric. Food Chem. 55: 5097-5102. Jin, Q.S., Qiu, B.Q., Yan, W.C., and Luo, R.B. (1996) Tagging of a gene for aroma in rice by RAPD and RFLP (II). Acta. Agriculturae Zhejiangensis 8: 9-23. Kim, H.R., Rho, H.W., Yan, W. C., and Luo, R.B. (1994) Assay of ornithine aminotransferase with ninhydrin. Anal. Biochem. 223:205-207. Kurata, N., Myoshi, K., Nomura, K.I., Yamazaki, Y., and Ito, Y. (2005) Rice mutants and genes related to organ development, morphogenesis and physiological traits. Plant Cell Physiol. 46: 48-62. Maggio, A., Miyazaki, S., Veronese, P., Fujita, T., Ibeas, J.I., Dasm, B., Narasimhan, M.L., Hasegawa, P.M., Joly, R.J. and Bressan, R.A. (2002) Does proline accumulation play an active role in stress-induced growth reduction? Plant J. 31:699-712. Mahatheeranont, S., Keawasa-ard, S., and Dumri, K. (2001) Quantification of the rice aroma compound, 2-acetyl-1-pyrroline, in uncooked Khao Dawk Mali 105 brown rice. J. Agric. Food Chem. 49: 773-779. Mani, S., Van de Cotte, B., Van Montagu, M., and Verbruggen, N. (2002) Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis. Plant Physiol. 128: 73-83. Mathew, Z., Knox, T.M., and Miller, C.G. (2000) Salmonella enterica serovar typhimurium peptidase B is a leucyl aminopeptidase with specificity for acidic amino acids. J. Bacteriol. 182: 3383-3393. Nanjo, T., Kobayashi, M., Yoshiba, Y., Sanada, Y., Wada, K., Tsukaya, H., Kakubari, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1999) Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant J. 18: 185-193. Nanjo, T., Fujita, M., Seki, M., Kato, T., Tabata, S., and Shinozaki, K. (2003) Toxicity of free proline revealed in an Arabidopsis T-DNA-tagged mutant deficient in proline dehydrogenase. Plant Cell Physiol. 44: 541-548. Nomura, M., and Takagi, H. (2004) Role of the yeast acetyltransferase Mpr1 in oxidative stress: regulation of oxygen reactive species caused by a toxic proline catabolism intermediate. Proc. Natl. Acad. Sci. USA 101: 12616-12621. Onodera, Y., Suzuki, A., Wu, C.Y., Washida, H., and Takaiwa, F. (2001) A rice functional transcriptional activator, RISBZ1, responsible for endosperm-specific expression of storage protein genes through GCN4 motif. J. Biol. Chem. 276:14139-14152. Peng, Z., Lu, Q., and Verma, D.P.S. (1996) Reciprocal regulation of and praline dehydrogenase genes controls praline levels during and after osmotic stress in plants. Mol. Gen. Genet. 253: 334-341. Rentsch, D., Hirner, B., Schmelzer, E., and Frommer, W.B. (1996) Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant. Plant Cell 8: 1437-1446. Rivero, R.M., Ruiz, J.M., and Remero, L.M. (2004) Importance of N source on heat stress tolerance due to the accumulation of proline and quaternary ammonium compound. Plant Biol. 6:702-707. Rubenstein, E., Zhou, H., Krasinska, K.M., Chien, A., and Becker, C.H. (2006) Azetidine-2-carboxylic acid in garden beets (Beta vulgaris). Phytochem. 67: 898–903 Sarma, E.D., and Mackill, D.J. (1998) Quantitative trait locus analysis of rice panicle and grain characteristics. Theor. Appl. Genet. 97:103-109. Schieberle, P. (1991) Primary odorants in popcorn. J. Agric. Food Chem. 39: 1141–1144. Sheoran, I.S. and Saini, H.S. (1996) Drought-induced male sterility in rice: Changes in carbohydrate levels and enzyme actibities associated with the inhibition of starch accumulation in pollen. Sex. Plant Reprod. 9: 161-169. Shichiri, M., Hoshikawa, C., Nakamori, S., and Takagi, H. (2001) A novel acetyltranferase found in Saccharomyces cerevisiae Σ1278b that detoxifies a proline analogue, azetidine-2-carboxylic acid. J. Biol. Chem. 276: 41998–42002. Singh, R.K., Khush, G.S., Singh, U.S., Singh, A.K., and Singh, S. (2000) Breeding aromatic rice for high yield, improved aroma and grain quality. In: Singh, R.K., Singh, U.S., and Khush, G.S. (eds) Aromatic rices. Science Publishers, New Hampshire. Siripornadulsil, S., Traina, S., Verma, D.P., and Sayre, R.T. (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14: 2837–2847. Smith, R.J. (1984) A radioisotopic assay for Δ1-pyrroline-5-carboxylate synthase activity. Enzyme 31: 115-121. Sriseadek, T., Wongpornchal, S., and Kitsawatpaiboon, P. (2006) Rapid method for quantitative analysis of the aroma impact compound, 2-acetyl-1-pyrroline, in fragrant rice using automated headspace gas chromatography. J. Agric. Food Chem. 54: 8183-8189. Strizhov, N., Abraham, E., Okresz, L., Blickling, S., Zilberstein, A., Schell, J., Koncz, C., and Szabados, L. (1997) Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1,ABI1 and AXR2 in Arabidopsis. Plant J. 12: 557-569. Takagi, H., Shichiri, M., Takemura, M., Mohri, M., and Nakamori, S. (2000) Saccharomyces cerevisiae Σ1278b has novel gene of the N-acetyltransferase gene superfamily required for L-proline analogue resistance. J. Bacteriol. 182: 4249–4256. Tressl, R., Helak, B., Kersten, E., and Rewicki, D. (1993) Formation of proline and hydroxyproline specific Maillard products from [1-13C] glucose. J. Agric. Food Chem. 41: 547–553. Trinchant, J.C, Boscari, A., Spennato, G., Van de Sype, G., and Le Rudulier, D. (2004) Proline betaine accumulation and metabolism in alfalfa plants under sodium chloride stress. Exploring its compartmentalization in nodules. Plant Physiol. 135: 1583-1594. Valliyodan, B, and Nguyen, HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr. Opin. Plant Biol. 9: 198-195 Verbruggen, N., Hua, X.J., May, M., and Van Montagu, M. ( 1996 ) Environmental and developmental signals modulate proline homeostasis: evidence for a negative transcriptional regulator. Proc. Natl. Acad. Sci. USA. 93: 8787–8791. Wang, C.S., Tseng, T.H., and Lin, C.Y. (2002) Rice biotech research at the Taiwan Agricultural Research Institute. APBN. 6: 950-956. Weenen, H. (1998) Reactive intermediates and carbohydrate fragmentation in Maillard chemistry. Food Chem. 62: 393-401. Widjaja, R., Craske, J.D., and Wootton, M. (1996) Comparative studies on volatile components of non-fragrant and fragrant rice. J. Sci. Food Agric. 70: 151-161. Yamada, M, Morishita, H, Urano, K, Shiozaki, N, Yamaguchi-Shinozaki, K, Shinozaki, K, and Yoshiba, Y (2005) Effects of free proline accumulation in petunias under drought stress. J. Exp. Bot. 56: 1975-1981 Yang, J., Zhang, J, Liu, K., Wang, Z., and Liu, L. (2007) Involvement of polyamines in the drought resistance of rice. J. Exp. Bot. 58: 1545-1555. Yano, M., Katayose, Y., Ashikari, M., Yamanouchi, U., Monna, L., Fuse. T., Baba, T., Yamamoto, K., Umehara, Y., Nagamura, Y., and Sasaki, T. (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12: 2473-2483. Yoshiba, Y., Kiyosue, T., Nakashima, K., Yamaguchi-Shinozaki, K., and Shinozakj, K. (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol. 38: 1095-1102. Yoshihashi, T., Huong, N.T.T., and Inatomi, H. (2002) Precusors of 2-acetyl-1-pyrroline, a potent flavor compound of an aromatic rice variety. J. Agric. Food Chem. 50: 2001-2004.
摘要: 2-acetyl-1-pyrroline (2-AP) 為許多香米香味主要成分,在茉莉花香型香米KDML 105中發現脯胺酸是提供其氮源骨架的前驅物。脯胺酸的生合成途徑有二,一為穀胺酸經Δ1-pyrroline-5-carboxylate synthetase (P5CS) 催化形成P5C,另一為鳥胺酸經Orn-d-aminotransferase (OAT) 催化形成glutamic γ-semialdehyde (GSA),GSA會自發性變為P5C,最後再經P5C reductase還原成脯胺酸。脯胺酸的分解則經proline dehydrogenase (PDH) 降解為P5C,經由其參與之輔酶可分為FAD-或NADP-dependent兩型,再經P5C dehydrogenase氧化成穀胺酸。本論文藉由分析不同環境因子下 (氮肥或缺水處理) 脯胺酸含量、脯胺酸相關代謝酵素活性以及2-AP含量,探討水稻TNG 67號之香味突變株SA0420脯胺酸的代謝與香味分子2-AP生合成的關係。 分析水稻各個生長期葉片脯胺酸含量,發現SA0420脯胺酸含量為TNG 67的1.2倍高。偵測參與脯胺酸代謝的四個相關酵素活性:P5CS、OAT、FAD-及NADP-dependent PDH,發現SA0420是因生合成酵素P5CS活性比TNG 67高2倍,分解酵素PDH為TNG 67的0.8倍,所以累積較多的脯胺酸。二種水稻間的OAT活性則沒顯著差異。進一步在孕穗期施予不同濃度的氮肥 (0-160 kg/ha),發現SA0420 P5CS活性隨氮肥濃度增高而上升,但是脯胺酸含量及PDH活性皆與氮肥濃度沒有顯著相關。在施予缺水處理後 (孕穗:-0.02、-0.05 MPa或乳熟期:-0.1、-0.2 MPa),發現缺水處理下孕穗期SA0420的P5CS活性上升為control的1.2倍,PDH下降為control的0.5倍,但是脯胺酸累積量卻沒有顯著改變,推論是脯胺酸或中間產物P5C經由其他途徑代謝成其他物質,或是轉運至植株其他部位。 利用GC-MS偵測葉片2-AP含量並且分析其與脯胺酸含量、脯胺酸相關代謝酵素活性之關係,發現2-AP含量與P5CS成正相關。Huang等人 (2007) 發現將P5C與三碳醣於室溫下反應30分鐘後,6.3% P5C會形成2-AP,推論P5C為2-AP的前驅物。因此本論文利用二週大水稻小苗外加14C-proline及14C-glutamate,追蹤分析SA0420香味分子2-AP前驅物之來源。發現外加14C-glutamate後SA0420產生的2-AP為TNG 67的5倍,外加14C--proline後SA0420產生的2-AP為TNG 67的2倍,由此可知,榖胺酸為SA0420 2-AP前驅物的主要來源。 由以上結果推論,SA0420因為P5CS活性較高而產生較多的P5C。已知P5C是一種具氧化力的分子,會對細胞造成氧化傷害,因此SA0420藉由體內醣類與P5C反應產生2-AP的方式降低P5C對細胞的傷害。
One major fragrant compound found in many aromatic rice varieties is 2-acetyl-1-pyrroline (2-AP). Proline is known to provide nitrogen skeleton in jasmine rice KDML 105. Biosynthesis of proline is catalyzed by Δ1-pyrroline-5-carboxylate synthetase (P5CS) or Orn-d-aminotransferase using glutamate or ornithine as precursor and producing 1-pyrroline-5-carboxylate (P5C). P5C is reduced to proline via P5C reductase. Proline is catabolized to P5C via FAD- or NADP-dependent proline dehydrogenase (PDH) and P5C is further oxidized to glutamate via P5C dehydrogenase. The main focus of this thesis is to analyze the accumulation of proline and the activities of key enzymes in proline metabolism to the production of 2-AP in TNG 67 and SA0420 under different nitrogen and water status. The amount of proline accumulated in SA0420 was 1.2-fold of TNG 67 at different growth stages. The activity of P5CS in SA0420 was 2-fold of TNG 67 and the activity of PDH in SA0420 was 0.8-fold of TNG 67. Therefore, the increase of proline accumulation in SA0420 is the result of increase synthesis and decrease degradation. There is no significant difference in the activity of OAT. Application of increase amounts of nitrogen fertilizer at seed-bearing stage increased the activity of P5CS in SA0420, but did not affect the proline content and the activity of PDH. Water-deficit treatments caused 1.2-fold increase of P5CS and 0.5-fold decrease of PDH in SA0420. Although the activities of key enzyme changed, the level of proline did not change in SA0420 under water-deficit treatments suggesting proline or P5C is metabolized through other metabolic pathways or translocated to other parts of plant. A positive correlation was found between the activity of P5CS and 2-AP content. Huand et al (2007) found 6.5% P5C automatically converted into 2-AP in the presence of triose at room temperature, suggesting P5C is the precursor for 2-AP. Precursor feeding experiments showed that 5-fold increase in production of 2-AP when seedlings was fed by 14C-glutamate, while 2-fold increase when fed with 14C-proline, suggesting glutamate is the major precursor for 2-AP in SA0420. In conclusion, elevated activity of P5CS in SA0420 leads to production of P5C and the excess P5C is converted to 2-AP in order to decrease the toxicity of this highly oxidative compound.
URI: http://hdl.handle.net/11455/22606
其他識別: U0005-3108200708205900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3108200708205900
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.