Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22673
標題: 莫三比克吳郭魚(Oreochromis mossambicus)適應在淡水、海水、去離子水環境中鰓上氯離子傳輸蛋白之分布
Differential distribution of chloride transporters in gills of fresh water-, seawater- and deionized water-acclimated euryhaline teleosts, Oreochromis mossambicus
作者: 趙廷偉
Chao, Ting-Wei
關鍵字: Oreochromis mossambicus
莫三比克吳郭魚
acclimate
deionized water
gill
chloride transporters
適應
去離子水

氯離子傳輸蛋白
出版社: 生命科學系所
引用: Chang, I. C., Lee, T. H., Wu, H. C. and Hwang, P. P. (2002). Effects of environmental Cl- levels on Cl- uptake and mitochondria-rich cell morphology in gills of the stenohaline goldfish, Carassius auratus. Zool. Stud. 41, 236-243. Chang, I. C., Wei, Y. Y., Chou F. I. and Hwang P. P (2003). Stimulation of Cl up and morphological changes in gill mitochondria-rich cells in freshwater tilapia (Orechromis mossamibicus) Physiol. Biochem. Zool. 76: 544-552 Choe, K. P., O'Brien, S., Evans, D. H., Toop, T. and Edwards, S. L. (2004). Immunolocalization of Na+/K+-ATPase, carbonic anhydrase II, and vacuolar H+-ATPase in the gills of freshwater adult lampreys, Geotria australis. J. Exp. Zool. 301A, 654-665. Cutler, C. P. and Cramb, G. (2001). Molecular physiology of osmoregulation in eels and other teleosts: the role of transporter isoforms and gene duplication. Comp. Biochem. Physiol. 130A, 551-564. Dang, Z. C., Balm, P. H., Flik, G., Wendelaar Bonga, S. E. and Lock, R. A. C. (2000). Cortisol increases Na+/K+-ATPase density in plasma membranes of gill chloride cells in the freshwater tilapia Oreochromis mossambicus. J. Exp. Biol. 203, 2349-2355. de Renzis, G. and Maetz, J. (1973). Studies on the mechanism of chloride absorption by the goldfish gill: relation with acid-base regulation. J. Exp. Biol. 59, 339-358. Delpire, E. and Mount, D. B. (2002). Human and murine phenotypes associated with defects in cation-chloride cotransport. Annu. Rev. Physiol. 64, 803-843. Ecelbarger, C. A., Terris, J., Hoyer, J. R., Nielsen, S., Wade, J. B. and Knepper, M. (1996). Localization and regulation of the rat renal Na+-K+-2Cl- cotransporter, BSC-1. Am. J. Physiol. Renal. Fluid. Electrolyte. Physiol. 271, F619-F628. Epstein, F. H., Silva, P., and Kormanik, G. (1980) Role of Na, K-ATPaes in chloride cell function. Am. J. Physiol. 238: R246-250 Evans, D. H. (1984). The roles of gill permeability and transport mechanisms in euryhalinity. In Fish Physiology (ed. W. S. Hoar and D. J. Randall), Vol. 10B. pp. 239-283. New York: Academic Press. Evans, D. H., Piermarini, P. M. and Potts, W. T. W. (1999). Ionic transport in the fish gill epithelium. J. Exp. Zool. 283, 641-652. Evans, D. H., Piermarini, P. M. and Choe, K. (2005). The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol. Rev. 85, 97-177. Ferraris, R. P., Almendras, J. M. and Jazul, A. P. (1988). Changes in plasma osmolality and chloride concentration during abrupt transfer of milkfish (Chanos chanos) from seawater to different test salinities. Aquaculture 70, 145-157. Flemmer, A. W. and Forbush, B. III. (1999). Changes in amount and phosphorylation state of the Na+-K+-2Cl− cotransporter (NKCC) in teleost gill during salt adaption. FASEB J. 13, A399. Flik, G., Kaneko, T., Greco, A. M., Li, J. and Fenwick, J. C. (1997). Sodium dependent ion transporters in trout gills. Fish Physiol. Biochem. 17, 385-396. Froese, R., Pauly, D. (Ed.), (2005). Fish base. World Wide Web electronic publication. www.fishbase.org, version (03/2005) Ginns, S. M., Knepper, M. A., Ecelbarger, C. A., Terris, J., He, X., Coleman, R. A. and Wade, J. B. (1996). Immunolocalization of the secretory isoform of Na-K-Cl cotransporter in rat renal intercalated cells. J. Am. Soc. Nephrol. 7, 2533-2542. Goss, G., Perry, S. and Laurent, P. (1995). Ultrastructural and morphometric studies on ion and acid-base transport processes in freshwater fish. In Cellular and Molecular Approaches to Fish Ionic Regulation (ed. T. W. Shuttleworth and C. M. Wood), pp. 257-284. San Diego: Academic Press. Hirai, N., Tagawa, M., Kaneko, T., Seikai, T. and Tanaka, M. (1999). Distributional changes in branchial chloride cells during freshwater adaptation in Japanese sea bass Lateolabrax japonicus. Zool. Sci. 16, 43-49. Hiroi, J., McCormick, S. D., Ohtani-Kaneko, R. and Kaneko, T. (2005). Functional classification of mitochondrion-rich cells in euryhaline Mozambique tilapia (Oreochromis mossambicus) embryos, by means of triple immunofluorescence staining for Na+/K+-ATPase, Na+/K+/2Cl- cotransporter and CFTR anion channel. J. Exp. Biol. 208, 2023-2036. Hirose, S., Kaneko, T., Naito, N. and Takei, Y. (2003). Molecular biology of major components of chloride cells. Comp. Biochem. Physiol. 136B, 593-620. Hootman, S. R. and Philpott, C. W. (1985). Accessory cells in teleost branchial epithelium. Am. J. Physiol. Regul. Integr. Comp. Physiol. 238, R199-R206. Hwang, P. P., Sun, C. M. and Wu, S.M. (1989). Changes of plasma osmolality, chloride concentration and gill Na+-K+-ATPase activity in tilapia Oreochromis mossambicus during seawater acclimation. Mar. Biol. 100, 625-627. Hwang, P. P., Fang, M. J., Tsai, J. C., Huang, C. J. and Chen, S. T. (1998). Expression of mRNA and protein of Na+-K+-ATPase α subunit in gills of tilapia (Oreochromis mossambicus). Fish. Physiol. Biochem. 18, 363-373. Jensen, M. K., Madsen, S. S. and Kristiansen, K. (1998). Osmoregulation and salinity effects on the expression and activity of Na+,K+-ATPase in the gills of European sea bass, Dicentrarchus labrax (L.). J. Exp. Zool. 282, 290-300. Jobling, M. (1995) Environmental biology of fishes. pp. 211-249. Chapman and Hall, Lomdon. Katoh, F. and Kaneko, T. (2003). Short-term transformation and long-term replacement of branchial chloride cells in killifish transferred from seawater to freshwater, revealed by morphofunctional observations and a newly established “time-differential double fluorescent staining” technique. J. Exp. Biol. 206, 4113-4123. Kelly, S. P., Chow, I. N. K. and Woo, N. Y. S. (1999). Haloplasticity of black seabream (Mylio macrocephalus): hypersaline to freshwater acclimation. J. Exp. Zool. 283, 226-241 Kerstetter, T. H. and Kirschner, L. B. (1972). Active chloride transport by the gills of rainbow trout (Salmo gairdneri). J. Exp. Biol. 56, 263-272. Kultz, D., Bastrop R., Jurss, K. and Siebers, D. (1992) Mitochpndria-rich (MR) cells and the activities of the Na/K-ATPase and carbonic anhydrase in the gill and opercular eithlium of Oreochromis mossambicus adapted to various salinities. Comp. Biochem. Physiol. 102B, 293-301 Laurent, P., Hobe, H. and Dunel-Erb, S. (1985). The role of environmental sodium chloride relative to calcium in gill morphology of freshwater salmonid fish. Cell Tissue Res. 240, 675-692. Laurent, P. and Perry, S. F. (1991) Environmental effects on gill morphology. Physiol. Zool. 64, 4-25. Lee, T. H., Lin, H. C., Yu, M. J. Huang F. L. and Hwang, P. P. (1995) Mitochondria-rich cells in gills of the euryhaline teleost, Oreochromis mossambicus. Zool. Stud. 34 (Suppl. 1), 239-240. Lee, T. H., Hwang, P. P. and Feng, S. H. (1996). Morphological studies of gill and mitochondria-rich cells in the stenohaline cyprinid teleosts, Cyprinus carpio and Carassius auratus, adapted to various hypotonic environments. Zool. Stud. 35, 272-278. Lee, T. H., Hwang, P. P., Shieh, Y. E. and Lin, C.H. (2000). The relationship between ‘deep-hole' mitochondria-rich cells and salinity adaptation in the euryhaline teleost, Oreochromis mossambicus. Fish Physiol. Biochem. 23, 133-140. Lee, T. H., Feng, S. H., Lin, C. H., Hwang, Y. H., Huang, C. L. and Hwang, P. P. (2003). Ambient salinity modulates the expression of sodium pumps in branchial mitochondria-rich cells of Mozambique tilapia, Oreochromis mossambicus. Zool. Sci. 20, 29-36. Lin, C. H., Tsai, R. S. and Lee, T. H. (2004). Expression and distribution of Na, K-ATPase in gill and kidney of the green spotted pufferfish, Tetraodon nigroviridis, in response to salinity challenge. Comp. Biochem. Physiol. 138A, 287-295. Lin, Y.M., Chen, C.N. and Lee, T.H. (2003). The expression of gill Na, K-ATPase in milkfish, Chanos chanos, acclimated to seawater, brackish water, and fresh water. Comp. Biochem. Physiol. 135A, 489-497. Lin, C. H. and Lee, T. H. (2005). Sodium and potassium ions activate different kinetics of gill Na, K-ATPase in three seawater- and freshwater-acclimated euryhaline teleots. J. Exp. Zool. 303A, 57-65. Lin, Y. M., Chen, C. N., Yoshinaga, T., Tsai, S. C., Shen, I. D. and Lee, T. H. (2006). Short-term effects of hyposmotic shock on Na+/K+-ATPase expression in gills of the euryhaline milkfish, Chanos chanos. Comp. Biochem. Physiol. 143A, 406-415. Lingrel, J. B. (1992) Na, K-ATPase: Isoform structure, function, and expression. J. Bioenerg. Biochember. 24, 263-270 Lytle, C., Xu, J., Biemesderfer, D. and Forbush, B. III. (1995). Distribution and diversity of Na-K-Cl cotransport proteins: a study with monoclonal antibodies. Am. J. Physiol. Cell Physiol. 269C, 1496-1505. Marshall, W. S. (2002). Na+, Cl−, Ca2+ and Zn2+ transport by fish gills: retrospective review and prospective synthesis. J. Exp. Zool. 293, 264-283. Marshall, W. S. and Bryson, S. E. (1998). Transport mechanisms of seawater teleost chloride cells: An inclusive model of a multifunctional cell. Comp. Biochem. Physiol. 119A, 97-106. Marshall, W. S., Bryson, S. E., Midelfart, A. and Hamilton, W. F. (1995). Low conductance anion channel activated by cyclic AMP in teleost Cl- secreting cells. Am. J. Physiol. 268, R963-R969. Marshall, W. S., Lynch, E. M. and Cozzi, R. R. F. (2002). Redistribution of immunofluorescence of CFTR anion channel and NKCC cotransporter in chloride cells during adaptation of the killifish Fundulus heteroclitus to sea water. J. Exp. Biol. 205, 1265-1273. Miyazaki, H., Uchida, S., Takei, Y., Hirano, T., Marumo, F. and Sasaki, S. (1999). Molecular cloning of CLC chloride channels in Oreochromis mossambicus and their functional complementation of yeast CLC gene mutant Biochem. Biophys. Res. Commun. 255, 175-181. Miyazaki, H., Kaneko, T., Uchida, S., Sasaki, S. and Takei, Y. (2002). Kidney-specific chloride channel, OmClC-K, predominantly expressed in the diluting segment of freshwater-adapted tilapia kidney. PNAS. 99, 15782-15787. McCormick, S. D. (1990) Fluorescent labeling of Na+,K+-ATPase in intact cells by use of a fluorescent derivative of ouabain: salinity and teleost chloride cells. Cell Tissue Res. 260, 529-533. McCormick, S. D. (1995). Hormonal control of gill Na+,K+-ATPase and chloride cell function. In Cellular and Molecular Approaches to Fish Ionic Regulation. (ed. C. M. Wood and T. J. Shuttleworth), pp. 285-315. New York: Academic Press. McCormick, S.D., (1996). Effects of growth hormone and insulin-like growth factor I on salinity tolerance and gill Na+,K+-ATPase in Atlantic salmon (Salmo salar): interactions with cortisol. Gen. Comp. Endocrinol. 101, 3-11, McCormick, S. D. (2001) Endocrine control of osmoregulation in teleost fish. Am. Zool. 41, 781-794 McCormick, S. D., Sundell, K., Bjornsson, B. T., Brown, C. L. and Hiroi, J. (2003). Influence of salinity on the localization of Na+/K+-ATPase, Na+/K+/2Cl- cotransporter (NKCC) and CFTR anion channel in chloride cells of the Hawaiian goby (Stenogobius hawaiiensis). J. Exp. Biol. 206, 4575-4583. Mercer, R. (1993) Structure of the Na, K-ATPase. Intl. Rev. Cytol. 137C, 139-168. Miller, S. A. and Harley, J. P. (2002). Zoology. 5th, pp.275-283. New York: McGraw-Hill Companies Inc. Morgan, J. D., Sakamoto, T., Grau, E. G. and Iwana, G. K. (1997). Physiological and respiratory responses of the Mozambique tilapia (Oreochromis mossambicus) to salinity acclimation. Comp. Biochem. Physiol. 117A, 391-398. Moyle, P.B. and Cech, Jr. J. J. (2000). Hydromineral balance. In Fishes, An Introduction to Ichthyology, pp. 79-96. NJ: Prentice Hall, Upper Saddle River. Payne, J. A., Xu, J. C., Haas, M., Lytle, C. Y., Ward, D. and Forbush, B. (1995). Primary structure, functional expression, and chromosomal localization of the bumetanide-sensitive Na-K-Cl cotransporter in human colon. J. Biol. Chem. 270, 17983-17985. Pelis, R. M., Zydlewski, J. and McCormick, S. D. (2001). Gill Na+-K+-2Cl- cotransporter abundance and location in Atlantic salmon: effects of seawater and smolting. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R1844-R1852. Perry, S. F. (1997). The chloride cell: structure and function in the gills of freshwater fishes. Annu. Rev. Physiol. 59, 325-347. Perry, S. F. (1998). Relationships between branchial chloride cells and gas transfer in freshwater fish. Comp. Biochem. Physiol. 119A, 9-16 Perry, S. F. and Randall, D. J. (1981). Effects of amiloride and SITS on branchial ion fluxes in rainbow trout, Salmo gairdneri. J. Exp. Biol. 215, 225-228. Perry, S. F. and Fryer, J. N. (1997). Proton pumps in the fish gill and kidney. Fish Physiol. Biochem. 17, 363-369. Perry, S. F., Shahsavarani, A., Georgalis, T., Baya, M., Furimsky, M. S. and Thomas, L. Y. (2003). Channels, pumps, and exchangers in the gill and kidney of freshwater fishes: their role in ionic and acid-base regulation. J. Exp. Zool. 300A, 53-62. Rainboth, W. J. (1996). Fishes of the Cambodian Mekong. In FAO Species Identification Field Guide for Fishery Purposes, pp. 265. Rome: FAO. Sakamoto, T., Uchida, K. and Yokota, S. (2001). Regulation of the ion-transporting mitochondrion-rich cell during adaptation of teleosts fishes to different salinities. Zool. Sci. 18, 1163-1174. Sasai, S., Kaneko, T., Hasegawa, S. and Tsukamoto, K. (1998). Morphological alteration in two types of gill chloride cells in Japanese eel (Anguilla japonica) during catadromous migration. Can. J. Zool. 76, 1480-1487. Sheppard, D. H. and Welsh, M. L. (1999). Structure and Function of the CFTR Chloride Channel. Physiol. Rev. 79, 23-45. Shmukler, B. E., Kurschat, C.E., Ackermann, G. E., Jiang, L., Zhou, Y. and Barut, B. Stuart-Tilley, A. K., Zhao, J., Zon, L. I., Drummond, I. A., Vandorpe, D. H., Barry Paw, H. and Alper, S. L. (2005). Zebrafish slc4a2/ae2 anion exchanger: cDNA cloning, mapping, functional characterization, and localization. Am. J. Physiol. Renal. Physiol. 289, F835-F849. Stickny, R. R. (1986) Tilapia tolerance of saline water: a review. Progressive-Fish Culturist 48, 461-470. Sullivan, G. V., Fryer, J. N. and Perry, S. F. (1996). Localization of mRNA for the proton pump (H+-ATPase) and Cl-/HCO3-exchanger in the rainbow trout gill. Can. J. Zool. 74, 2095-2103. Takeyasu, K., Tamkum, M. M., Renaud, K. J. and Fambrough, D. M. (1988). Ouabain-sensitive (Na++K+)-ATPase activity expressed in mouse L cells by transfection with DNA encoding the (α-subunit of an avian sodium pump). J. Biol. Chem. 263, 4347-4354. Tang, C. H. and Lee, C. H. (2007) The Novel Correlation of Carbonic Anhydrase II and Anion Exchanger 1 in Gills of the Spotted Green Pufferfish, Tetraodon nigrovirids. J. Exp. Zool. 307A, 411-418. Tipsmark, C.K., Madsen, S.S. and Borski, R.J. (2004). Effect of salinity on expression of branchial ion transporters in striped bass (Morone saxatilis). J. Exp. Zool. 301A, 979-991 Uchida, K., Kaneko, T., Miyazaki, H., Hasegawa, S. and Hirano, T. (2000). Excellent salinity tolerance of Mozambique tilapia (Oreochromis mossambicus): elevated chloride cell activity in the branchial and opercular epithelia of the fish adapted to concentrated seawater. Zool. Sci. 17, 149-160. Uchida, K., Kaneko, T., Yamauchi, K. and Hirano, T. (1996). Morphometrical analysis of chloride cell activity in the gill filaments and lamellae and changes in Na+,K+-ATPase activity during seawater adaptation in chum salmon fry. J. Exp. Zool. 276, 193-200. Van der Heijden AJH., Verbost, P. M. Eygensteyn, J., Li, J., Wendelaar Bonga, S. E. and Flik, G. (1997) Mitochondria-Rich cells in the gills of tilapia (Oreochromis mossambicus) adaptrd to fresh water or sea water: quantification by confocal laser scanning microscopy. J. Exp. Biol. 200, 397-403. Versamos, S., Diaz, J. P., Charmantier, G., Flik, G., Blasco, C. and Connes, R. (2002). Branchial chloride cells in sea bass (Dicentrarchus labrax) adapted to fresh water, seawater, and doubly concentrated seawater. J. Exp. Zool. 293, 12-26. Wilson, J. M., Antunes, J. C., Bouça, P. D. and Coimbra, J. (2004). Osmoregulatory plasticity of the glass eel of Anguilla anguilla: freshwater entry and changes in branchial ion-transport protein expression. Can. J. Fish. Aquat. Sci. 61, 432-442. Wilson, J. M. and Laurent, P. (2002) Fish gill morphology: inside out. J. Exp. Zool. 293, 192-213. Wilson, J. M., Laurent, P., Tufts, B. L., Benos, D. J., Donowitz, M., Vogl, A. W. and Randall, D. J. (2000a). NaCl uptake by the branchial epithelium in freshwater teleost fish: an immunological approach to ion-transport protein localization. J. Exp. Biol. 203, 2279-2296. Wilson, J. M., Randall, D. J., Donowitz, M., Vogl, A. W. and Ip, A. K. Y. (2000b). Immunolocalization of ion-transport proteins to branchial epithelium mitochondria-rich cells in the mudskipper (Periophthalmodon schlosseri). J. Exp. Biol. 203, 2297-2310. Wilson, J. M., Whiteley, N. M. and Randall, D. J. (2002) Ionoregulatory changes in the gill epithelia of coho salmon during seawater acclimation. Physiol. Biochem. Zool. 75, 237-249. Wood, C. M. and Marshall, W. S. (1994). Ion balance, acid-base regulation, and chloride cell function in the common killifish, Fundulus heteroclitus - a euryhaline estuarine teleost. Estuaries. 17, 34-52. Wood, C. M., Gilmour, K. M. and Part, P. (1998). Passive and active transport properties of a gill model, the cultured branchial epithelium of the freshwater rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. 119A, 87-96. Wu, Y. C., Lin, L. Y. and Lee, T. H. (2003). Na+, K+, 2Cl--cotransporter: a novel marker for identifying freshwater- and seawater-type mitochondria-rich cells in gills of euryhaline tilapia, Oreochromis mossambicus. Zool. Stud. 42, 186-192. Zadunaisky, J. A., Cardona, S. and Au, L. (1995). Chloride transport activation by plasma osmolarity during adaptation to high salinity of Fundulus heteroclitus. J. Membr. Biol. 143, 207-217.
摘要: 莫三比克吳郭魚(Oreochromis mossambicus)為廣鹽性硬骨魚類,可適應於淡水或海水。本實驗利用whole mount與雙重免疫螢光染色配合倒立式共軛焦雷射顯微鏡定性觀察,以瞭解莫三比克吳郭魚適應在不同離子濃度的環境下,其氯離子傳輸蛋白在鰓表皮細胞上的分布,藉此了解吳郭魚在適應不同環境時鰓表皮對氯離子的運輸機制。雙重免疫染色係以離子傳輸的主動力Na+ / K+ -ATPase(NKA)作對比染色,探討四種氯離子傳輸蛋白,包括Na+ / K+ / 2Cl- cotransporter(NKCC);Cystic fibrosis transmembrane regulator(CFTR);Anion exchanger 1(AE1)與Chloride channel 3(CLC-3)的染色位置。由NKA活性的測定實驗中可以發現,莫三比克吳郭魚馴養在去離子水環境下,鰓上NKA活性略高於馴養在原生的淡水環境下的吳郭魚,而馴養在海水環境下的吳郭魚鰓上NKA的活性則顯著高於淡水馴養組與去離子水馴養組的吳郭魚,由此可知馴養在去離子水與海水中的吳郭魚,較淡水組消耗更多的能量來推動二級主動運輸蛋白的運作,以維持體內滲透壓的恒定。由氯離子傳輸蛋白免疫染色發現,當吳郭魚馴養在去離子水與淡水的環境時,AE1與CLC-3均位於NKA免疫反應的細胞(NKA-immurnoreactive cell,簡稱NKIR細胞)基底膜上,NKCC位於NKIR細胞頂端的位置,CFTR則沒有反應。而當吳郭魚適應在海水環境時, NKCC 、AE1與CLC-3均位於NKIR細胞的基底膜上,而CFTR則出現在NKIR細胞的頂端。由此可以推論:當吳郭魚適應在淡水與去離子水環境時,NKCC將氯離子由外界帶入NKIR細胞中,AE1帶動血液中的氯離子進入NKIR細胞,CLC-3則將氯離子帶入血管中;當吳郭魚適應在海水中時,魚體內氯離子過多,則由CFTR將氯離子由NKIR細胞傳送至環境中,CLC-3氯離子由細胞帶至血管中,AE1與NKCC將氯離子由血管中傳送至細胞,藉由鰓上氯離子傳輸蛋白在不同環境下位於鰓表皮NKIR細胞內的不同極性分佈,來調控細胞內與體內的氯離子濃度恒定。
Mozambique tilapia (Oreochromis mossambicus) is a euryhaline teleost which can survive in fresh water and seawater. In this study, whole mount and immunofluorescent double staining followed by confocal laser scanning microscopic observation was performed to realize Cl- transport mechanisms in gills by immunolocalization of Cl- transporters, i.e., Na+/K+/2Cl- cotransporter (NKCC), cystic fibrosis transmembrane conductance regulator (CFTR), anion exchanger 1 (AE1), and chloride channel 3 (CLC-3) conterstained by Na+ / K+ -ATPase (NKA). The NKA activity in gills of DW-acclimated individuals was slightly higher than the FW-acclimated individuals, while the NKA activity in gills of SW-acclimated individuals was significantly higher than both FW- and DW- acclimated fish. The results indicated that DW- and SW-acclimated Mozambique tilapia required more energy to support the secondary active transport proteins for keeping homeostasis. The immunofluorescent double staining revealed that NKA as well as AE1 and CLC-3 were colocalized in the basolateral membrane, and NKCC were localized in the apical side of NKA immunoreactive cells(NKIR cells) of FW- or DW- acclimated individuals. NKA as well as AE1, CLC-3, and NKCC were colocalized in the basolateral membrane of NKIR cells of SW- acclimated individuals, while CFTR was localized only in the apical side of NKIR cells in SW-acclimated fish. In FW or DW group, NKCC transport Cl- into MR cells from environments ; AE1 transport Cl- into NKIR cells from the vessel, and CLC-3 transport Cl- into the vessel from NKIR cells. In SW- acclimated individuals, AE1 and NKCC ransport Cl- into NKIR cell from vessel, and CFTR transport extortionate Cl- to external environments. Taken together, differential expression of four Cl- transporters colocalized in the NKIR cells of gill epithelia implicated different mechanisms of Cl- transport among FW-, DW- or SW-acclimated tilapia to match the physiological requirements.
URI: http://hdl.handle.net/11455/22673
其他識別: U0005-1407200817302000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1407200817302000
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.