Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22736
標題: 武陵地區水生昆蟲對石附生藻類影響之研究
Effects of aquatic insect larvae on epilithic algae in the Wuling area
作者: 于淑芬
關鍵字: Wuling area
武陵
Diatom
Achnanthidium
mayfly
grazer
chlorophyll a
gut contents
矽藻
植食者
腸內含物
生長型式
食性
食量
出版社: 生命科學系所
引用: 吳俊哲、胡苔莉、喻家駿、童翔新、吳志超、郭鐘秀。1999。八十八年度台灣地區主要水庫水質監測計畫。行政院環境保護署。 沈世傑,曾晴賢。櫻花鉤吻鮭族群監測與動態分析。內政部營建署雪霸國家公園管理處。 官文惠。2006。水質研究。武陵地區長期生態監測暨生態模式建立,第三章。內政部營建署雪霸國家公園管理處。 林幸助。2003。武陵地區溪流藻類生產力之限制營養鹽。內政部營建署雪霸國家公園管理處。 林幸助。2004。武陵地區溪流藻類生產力之限制營養鹽(二)。內政部營建署雪霸國家公園管理處。 林幸助。2005。武陵地區長期生態監測暨生態模式建立-溪流生態系食物來源與模式建構。內政部營建署雪霸國家公園管理處。 林幸助。2006。藻類、資料整合分析與生態模式建構。武陵地區長期生態監測暨生態模式建立,第一章。內政部營建署雪霸國家公園管理處。 林幸助。2007。藻類、資料整合分析與生態模式建構。武陵地區長期生態監測暨生態模式建立,第一章。內政部營建署雪霸國家公園管理處。 津田松苗。1962。水生昆虫學。北隆館。 洪正中。1988。台灣河川污染生物指標及水質等級評估之研究。聯銀出版社。 徐崇斌,楊平世。1997。應用水棲昆蟲生物指標評估基隆河水質之研究。中華昆蟲 17: 152-162。 陳弘成。2000。武陵地區溪流水源水質監測系統之規劃與調查。內政部營建署雪霸國家公園管理處。 陳亮谷。1996。台灣中度高山土壤中施肥對養分流失之研究。碩士論文。中興大學土壤系。 康世昌。1993。台灣的蜉蝣目(四節蜉蝣科除外)。國立中興大學博士論文。233頁。 張先正。1992。台灣細蜉科(蜉蝣目:細蜉總科)。國立中興大學碩士論文。111頁。 郭美華。2003。武陵地區水生昆蟲研究(二)。內政部營建署雪霸國家公園管理處。 郭美華。2004。武陵地區水生昆蟲研究(三)。內政部營建署雪霸國家公園管理處。 郭美華。2005。武陵地區長期生態監測暨生態模式建立-水生昆蟲研究。內政部營建署雪霸國家公園管理處。 郭美華。2006。水棲昆蟲研究。武陵地區長期生態監測暨生態模式建立,第六章。內政部營建署雪霸國家公園管理處。 郭美華。2007。水棲昆蟲研究。武陵地區長期生態監測暨生態模式建立,第六章。內政部營建署雪霸國家公園管理處。 趙仁方。2002。櫻花鈎吻鮭棲息地水生昆蟲監測調查。內政部營建署雪霸國家公園管理處。 雷淇祥、陳建初、陳昭寬、劉秉忠。1988。大甲溪上游生物相及水質之調查。行政院農業委員會。 楊平世、黃國靖、謝森和。1990。北勢溪之水棲昆蟲資源及生態研究(Ⅰ)水棲昆蟲相及其相關生態。中華昆蟲 10: 209-224。 楊平世、林曜松、黃國靖、梁世雄、謝森和,曾晴賢。1986。武陵農場河域之水棲昆蟲相及生態調查之研究。生態研究第○○一號。農委會。 莊進源、蔡惠澤、森若美代子、林慧芳、郭崇義。1985。曾文溪及曾文水庫水質指標生物調查報告。行政院衛生署環境保護局。 鄭佾展。2007。蘭陽溪與七家灣溪流域生態系模式之比較分析。碩士論文。國立中興大學生命科學系。 行政院環境保護署。1999。淡水河生物相調查及生物指標手冊建立。行政院環境保護署。 賴雪端。1997。台灣本土性底棲藻類作為河川水質生物指標之研究。博士論文。國立中興大學植物系。 Álvarez, M. and I. Pardo. 2007. Factors controlling epilithon in a temporary, karstic stream: the interaction between substratum and grazing. J. N. Am. Benthol. Soc. 26: 207-220. Alverson, A. J. and G. W. Courtney. 2002. Temporal patterns of diatom ingestion by larval net-winged midges (Diptera: Blephariceridae: Blepharicera). Freshwater Biol. 47: 2087-2097. Anderson N. H. and K. W. Cummins. 1979. Influences of diet on the life histories of aquatic insects. J. Fish. Res. Board Can. 36: 335-342. Arens, W. 1990. Wear and tear of mouthparts: a critical problem in stream animals feeding on epilithic algae. Can. J. Zool. 68:1896-1914. Barbee, A. C. 2005. Grazing insects reduce algal biomass in a neotropical stream. Hydrobiologia. 532: 153-165. Bennion,H. 1995. Surface-sediment diatom assemblages in shallow artificial,enriched ponds, and implications for reconstructing trophic status. Diatom Research 10(1): 1-19. Ben-David M., T. A. Hanley, D. R. Klein and D. M. Schell. 1997. Seasonal changes in diets of coastal and riverine mink: the role of spawning Pacific salmon. Can. J. Zool. 75: 803-811. Carriok, H. J. and R. L. Lowe. 1988. Response of Lake Michigan benthic algae to in situ enrichment with Si, N and P. Can. J. Fish. Aquat. Sci. 45: 271-279. Céréghino, R. 2002. Shift from a herbivorous to a carnivorous diet during the larval development of some Rhyacophila species (Trichoptera). Aquat. Insects 24: 129-135. Chapman, D. W. and R. L. Demory. 1963. Seasonal changes in the food ingested by aquatic insect larvae and nymphs in two Oregon streams. Ecology 44: 143-146. Chételat, J., F. R. Pick, A. Morin and P. B. Hamilton. 1999. Periphyton biomass and community composition in rivers of different nutrient status. Can. J. Fish. Aquat. Sci. 56: 560-569. Chesson, J. 1978. Measuring preference in selective predation. Ecology 59: 211-215. Chung, L. C., H. J. Lin, S. P. Yo, C. S. Tzeng, C. H. Yeh and C. H. Yang. 2008. Relationship between the Formosan landlocked salmon Oncorhynchus masou formosanus population and the physical substrate of its habitat after partial dam removal from the Kaoshan Stream, Taiwan. Zool.Stud. 47: 25-36. Colletti, P. J., D. W. Blinn, A. Pickart and V. T. Wagner. 1987. Influence of different densities of the mayfly grazer Heptagenia criddlei on lotic diatom communities. J. N. Am. Benthol. Soc. 6: 270-280. Cowan, C. A. and B. L. Peckarsky. 1990. Feeding by a lotic mayfly grazer as quantified by gut fluorescence. J. N. Am. Benthol. Soc. 9: 368-378. Culp, J. M and G. J. Scrimgeour. 1993. Size-dependent diel foraging periodicity of a mayfly grazer in streams with and without fish. Oikos 68: 242-250. Cushing, C. E., K. W. Cummins and G. W. Minshall. 1995. Ecosystems of the world 22 – River and stream ecosystems. Elsevier Science B. V, Netherlands. DeNicola, D. M., C. D. McIntire, G. A. Lamberti, S. V. Gregory and L. R. Ashkenas. 1990. Temperal patterns of grazer-periphyton interactions in laboratory streams. Freshwater Biol. 23: 475-489. DeNicola, D. M. and C. D. McIntire. 1990a. Effects of substrate relief on the distribution of periphyton in laboratory streams: I Hydrology. J. Phycol. 26: 624-633. DeNicola, D. M. and C. D. McIntire. 1990b. Effects of substrate relief on the distribution of periphyton in laboratory streams: II Interactions with irradiance. J. Phycol. 26: 634-641. Detenbeck, N. E., C. M. Elonen, D. L. Taylor, L. E. Anderson, T. M. Jicha and S. L. Batterman. 2003. Effects of hydrogeomorphic region, catchment storage and mature forest on baseflow and snowmelt stream water quality in second-order Lake Superior Basin tributaries. Freshwater Biol. 48: 912-927. Dodds, W. K., V. H. Smith and K. Lohman. 2002. Nitrogen and phosphorus relationships to benthic algal biomass in temperate streams. Can. J. Fish. Aquat. Sci. 59: 865-874. Downing, J. A., M. McClain, R. J. Twilley, M. Melack, J, Elser, N. N. Rabalais, W. M. Lewis, JrRE . Turner, J. Corredor, D. Soto, A. Yanez-Arancibia, J. A. Kopaska and R. W. Howarth.1999. The impact of accelerating land-use change on the N-cycle of tropical aquatic ecosystems: current conditions and projected changes. Biogeochemistry 46: 109-148. Dudley, T. L. and C. N. DAntonio. 1991. The effects of substrate texture, grazing, and disturbance on macroalgal establishment in streams. Ecology 72: 297-309. Ekholm, P., K. Kallio, S. Salo, O. P. Pietiläinen, S. Rekolainen, Y. Laine and M. Joukola. 2000. Relationship between catchment characteristics and nutrient concentrations in an agricultural river system. Water Res. 34: 3709-3716. Elliott, J. M and L. Persson. 1978. The estimation of daily rates of food consumption for fish. J. Anim. Ecol. 47: 977-991. Elliott, J. M. 2002. A quantitative study of day-night changes in the spatial distribution of insects in a stony stream. J. Anim. Ecol. 71: 112-122. Elliott, J. M. 2005. Contrasting diel activity and feeding patterns of four instars of Rhyacophila dorsalis (Trichoptera). Freshwater Biol. 50: 1022-1033. Fairchild, G. W., R. L. Lowe and W. B. Richardson. 1985. Algal periphyton growth on nutrient-diffusing substrates: an in situ bioassay. Ecology 66: 465-472. Feminella, J. W. And C. P. Hawkins. 1995. Interactions between stream herbivores and periphyton: a quantitative analysis of past experiments. J. N. Am. Benthol. Soc. 14: 465-509. Feminella, J. W., and V. H. Resh. 1991. Herbivorous caddisflies, macroalgae, and epilithic microalgae: dynamic interactions in a stream grazing system. Oecologia 87: 247-256. Fuller, R. L. and R. J. Mackay. 1980. Feeding ecology of three species of Hydropsyche (Trichoptera: Hydropsychidae) in southern Ontario. Can. J. Zool. 58: 2239-2251. Fuller, R. L. and R. J. Mackay. 1981. Effects of food quality on the growth of three Hydropsyche species (Trichoptera: Hydropsychidae). Can. J. Zool. 59: 1133-1140. Gupta, S., R. G. Michael and A. Gupta. 1993. Influence of diet on growth, food retention time, and gill ventilation rate of nymphs of Cloeon sp. (Ephemeroptera: Baetidae). Hydrobiologia 271: 41-44. Hart, D.D. 1985. Grazing insects mediate algal interactions in a stream benthic community. Oikos 44: 40-46. Hemphill, N. and S. D. Cooper. 1983. The effect of physical disturbance on the relative abundances of two filter-feeding insects in a small stream. Oecologia 58: 378-382. Hill, W. R. and A. W. Knight. 1987. Experimental analysis of the grazing interaction between a mayfly and stream algae. Ecology 68: 1955-1965. Hill, W. R. and A. W. Knight. 1988. Nutrient and light limitation of algae in two northern California streams. J. Phycol. 24: 125-132. Holomuzki, J. R. and B. J. F. Biggs. 2006. Food limitation affects algivory and grazer performance for New Zealand stream macroinvertebrates. Hydrobiologia 561: 83-94. Hornung, M. and M. D. Newson. 1986. Upland afforestion: influences on stream hydrology and chemistry. Soil Use Manage. 2: 61-65. Inwood, S. E., J. L. Tank and M. J. Bernot. 2005. Patterns of denitrification associated with land use in 9 midweatern headwater streams. J. N. Am. Benthol. Soc. 24: 227-245. Johnson, L.B., C. Richards, G. F. Host and J. W. Arthur. 1997. Landscape influences on water chemistry in Mid western stream ecosystem. Freshwater Biol. 37: 193-208. Jonsson, M. and B. Malmqvist. 2003. Importance of species identity and number for process rates within different stream invertebrate functional feeding groups. J. Anim. Ecol. 72: 453-459. Johnston, N.T., E. A. Maclsaac., P. J. Tschaplinski, and K. J. Hall. 2004. Effects of the abundance of spawning sockeye salmon (Oncorhynchus nerka) on nutrients and algal biomass in forested streams. Can. J. Fish. Aquat. Sci. 61: 384-403. Kao, S. J., F. K. Shiah and J. S. Owen. 2004. Export of dissolved inorganic nitrogen in a partially cultivated subtropical mountainous watershed in Taiwan. Water Air Soil Pollut. 156: 211-228. Karouna, N. K. and R. L. Fuller. 1992. Inference of four grazers on periphyton communities associated with clay tiles and leaves. Hydrobiologia 245: 53-64. Kiffney, P. M. and J. P. Bull. 2000. Factors controlling periphyton accrual during summer in headwater streams of southwestern British Columbia, Canada. J. Freshw. Ecol. 15: 339-351. Kishi, D., M. Murakami, S. Nakano and Y. Taniguchi. 2004. Effects of forestry on the thermal uabitat of Dolly Varden. Ecological Res. 19: 283-290. Kline, T. C., J. J. Goering, O. A. Mathisen and P. H. Poe. 1993. Recycling of elements transported upstream by runs of pacificsalmon: δ15N andδ13C evidence in the Kvichak River watershed, Bristol Bay, Southwestern Alaska. Can. J. Fish. Aquat. Sci. 50: 2350-2365. Koher, S. L. and M. A. McPeek. 1989. Predation risk and the foraging behavior of competing stream insects. Ecology 70: 1811-1825. Kovács, A., M. Kahlert and J. Padisák. 2006. Benthic diatom communities along pH and TP gradients in Hungarian and Swedish streams. J. Appl. Phycol. 18: 105-117. Krammer, K. and H. Lange-Bertalot. 1997. Bacillariophyceae. Spektrum Akademischer Verlag Heidelberg, Berlin. Krebs, C. J. 1999. Ecological Methodlogy, 2nd edn. Addison-Welsey Educational Publishers, Inc, Canada. 620pp. Krstic S., Z. Levkov and P. Stojanovski. 1997. Saprobiological characteristics of diatom microflora in river ecosystems in the Pepublic of Macedonia as a parameter for determination of the intensity of anthropogenic influence. In J. Prygiel (ed.), Use of algae for monitoring rivers III. Agence. De. I’Eau. Artois-Picardie, pp. 145-153. Kukula, K. 1997. The life cycles of three species of Ephemeroptera in two streams in Poland. Hydrobiologia 353: 193-198. Kunikane, S. and Y. Magara. 1984. Fundamental considerations on nitrogen pollution of ground water and its causes. Proc. Environ. Eng. Res. 20:121-130. Kwandrans J., Eloranta P., Kawecka B. and K. Wojtan. 1997. Use of benthic diatom communities to evaluate water quality in rivers of southern Poland. In J. Prygiel (ed.), Use of algae for monitoring rivers III. Agence. De. I’Eau. Artois-Picardie, pp.154-164. Lamberti, G. A., L. R. Ashkenas, S. V. Gregory and A. D. Steinman. 1987. Effect of three herbivores on periphyton communities in laboratory streams. J. N. Am. Benthol. Soc. 6: 92-104. Lamberti, G. A. and J. W. Moore. 1984. Aquatic insect as primary consumers. In Resh, V. H. and Rosenberg, D. M. (ed.), The ecology of aquatic insects. Praeger Publishers. Lamberti, G. A., S. V. Gregory, L. R. Ashkenas, L. L. Judith and A. D. Steinman. 1995. Influence of grazer type and abundance on plant-herbivore interactions in streams. Hydrobiologia 306: 179-188. Leland, H. V. and S. D. Porter. 2000. Distribution of benthic algae in the upper Illinois River basin in relation to geology and land use. Freshwater Biol. 44: 279-301. Lobban, C. S., D. J. Chapman and B. P. Kemer. 1988. Experimental phycology-a laboratory manual. Cambridge University Press, USA. McCullough, D. A. and Minshall, G. W. 1979. Bioenergetics of lotic filter-feeding insects Simulium spp. (Diptera) and Hydropsyche occidentalis (Trichoptera) and their function in controlling organic transport in streams. Ecology 60: 585-596. Mclntosh, A. R. and C. R. Townsend. 1995. Impacts of an introduced predatory fish on mayfly grazing in New Zealand streams. Limnol. Oceanogr. 40: 1508-1512. Mclntosh, A. R. and C. R. Townsend. 1996. Interactions between fish, grazing invertebrates and algae in a New Zealand stream: a trophic cascade mediated by fish-induced changes to grazer behaviour. Oecologia 108: 174-181. Merrit, R.W. and K. W. Cummins. 1984. An introduction to the aquatic insects of North America . Kendall Hunt. pp 60-490. Mosisch, T. D., S. E. Bunn and P. M. Davies. 2001. The relative importance of shading and nutrients on algal production in subtropical streams. Freshwater Biol. 46: 1269-1278. Oemke, M. P. and T. M. Burton. 1986. Diatom colonization dynamics in a lotic system. Hydrobiologia 139: 153-166. Pan, Y., R. J. Stevenson, B. H. Hill, P. R. Kaufmann and A. T. Herlihy. 1999. Spatial patterns and ecological determinants of benthic algal assemblages, stream slope, TP, TN and riparian canopy coverage. J. Phycol. 35: 460-468. Patrick, R. and C. W. Reimer. 1966. The Diatoms of the United States, Vol.1. Monographs, Academy of National Sciences, Philadelphia, 688pp. Patrick, R. and C. W. Reimer. 1975. The Diatoms of the United States, Vol.2. Monographs, Academy of National Sciences, Philadelphia, 213pp. Pekárová, P. and J. Pekár. 1996. The impact of land use on stream water quality in Slovakia. J. Hydrol. 180: 333-350. Peters, L., H. Hillebrand and W. Traunspurger. 2007. Spatial variation of grazer effects on epilithic meiofauna and algae. J. N. Am. Benthol. Soc. 26: 78-91. Peterson, C. G. 1987. Gut passage and insect grazer selectivity of lotic diatoms. Freshwater Biol.18: 455-460. Peterson, C. G., K. Vormittag and H. M. Valett. 1998. Ingestion and digestion of epilithic algae by larval insects in a heavily grazed mountain stream. Freshwater Biol. 40: 607-623. Rekolainen, S. 1989. Phosphorus and nitrogen load from forest and agriculatural areas in Finland. Aqua. Fenn. 19: 95-107. Rhodes, A. L., R. M. Newton and A. Pufall. 2001. Influences of land use on water quality of a diverse New England watershed. Environ. Sci. Technol. 35: 3640-3645. Richards, C. and G. W. Minshall. 1988. The influence of periphyton abundance on Baetis bicaudatus distribution and colonization in a small stream. J. N. Am. Benthol. Soc. 7: 77-86. Rier, S. T. and R. J. Stevenson. 2006. Response of periphytic algae to gradients in nitrogen and phosphorus in streamside mesocosms. Hydrobiologia 561: 131-147. Rosemond, A. D., P. J. Mulholland and J. W. Elwood. 1993. Top-down and bottom-up control of stream periphyton: effects of nutrients and herbivores. Ecology 74: 1264-1280. Rosillon, D. 1988. Food preference and relative influence of temperature and food quality on life history characteristics of a grazing mayfly, Ephemerella ignita (Poda). Can. J. Zool. 66: 1474-1481. Rott, E., H. C. Duthie and E. Pipp. 1998. Monitoring organic pollution and eutrophication in the Grand River, Ontario, by means of diatoms. Can. J. Fish. Aquat. Sci. 55: 1143-1453. Round, F. E., R. M. Crawford and D.G. Mann. 1990. The Diatoms-biology and morphology of the genera. Cambridge University Press, UK. Round, F. E. and L. Bukhtiyarova. 1996. Four new genera based on Achnanthes (Achnanthidium) together with a re-diffinition of Achnanthidium. Diatom Res. 11: 345-361. Ruetz Ⅲ, C. R., B. Vondracek and R. M. Newman. 2004. Weak top-down control of grazers and periphyton by slimy sculpins in a coldwater stream. J. N. Am. Benthol. Soc. 23: 271-286. Scrimgeour, G. J., J. M. Culp, M. L. Bothwell, F. J. Wrona and M. H. McKee. 1991 Mechanisms of algal patch depletion: importance of consumptive and non-consumptive losses in mayfly-diatom systems. Oecologia 85: 343-348. Shieh, S. H. and P. S. Yang. 2000. Community structure and functional organization of aquatic insects in an agricultural mountain stream of Taiwan: 1985-1986 and 1995-1996. Zool. Stud. 39: 191-202. Smith G. C., A. P. Covich and A. M. D. Brasher. 2003. An ecological perspective on the biodiversity of tropical island streams. BioScience 53: 1048-1051. Soininen, J. and P. Niemelä. 2002. Inferring the phosphorus levels of rivers from benthic diatoms using weighted averaging. Arch. Hydrobiol. 154: 1-18. Soininen, J. and K. Könönen. 2004. Comparative study of monitoring South-Finnish rivers and streams using macroinvertebrate and benthic diatom community structure. Aquat. Ecol. 38: 63-75. Soldán, T. and J. T. Yang. 2003. Mayflies (Ephemeroptera) of Taiwan: Species composition, taxonomic shifts, distribution and biogeographical analysis. Ephemeroptera & Plecoptera 413-420. Soranno, P. A., S. L. Hubler and S. R. Carpenter. 1996. Phosphorus loads to surface waters: a simple model to account for spatial pattern of land use. Ecol. Appl. 6: 865-878. Squires, L. E. and N. S. Saoud. 1986. Effects of water quality and season on diatom community structure in the Damour River, Lebanon. Hydrobiologia 133: 127-141. Steinman, A. D. 1996. Effects of grazers on freshwater benthic algae. Pages 341-373 in R. J. Stevenson, M. L. Bothwell and R. L. Lowe (editors). Algae ecology. Freshwater benthic ecosystem. Academic Press, San Diego, California. Steinman, A. D., C. D. McIntire, S. V. Gregory, G. A. Lamberti and L. R. Ashkenas. 1987. Effects of herbivore type and density on taxonomic structure and physiology of algal assemblages in laboratory streams. J. N. Am. Benthol. Soc. 6: 175-188. Stevenson, R. J. 1996. The stimulation and drag of current. In Stevenson, R. J., M. L. Bothwell and R. L. Lowe (eds.), Algal ecology: Freshwater benthic ecosystem. Academic Press, USA, pp. 321-340. Tanaka, S. 1965. Salmon of the North Pacific Ocean- Part IX. Coho, Chinook and masu salmon in offshore waters. 3. A review of biological information on masu salmon (Oncorhynchus masu). Bull. – Int. North Pac. Fish. Comm. 16: 75-135. Tall, L., L. Cloutier and A. Cattaneo. 2006a. Grazer-diatom size relationships in an epiphytic community. Limnol. Oceanogr. 51: 1211-1216. Tall, A., A. Cattaneo, L. Cloutier, S. Dray and P. Legendre. 2006b. Resource partitioning in a grazer guild feeding on a multilayer diatom mat. J. N. Am. Benthol. Soc. 25: 800-810. Todd, A. W., B. R. Russell and J. V. Ward. 1996. Importance of light and nutrients in structuring an algal community in a Rocky Mountain streams. J. Freshw. Ecol. 11: 399-413. Van Dam, H., A. Mertens and J. Sinkeldam. 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Neth. J. Aquat. Ecol. 28: 117-133. Vyverman, W. 1991. Diatoms from Papua New Guinea. Bibliotheca Diatomologica, 22. Gebrder Borntraeger, Berlin, 223pp. Wang, C. M. 1989. Environmental quality and community ecology in an agricultural mountain stream system of Taiwan. PhD Thesis, Iowa State University, Iowa. Wellnitz, T. A. and J. V. Ward. 1998. Does light intensity modify the effect mayfly grazers have on periphyton. Freshwater Biol. 39: 135-149. Wilby, R. L., L. E. Cranston and E. J. Darby. 1998. Factors governing macrophyte status in Hampshire Chalk stream; implications for catchment management. J. Inst. Water. Environ. Manage. 12: 179-187. Winterbourn, M. J. 1971. An ecological study of Banksiola crotchi Banks (Trichotera, Phryganeidae) in Marion Lake, British Columbia. Can. J. Zool. 49: 637-645. Winter, J. G. and H. C. Duthie. 2000. Epilithic diatoms as indicators of streams total N and total P concentration. J. N. Am. Benthol. Soc. 19: 32-49. Winter, J. G., P. J. Dillon., C. Peterson., R. A. Reid and K. M. Somers. 2003. Impacts of golf course construction and operation on headwater streams: bioassessment using benthic algae. Can. J. Bot. 81: 848-858. Yamagishi, T. 1992. Plankton algae in Taiwan (Formosa). Uchida Rokakuho, Tokyo.
摘要: 武陵地區溪流是瀕臨滅絕台灣櫻花鈎吻鮭的唯一棲地,但是溪流濱岸卻有為數不少的農耕地,除耕地之施肥,造成本區溪水水質營養鹽增高外,更由於溪岸植被砍伐殆盡進而使得溪流水溫增高影響鮭魚之生長及繁殖。本研究目的為瞭解本區溪流主要初級生產者之石附生藻類之豐度及群集結構,以及農業活動對於石附生藻類之影響,同時探討七家灣溪內植食性水生昆蟲食性及食量,以及水生昆蟲對於藻類群集及藻類生長型式之影響。研究成果發現本區石附生藻類生物量有明顯之季節變化,在春、冬季較高,夏、秋季較低,且有高度農業活動之有勝溪明顯較本區其他溪流為高。在本區石附生藻類有85%是矽藻,其中以Achnanthidium豐度最高。石附生藻類群集亦呈現明顯的時空變異,且水溫、導電度、NO2+NO3、SiO2及流速是石附生藻類群集季節變化之主要因子,而構成空間分布差異之主要因子為NO2+NO3、覆蓋度及植食者密度。而植食性之水生昆蟲與石附生藻類相關性研究中,發現植食性水生昆蟲數量與石上葉綠素a 成正比,也就是說石上藻類量愈多植食性水生昆蟲數量就愈多。在有植食性水生昆蟲處理之石塊上黏著性(adnate)及直立型(erect)的藻種例如Achnanthidium, Cocconeis, Diatoma, Planothidium, 及 Synedra明顯比沒有水生昆蟲之石塊少。MDS分析顯示植食性水生昆蟲腸內含物有明顯冬、夏之差異。植食性水生昆蟲腸內含物在冬季幾乎都只是矽藻,但是夏季除了大部分是矽藻外,還發現有綠藻及藍綠菌。在植食性水生昆蟲食物偏好性測定,發現冬、夏季植食性水生昆蟲偏好之藻種類似。SIMPER分析發現Achnanthidium是植食性水生昆蟲最喜愛的藻屬。在植食性水生昆蟲食量部分,本研究在瀨區石上採取七家灣溪中最優勢之種類扁蜉蝣(Rhithrogena sp.)及沼石蠶(Uenoa sp.)為研究對象。發現扁蜉蝣一天中取食時間以下午六時較高,但沼石蠶則在各時間點之取食量均無差異。利用排空率計算植食性水生昆蟲每日攝食量,發現排空率算出之食量若除以平均蟲體重(蜉蝣為1.751mg、沼石蠶為0.809mg)來算,則扁蜉蝣食量是直接計算腸葉綠素a方法之1.5倍,但與利用藻板處理所測得之食量來比較,則低估136-250倍,而沼石蠶則低估約16倍。無論冬季或夏季,扁蜉蝣攝食對於藻類群集影響不顯著,對於藻類生長型式之影響則僅有夏季有顯著影響。沼石蠶則對於藻群集有顯著影響,但對於藻生長型式並無顯著影響。
This study aimed to characterize the abundance and community structure of epilithic algae and to examine the effects of intensive agriculture in mountain streams of the Wuling area, where is the only habitat of the endangered Taiwanese masu salmon (Oncorhynchus masou formosanus). The grazing effects of dominant aquatic insect larvae on the community and physiognomy of epilithic algae and the gut contents were also quantified. The results showed that there were significant seasonal variations in epilithic algal biomass, with higher values in spring and winter and lower values in summer and fall. Effects of agriculture on the subtropical streams of the Wuling area were significant and varied with the extent of agriculture in the catchment. The biomass was significantly higher in Yousheng Stream with a larger area of agriculture than in other streams. Diatoms were the most abundant species, contributing over 85% to the total cell number. Most of these were pennatae diatoms, of which the genus Achnanthidium was the most abundant in the area. However, the communities showed clear seasonal and spatial changes. BIOENV analysis suggested that the combination of water temperature, conductivity, NO2+NO3 and SiO2 concentrations and current velocity comprised the major factors explaining seasonal changes in the community, while the combination of NO2+NO3 concentration, canopy cover and grazer density comprised the major factors affecting spatial changes. It was also found that total individual numbers of grazing aquatic insect larvae correlated positively with chlorophyll a concentrations of epilithic algae on rubbles in the stream. Grazer-exclusion experiments show that cell numbers of adnate and erect algae such as Achnanthidium, Cocconeis, Diatoma, Planothidium, and Synedra were significantly lower on the grazed rubble. MDS ordination and ANOSIM analysis demonstrated that there were significant differences in the gut contents of dominant aquatic insect larvae collected in winter and summer. In winter, almost diatoms only were observed in the gut contents. In summer, in addition to diatoms, green algae and cyanobacteria were also observed remarkably in the gut contents. Despite the seasonal variation, preferred diatom species in the gut contents were similar in summer and winter. SIMPER analysis showed that Achnanthidium were the most preferred diatom genus in the gut contents. The mayfly (Rhithrogena sp.) showed a clear diel change in feeding rate, but Uenoa sp. didn't. The gut evacuation rate of Rhithrogena sp. was estimated to be 0.338± 0.450 μg Chl a per individual, while Uenoa sp. was estimated to be 9.806 ± 11.810 μg Chl a per individual. These values were 1.5 times greater than the values directly calculated by chlorophyll a concentrations in the gut contents, but were 136-250 times lower than the values of the grazed bricks by aquatic insect larvae in the stream. Rhithrogena sp. was found not to affect the structure of epilithic algae, but grazed the abundance of epilithic algae in summer. Nevertheless, Uenoa sp. was found to significiently affect the structure of epilithic algal community in the Wuling area.
URI: http://hdl.handle.net/11455/22736
其他識別: U0005-2208200803080200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2208200803080200
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.