Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22794
DC FieldValueLanguage
dc.contributor李佳音zh_TW
dc.contributorChia-Yin Leeen_US
dc.contributor邵國銓zh_TW
dc.contributorGwo-Chyuan Shawen_US
dc.contributor.advisor賴美津zh_TW
dc.contributor.advisorMei-Chin Laien_US
dc.contributor.author林志鍵zh_TW
dc.contributor.authorLin, Chih-Chienen_US
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-06T07:18:42Z-
dc.date.available2014-06-06T07:18:42Z-
dc.identifierU0005-2907200817554800zh_TW
dc.identifier.citation丁俊彥、賴美津。2005。 To infer the characteristics of the Haloterrigena themotolerans H13 with comparative genomics.中華民國微生物學會第三十九次大會。 林姿伶。2006。極端高鹽太古生物聚羥基烷酯合成酶基因的選殖與分析。中興大學生命科學系碩士論文。 游詒婷。2006。自鹽結晶純化之極端高鹽太古生物的分類鑑定與特性分析。中興大學生命科學系碩士論文。 廖采苓,賴美津。1993。極端嗜鹽菌的分離純化及特性分析。中華民國微生物學會第二十七次大會。 賴美津。1995。端嗜鹽菌的分離純化及特性分析及探討其在生物科技上發展的潛力。行政院國科會專題研究計畫成果報告。 賴美津。1999。極端嗜鹽古生菌生產的聚酯應用為生醫材料的評估。行政院國科會專題研究計畫成果報告。 Aldor, I., and J. D. Keasling. 2001. Metabolic engineering of poly (3-hydroxybutyrate -co-3-hydroxyvalerate) composition in recombinant Salmonella enterica serovar typhimurium. Biotechnol. Bioeng. 76:108-114. Aldor, I. S., S. W. Kim, K. L. Prather, and J. D. Keasling. 2002. Metabolic engineering of a novel propionate-independent pathway for the production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) in recombinant Salmonella enterica serovar typhimurium. Appl. Environ. Microbiol. 68:3848-3854. Aldor, I. S., and J. D. Keasling. 2003. Process design for microbial plastic factories: metabolic engineering of polyhydroxyalkanoates. Curr. Opin. Biotechnol. 14:475-483. Allers, T., and M. Mevarech. 2005. Archaeal genetics - the third way. Nat. Rev. Genet. 6:58-73. Amara, A. A., and B. H. Rehm. 2003. Replacement of the catalytic nucleophile cysteine-296 by serine in class II polyhydroxyalkanoate synthase from Pseudomonas aeruginosa-mediated synthesis of a new polyester: identification of catalytic residues. Biochem. J. 374:413-421 Anderson, A. J., and E. A. Dawes. 1990. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev. 54:450-472. Anderson, A. J., G. W. Haywood, and E. A. Dawes. 1990. Biosynthesis and composition of bacterial poly(hydroxyalkanoates). Int. J. Biol. Macromol. 12:102-105. Austin, M. B., and J. P. Noel. 2003. The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20:79-110. Baliga, N. S., S. J. Bjork, R. Bonneau, M. Pan, C. Iloanusi, M. C. Kottemann, L. Hood, and J. DiRuggiero. 2004. Systems level insights into the stress response to UV radiation in the halophilic archaeon Halobacterium NRC-1. Genome. Res. 14:1025- 1035. Barbuzzi, T., M. Giuffrida , G. Impallomeni , S. Carnazza , A. Ferreri , S. P. Guglielmino and A. Ballistreri. 2004. Microbial synthesis of poly (3- hydroxyalkanoates) by Pseudomonas aeruginosa from fatty acids: identification of higher monomer units and structural characterization. Biomacromol. 5:2469-2478. Barns, S. M., C. F. Delwiche, J. D. Palmer, and N. R. Pace. 1996. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc. Natl. Acad. Sci. U S A 93:9188-9193. Bobay, B. G., A. Andreeva, G. A. Mueller, J. Cavanagh, and A. G. Murzin. 2005. Revised structure of the AbrB N-terminal domain unifies a diverse superfamily of putative DNA-binding proteins. FEBS Lett. 579:5669-5674. Bräsen, C., and P. Schönheit. 2005. AMP-forming acetyl-CoA synthetase from the extremely halophilic archaeon Haloarcula marismortui: purification, identification and expression of the encoding gene, and phylogenetic affiliation. Extremophiles. 9:355-365. Burggraf, S., H. Huber, and K. O. Stetter. 1997. Reclassification of the crenarchael orders and families in accordance with 16S rRNA sequence data. Int. J. Syst. Bacteriol. 47:657-660. Burns, D.G., H. M. Camakaris, P. H. Janssen, and M. L. Dyall-Smith. 2004. Cultivation of Walsby''s square haloarchaeon. FEMS. Microbiol. Lett. 238:469-473. Cavalier-Smith, T. 2002. The neomuran? origin of archaebacteria, the negibacterial? root of the universal tree and bacterial megaclassification? Int. J. Syst. Evol. Microbiol. 52:7-76. Chaban, B., S. Y. Ng, and K. F. Jarrell. 2006. Archaeal habitats-from the extreme to the ordinary. Can. J. Microbiol. 52:73-116. Chen, G. Q., and Q. Wu. 2005. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565-6578. Dawes, E. A., and P. J. Senior. 1973. The role and regulation of energy: reserve polymers in microorganisms. Adv. Microb. Physiol. 10:135–266. Don, T. M., C. W. Chen, and T. H. Chan. 2006. Preparation and characterization of poly(hydroxyalkanoate) from the fermentation of Haloferax mediterranei. J. Biomater. Sci. Polym. Ed. 17:1425-1438. Doi, Y., A. Segawa, Y. Kawaguchi, and M. Kunioka. 1990. Cyclic nature of poly(3-hydroxyalkanoate) metabolism in Alcaligenes eutrophus. FEMS Microbiol. Lett. 55:165-169. Ellman, G. L. 1959. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82:70-77. Feigenbaum, J., and H. Schulz. 1975. Thiolases of Escherichia coli: purification and chain length specificities. J. Bacteriol. 122:407-411. Fernandez-Castillo, R., F. Rodriguez-Valera, J. Gonzalez-Ramos, and F. Ruiz- Berraquero. 1986. Accumulation of poly (beta-hydroxybutyrate) by Halobacteria. Appl. Environ. Microbiol. 51:214-216. Foster, L. J. R., S. J. Zervas, R. W. Lenz, and R. C. Fuller. 1995. The biodegradation of poly-3-hydroxyalkanoates, PHAs, with long alkyl substituents by Pseudomonas maculicola. Biodegradation 6:67–73. Fukui, T., and Y. Doi. 1997. Cloning and analysis of the poly(3-hydroxybutyrate- co-3-hydroxyhexanoate) biosynthesis genes of Aeromonas caviae. J. Bacteriol. 179: 4821–4830. Fukui, T., N. Shiomi, and Y. Doi. 1998. Expression and characterization of (R)-specific enoyl coenzyme A hydratase involved in polyhydroxyalkanoate biosynthesis by Aeromonas caviae. J. Bacteriol. 180:667–673. Fukui, T., T. Kichise, T. Iwata, and Y. Doi. 2001. Characterization of 13 kDa granule-associated protein in Aeromonas caviae and biosynthesis of polyhydroxyalkanoates with altered molar composition by recombinant bacteria. Biomacromol. 2:148-153. Fukui, T., H. Abe, and Y. Doi. 2002. Engineering of Ralstonia eutropha for production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from fructose and solid-state properties of the copolymer. Biomacromol. 3:618-624. Gerngross, T. U., K. D. Snell, O. P. Peoples, A. J. Sinskey, E. Csuhai, S. Masamune, and J. Stubbe. 1994. Overexpression and purification of the soluble polyhydroxyalkanoate synthase from Alcaligenes eutrophus: evidence for a required posttranslational modification for catalytic activity. Biochem. 33:9311-9320. Grant, W. D., R. T. Gemmell and T. J. Mcgenity. 1998. Halophiles, p93-132. K. Horikoshi and W. D. Grant(ed.). Extremophiles, microbial life in extreme environments. Wiley-liss, Inc., New York, NY. Gross, R. A., and B. Kalra. 2002. Biodegradable polymers for the environment. Science. 297:803-807. Han, J., Q. Lu, L. Zhou, J. Zhou, and H. Xiang. 2007. Molecular characterization of the phaECHm genes, required for biosynthesis of poly(3-hydroxybutyrate) in the extremely halophilic archaeon Haloarcula marismortui. Appl. Environ. Microbiol. 73:6058-6065. Hänggi, U. J. 1995. Requirements on bacterial polyesters as future substitute for conventional plastics for consumer goods. FEMS Microbial. Rev. 16:213-220. Haywood, G. W., A. J. Anderson, L. Chu, and E. A. Dawes. 1988. The role of NADH- and NADHP-linked acetoacetyl-CoA reductases in the poly- 3-hydroxybutyrate synthesizing organism Alcaligenes eutrophus. FEMS Microbiol. Lett. 52:259–264. Hazer, B., and A. Steinbüchel. 2007. Increased diversification of polyhydroxy- alkanoates by modification reactions for industrial and medical applications. Appl. Microbiol. Biotechnol. 74:1-12. Heikinheimo, P., A. Goldman, C. Jeffries, and D. L. Ollis. 1999. Of barn owls and bankers: a lush variety of alpha/beta hydrolases. Structure7:R141-R146. Henderson, R. A., and C. W. Jones. 1997. Poly-3-hydroxybutyrate production by washed cells of Alcaligenes eutrophus; purification, characterisation and potential regulatory role of citrate synthase. Arch. Microbiol. 168:486–492. Hermawan, S., and D. Jendrossek. 2007. Microscopical investigation of poly(3-hydroxybutyrate) granule formation in Azotobacter vinelandii. FEMS Microbiol. Lett. 266:60-64. Hezayen, F. F., B. H. Rehm, R. Eberhardt, and A. Steinbüchel. 2000. Polymer production by two newly isolated extremely halophilic archaea: application of a novel corrosion-resistant bioreactor. Appl. Microbiol. Biotechnol. 54:319-325. Hezayen, F.F., B. H. Rehm, B. J. Tindall, and A. Steinbüchel. 2001. Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov. and description of Natrialba aegyptiaca sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid). Intl. J. Syst. Evol. Microbiol. 51:1133-1142. Hezayen, F. F., A. Steinbüchel, and B. H. Rehm. 2002a. Biochemical and enzymological properties of the polyhydroxybutyrate synthase from the extremely halophilic archaeon strain 56. Arch. Biochem. Biophys. 403:284-291. Hezayen, F. F., B. J. Tindall, A. Steinbüchel, and B. H. Rehm. 2002b. Characterization of a novel halophilic archaeon, Halobiforma haloterrestris gen. nov., sp. nov., and transfer of Natronobacterium nitratireducens to Halobiforma nitratireducens comb. nov. Intl. J. Syst. Evol. Microbiol. 52:2271-2280. Hiltunen, J. K., and Y. Qin. 2000. Beta-oxidation - strategies for the metabolism of a wide variety of acyl-CoA esters. Biochim. Biophys. Acta. 1484:117-128. Hisano, T., T. Tsuge, T. Fukui, T. Iwata, K. Miki, and Y. Doi. 2003. Crystal structure of the (R)-specific enoyl-CoA hydratase from Aeromonas caviae involved in polyhydroxyalkanoate biosynthesis. J. Biol. Chem. 278:617-624. Hohn, M. J., B. P. Hedlund, and H. Huber. 2002. Detection of 16S rDNA sequences representing the novel phylum "Nanoarchaeota": indication for a wide distribution in high temperature biotopes. Syst. Appl. Microbiol. 25:551-554. Holmquist, M. 2000. Alpha/Beta-hydrolase fold enzymes: structures, functions and mechanisms. Curr. Protein. Pept. Sci. 1:209-235. Hoppensack, A., B. H. Rehm, A. Steinbüchel. 1999. Analysis of 4-phosphopan- tetheinylation of polyhydroxybutyrate synthase from Ralstonia eutropha: generation of beta-alanine auxotrophic Tn5 mutants and cloning of the panD gene region. J. Bacteriol. 181:1429-1435. Huang, T. Y., K. J. Duan, S. Y. Huang, and C. W. Chen. 2006. Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferax mediterranei. J. Ind. Microbiol. Biotechnol. 33:701-706. Huber, H., M. J. Hohn, R. Rachel, T. Fuchs, V. C. Wimmer, and K. O. Stetter. 2002. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63-67. Jarrell, K. F., D. Faguy, A. M. Hebert, and M. L. Kalmokoff. 1992. general method of isolating high molecular weight DNA from methanogenic archaea (archaebacteria). Can J Microbiol. 38:65-68. Jendrossek, D., I. Knoke, R. B. Habibian, A. Steinbüchel, and H. G. Schlegel. 1993. Degradation of poly(3-hydroxybutyrate), PHB, by bacteria and purification of a novel PHB depolymerase from Comamonas sp. J. Environ. Polymer. Deg. 1: 53–61. Jendrossek, D., A. Schirmer, and H. G. Schlegel. 1996. Biodegradation of polyhydroxyalkanoic acids. Appl. Microbiol. Biotechnol. 46:451–463. Jendrossek, D., and R. Handrick. 2002. Microbial degradation of polyhydroxyalkanoates. Annu. Rev. Microbiol. 56:403-432. Jendrossek, D., O. Selchow, and M. Hoppert. 2007. Poly(3-hydroxybutyrate) granules at the early stages of formation are localized close to the cytoplasmic membrane in Caryophanon latum. Appl. Environ. Microbiol. 73:586-593. Jia, Y., T. J. Kappock, T. Frick, A. J. Sinskey, and J. Stubbe. 2000. Lipases provide a new mechanistic model for polyhydroxybutyrate (PHB) synthases: characterization of the functional residues in Chromatium vinosum PHB synthase. Biochem. 39:3927-3936. Jia, Y., W. Yuan, J. Wodzinska, C. Park, A. J. Sinskey, and J. Stubbe. 2001. Mechanistic studies on class I polyhydroxybutyrate (PHB) synthase from Ralstonia eutropha: class I and III synthases share a similar catalytic mechanism. Biochem. 40:10 11-1019. Jolley, K. A., R. J. Russell, D. W. Hough, and M. J. Danson. 1997. Site-directed mutagenesis and halophilicity of dihydrolipoamide dehydrogenase from the halophilic archaeon, Haloferax volcanii. Eur. J. Biochem. 248:362-368. Jossek, R., and A. Steinbüchel. 1998. In vitro synthesis of poly(3-hydroxybutyric acid) by using an enzymatic coenzyme A recycling system. FEMS Microbiol. Lett. 168:319-324. Jung, Y. M., J. S. Park, Y. H. Lee. 2000. Metabolic engineering of Alcaligenes eutrophus through the transformation of cloned phbCAB genes for the investigation of the regulatory mechanism of polyhydroxyalkanoate biosynthesis. Enzyme. Micro.. Technol. 26:201–208. Kates, M. 1993. Biology of halophilic bacteria, Part II. Membrane lipids of extreme halophiles: biosynthesis, function and evolutionary significance. Experientia. 49:1027-1036. Keenan, T. M., J. P. Nakas, and S. W. Tanenbaum. 2006. Polyhydroxyalkanoate copolymers from forest biomass. J. Ind. Microbiol. Biotechnol. 33:616-26. Kessler, B., and B. Witholt. 2001. Factors involved in the regulatory network of polyhydroxyalkanoate metabolism. J. Biotechnol. 86:97-104. Khandjian, E. W. 1986. UV crosslinking of RNA to nylon membrane enhances hybridization signals. Mol. Biol. Rep. 11:107-115. Klein, W., and M. A. Marahiel. 2002. Structure-function relationship and regulation of two Bacillus subtilis DNA-binding proteins, HBsu and AbrB. J. Mol. Microbiol. Biotechnol. 4:323-329. Kim, D. Y., Y. Kim, and Y. H. Rhee. 1998. Bacterial poly(3-hydroxyalkanoates) bearing carbon-carbon triple bonds. Macromol. 31:4760-4763. Koek, W. D., N. Bhattacharya, J. J. Braat, V. S. Chan, and J. Westerweel. 2004. Holographic simultaneous readout polarization multiplexing based on photoinduced anisotropy in bacteriorhodopsin. Opt. Lett. 29:101-103. Kojima, T., T. Nishiyama, A. Maehara, S. Ueda, H. Nakano, and T. Yamane. 2004. Expression profiles of polyhydroxyalkanoate synthesis-related genes in Paracoccus denitrificans. J.Biosci. Bioeng. 97:45-53. Koller M, Hesse P, Bona R, Kutschera C, Atlić A, Braunegg G. 2007. Potential of various archae- and eubacterial strains as industrial polyhydroxyalkanoate producers from whey. Macromol. Biosci. 7:218-26. Könneke, M., A. E. Bernhard, J. R. de la Torre, C. B. Walker, J. B. Waterbury, and D. A. Stahl. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543-546. Kottemann, M., A. Kish, C. Iloanusi, S. Bjork, and J. DiRuggiero. 2005. Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC1 to desiccation and gamma irradiation. Extremophiles 9:219-227. Kyte, J., and R. F. Doolittle. 1982. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 157:105-132. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227:680-685. Lai, M. C., and S. H. Hsu. 2003. January R.O.C. patent 579,390. Lai, M. C., and S. H. Hsu. 2007. January R.O.C. patent I270,376. Lai, M. C., J. Y. Ding, M. C. Lin, C. C. Kuo, and S. H. Hsu. 2003. New halophilic archaeaon isolated from the solar saltern sybthesis novel biodegradable polyester. I-113, In Abstracts of 103rd General Meeting of the Society of Microbiology. American Society for Microbiology, Washington, D. C. Lai, M. C., J. Y. Ding, M. C. Lin, C. C. Kuo, and S. H. Hsu. 2005. New halophilic archaeaon isolated from the solar saltern synthesis novel biodegradable polyester. P-20, In Abstracts of 1th General Meeting of International Symposium of Biocatalysis and Biotechnology. National Chung Hsing University, Taichung, Taiwan. Lee, S. Y. 1997. E. coli moves into the plastic age. Nat. Biotechnol. 15:17-18. Lee, S. Y., and J. I. Choi. 2001. Production of microbial polyester by fermentation of recombinant microorganisms. Adv. Biochem. Eng. Biotechnol. 71:183-207. Lee, T. R., J. S. Lin, S. S. Wang, and G. C. Shaw. 2004. PhaQ, a new class of poly-beta-hydroxybutyrate (PHB)-responsive repressor, regulates phaQ and phaP (phasin) expression in Bacillus megaterium through interaction with PHB. J. Bacteriol. 186:3015-3021. Leininger, S., T. Urich, M. Schloter, L. Schwark, J. Qi, G. W. Nicol, J. I. Prosser, S. C. Schuster, and C. Schleper. 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806-809. Lemoigne, M. 1926. Produits de de´shydration et de polymerisation de l’acide b-oxobutyrique. Bull. Soc. Chem. Biol. (Paris) 8:770–782. Lenz, R. W., and R. H. Marchessault. 2005. Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromol. 6:1-8. Liebergesell, M., S. Rahalkar, and A. Steinbüchel. 2000. Analysis of the Thiocapsa pfennigii polyhydroxyalkanoate synthase: subcloning, molecular characterization and generation of hybrid synthases with the corresponding Chromatium vinosum enzyme. Appl. Microbiol. Biotechnol. 54:186-194. Liu, Q., S. P. Ouyang, A. Chung, Q. Wu, and G. Q. Chen. 2007. Microbial production of R-3-hydroxybutyric acid by recombinant E. coli harboring genes of phbA, phbB, and tesB. Appl. Microbiol. Biotechnol. 76:811-818. Lillo, J. G., and F. Rodriguez-Valera. 1990. Effects of culture conditions on poly(beta-hydroxybutyric acid) production by Haloferax mediterranei. Appl. Environ. Microbiol. 56:2517-2521. Lin, M. J., C. C. Kuo, J. S. Chen, S. H. Hsu and M. C. Lai. 2002. Novel biodegradable polyester from extreme halophilic archaea. P-3, In Abstracts of the Seventeenth Joint Annual Conference of Biomedical Sciences, Taipei, Taiwan. Li, R., H. Zhang, and Q. Qi. 2007. The production of polyhydroxyalkanoates in recombinant Escherichia coli. Bioresour. Technol. 98:2313-2320. Liu, T., S. J. Liu, Y. Xue, Y. Ma,and P. Zhou. 2002. Purification and characterization of an extremely halophilic acetoacetyl-CoA thiolase from a newly isolated Halobacterium strain ZP-6. Extremophiles. 6:97-102. Lundgren, D. G., R. Alper, C. Schnaitman, and R. H. Marchessault. 1965. Characterization of poly-ß-hydroxybutyrate extracted from different bacteria. J. Bacteriol. 89: 245-251. Lütke-Eversloh, T., K. Bergander, H. Luftmann, and A. Steinbüchel. 2001a. Identification of a new class of biopolymer: bacterial synthesis of a sulfur-containing polymer with thioester linkages. Microbiol. 147:11-19. Lütke-Eversloh, T., K. Bergander, H. Luftmann, and A. Steinbüchel. 2001b. Biosynthesis of poly(3-hydroxybutyrate-co-3-mercaptobutyrate) as a sulfur analogue to poly(3-hydroxybutyrate) (PHB). Biomacromol. 2:1061-1065. Lütke-Eversloh, T., A. Fischer, U. Remminghorst, J. Kawada, R. H. Marchessault, A. Bögershausen, M. Kalwei, H. Eckert, R. Reichelt, S. J. Liu, and A. Steinbüchel. 2002. Biosynthesis of novel thermoplastic polythioesters by engineered Escherichia coli. Nat. Mater. 1:236-240. Madison, L. L., and G. W. Huisman. 1999. Metabolic engineering of poly(3- hydroxyalkanoates): from DNA to plastic. Microbiol. Mol. Biol. Rev. 63:21-53. Maehara, A., Y. Doi, T. Nishiyama, Y. Takagi, S. Ueda, H. Nakano, and T. Yamane. 2001. PhaR, a protein of unknown function conserved among short-chain-length polyhydroxyalkanoic acids producing bacteria, is a DNA-binding protein and represses Paracoccus denitrificans phaP expression in vitro. FEMS Microbiol. Lett. 200:9-15. Maehara, A., S. Taguchi, T. Nishiyama, T. Yamane, and Y. Doi. 2002. A repressor protein, PhaR, regulates polyhydroxyalkanoate (PHA) synthesis via its direct interaction with PHA. J. Bacteriol. 184:3992-4002. Marchessault, R. H. 1996. Tender morsels for bacteria: recent developments in microbial polyesters. Trends. Polym. Sci. 4:163–168. Marhuenda-Egea, F. C., S. Piera-Velazquez, C. Cadenas, and E. Cadenas. 2002. Reverse micelles in organic solvents: a medium for the biotechnological use of extreme halophilic enzymes at low salt concentration. Archaea. 1:105-111. Matsusaki, H., S. Manji, K.Taguchi, M. Kato, T. Fukui, and Y. Doi. 1998. Cloning and molecular analysis of the poly(3-hydroxybutyrate) and poly (3-hydroxybutyrate-co- 3-hydroxyalkanoate) biosynthesis genes in Pseudomonas sp. strain 61-3. J. Bacteriol. 180:6459–6467. Martini, F. F. 1989. November U.S. patent 4880592. McCool, G. J., and M. C. Cannon. 2001. PhaC and PhaR are required for polyhydroxyalkanoic acid synthase activity in Bacillus megaterium. J. Bacteriol. 183:4235-4243. McGenity, T. J., R. T. Gemmell, and W. D. Grant. 1998. Proposal of a new halobacterial genus Natrinema gen. nov., with two species Natrinema pellirubrum nom. nov. and Natrinema pallidum nom. nov. Int. J. Syst. Bacteriol. 48:1187-1196. Merrick, J. M., and M. Doudoroff. 1964. Depolymerization of poly-beta- hydroxybutyrate by intracellular enzyme system. J. Bacteriol. 88:60-71. Messing, J. 1979. A multipurpose cloning system based on the single-stranded DNA bacteriophage M13. Recom. DNA Tech. Bull. 2:43-48. Mevarech, M., F. Frolow, and L. M. Gloss. 2000. Halophilic enzymes: proteins with a grain of salt. Biophys Chem. 86:155-164. Miller, M. B., and B. L. Bassler. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55:165-199. Misra, S. K., S. P. Valappil, I. Roy, and A. R. Boccaccini. 2006. Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications. Biomacromol. 7:2249-2258. Miyake, M., K. Kataoka, M. Shirai, and Y. Asada. 1997. Control of poly beta hydroxybutyrate synthase mediated by acetyl phosphate in cyanobacteria. J. Bacteriol. 179:5009–5013. Miyamoto, C. M., W. Q. Sun. and E. A. Meighen. 1998. The Lux Rregulator protein controls synthesis of polyhydroxybutyrate in Vibrio harveyi. BBA Protein. Struct. Mol. Enzym. 1384: 356–364. Modis, Y., and R. K. Wierenga. 2000. Crystallographic analysis of the reaction pathway of Zoogloea ramigera biosynthetic thiolase.J Mol Biol. 297:1171-1182. Müh, U., A. J. Sinskey, D. P. Kirby, W. S. Lane, and J. Stubbe. 1999. PHA synthase from chromatium vinosum: cysteine 149 is involved in covalent catalysis. Biochem. 38:826-837. Nardini, M., and B. W. Dijkstra. 1999. Alpha/beta hydrolase fold enzymes: the family keeps growing. Curr. Opin. Struct. Biol. 9:732-737. Nicol, G. W., and C. Schleper. 2006. Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle? Trends. Microbiol. 14:207-212. Nomura, C. T., and S. Taguchi. 2007. PHA synthase engineering toward superbiocatalysts for custom-made biopolymers. Appl. Microbiol. Biotechnol. 73:969-679. Oliveira, P., and P. Lindblad. 2008. An AbrB-Like protein regulates the expression of the bidirectional hydrogenase in Synechocystis sp. strain PCC 6803. J Bacteriol. 190:1011-1019. Oren, A. 1994. Enzyme diversity in halophilic archaea. Microbiologia. 10:217-228. Oren, A. 2002. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Biotechnol. 28:56-63. Ozawa, K., T. Harashina, R. Yatsunami, and S. Nakamura. 2005. Gene cloning, expression and partial characterization of cell division protein FtsZ1 from extremely halophilic archaeon Haloarcula japonica strain TR-1. Extremophiles. 9:281-288. Park, S. J., and S. Y. Lee. 2004. Biosynthesis of poly(3-hydroxybutyrate- co-3-hydroxyalkanoates) by metabolically engineered Escherichia coli strains. Appl. Biochem. Biotechnol. 114:335-346. Park, S. J., S. Y. Lee, and Y. Lee. 2004. Biosynthesis of R-3-hydroxyalkanoic acids by metabolically engineered Escherichia coli. Appl. Biochem. Biotechnol. 114:373-379. Pieper-Fürst, U., M. H. Madkour, F. Mayer, and A. Steinbüchel. 1995. Identification of the region of a 14-kilodalton protein of Rhodococcus ruber that is responsible for the binding of this phasin to polyhydroxyalkanoic acid granules. J Bacteriol. 177:2513- 2523. Pouton, C. W. 2001. Polymeric materials for advanced drug delivery. Adv. Drug. Deliv. Rev. 53:1-3. Pötter, M., and A. Steinbüchel. 2005. Poly(3-hydroxybutyrate) granule-associated proteins: impacts on poly(3-hydroxybutyrate) synthesis and degradation. Biomacromol. 6:552-560. Pötter, M., H. Müller, A. Steinbüchel. 2005. Influence of homologous phasins (PhaP) on PHA accumulation and regulation of their expression by the transcriptional repressor PhaR in Ralstonia eutropha H16. Microbiology. 151:825-833. Purdy, K. J., T. D. Cresswell-Maynard, D. B. Nedwell, T. J. McGenity, W. D. Grant, K. N. Timmis, and T. M. Embley. 2004. Isolation of haloarchaea that grow at low salinities. Environ. Microbiol. 6:591-595. Price, A. C., Y. M. Zhang, C. O. Rock, and S. W. White. 2001. Structure of beta-ketoacyl-[acyl carrier protein] reductase from Escherichia coli: negative cooperativity and its structural basis. Biochem. 40:12772-12781. Prieto, M. A., B. Buhler, K. Jung, B. Witholt, and B. Kessler. 1999. PhaF, a polyhydroxyalkanoate-granule-associated protein of Pseudomonas oleovorans GPo1 involved in their egulatory expression system for pha genes. J. Bacteriol. 181: 858-868. Qi, Q., A. Steinbüchel, and B. H. Rehm. 1998. Metabolic routing towards polyhydroxyalkanoic acid synthesis in recombinant Escherichia coli (fadR): inhibition of fatty acid beta-oxidation by acrylic acid. FEMS Microbiol. Lett. 167:89-94. Qi, Q., A. Steinbüchel, and B. H. Rehm. 2000. In vitro synthesis of poly (3-hydroxydecanoate): purification and enzymatic characterization of type II polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 54:37-43. Reddy, C. S. K., R. Ghai, Rashmi, and V. C. Kalia. 2003. Polyhydroxyalkanoates: an overview. Bioresour. Technol. 87:137-146. Rehm, B. H., and A. Steinbüchel. 1999. Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int. J. Biol. Macromol. 25:3-19. Rehm, B. H. 2003. Polyester synthases: natural catalysts for plastics. Biochem. J. 376:15-33. Rehm, B. H. 2006. Genetics and biochemistry of polyhydroxyalkanoate granule self-assembly: The key role of polyester synthases. Biotechnol. Lett. 28:207-213. Rehm, B. H. 2007. Biogenesis of microbial polyhydroxyalkanoate granules: a platform technology for the production of tailor-made bioparticles. Curr. Issues. Mol. Biol. 9:41-62. Robles, J., and M. Doers. 1994. pGEM®-T Vector systems Troubleshooting Guide. Promega Notes. 45:1-20. Rodriguez-Valera, F. 1992. Biotechnological potential of halobacteria. Biochem. Soc. Symp. 58:135-147. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed.Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. Schirmer, A., D. Jendrossek, and H. G. Schlegel. 1993. Degradationof poly (3-hydroxyoctanoic acid) [P(3HO)] by bacteria: purification and properties of a P(3HO) depolymerase from Pseudomonas fluorescens GK13. Appl. Environ. Microbiol. 59:1220-1227. Schembri, M. A., R. C. Bayly, and J. K. Davies. 1995. Phosphate concentration regulates transcription of the Acinetobacter polyhydroxyalkanoic acid biosynthetic genes. J. Bacteriol. 177:4501–4507. Seo, M. C., H. D. Shin, and Y. H. Lee. 2004. Transcription level of granule-associated phaP and phaR genes and granular morphogenesis of poly-beta-hydroxyalkanoate granules in Ralstonia eutropha. Biotechnol. Lett. 26:617-622. Shalev-Malul, G., J. Lieman-Hurwitz, Y. Viner-Mozzini, A. Sukenik, A. Gaathon, M. Lebendiker, and A. Kaplan. 2008. An AbrB-like protein might be involved in the regulation of cylindrospermopsin production by Aphanizomenon ovalisporum. Environ Microbiol. 10:988-999. Sleator, R. D., and C. Hill. 2002. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol. Rev. 26:49-71. Smith, S. 1994. The animal fatty acid synthase: one gene, one polypeptide, seven enzymes. FASEB J. 8:1248-1259. Spiekermann, P., B. H. Rehm, R. Kalscheuer, D. Baumeister, and A. Steinbüchel. 1999. A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol. 171:73-80. Staunton, J., and K. J. Weissman. 2001. Polyketide biosynthesis: a millennium review. Nat. Prod. Rep. 18:380-416. Suriyamongkol, P., R. Weselake, S. Narine, M. Moloney, and S. Shah. 2007 Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants - a review. Biotechnol. Adv. 25:148-175. Taguchi, S., and Y. Doi. 2004. Evolution of polyhydroxyalkanoate (PHA) production system by "enzyme evolution": successful case studies of directed evolution. Macromol. Biosci. 4:146-156. Tanizaki, S., and M. Feig. 2005. A generalized Born formalism for heterogeneous dielectric environments: application to the implicit modeling of biological membranes. J. Chem. Phys. 122:124706. Tian, J., A. J. Sinskey, and J. Stubbe. 2005a. Detection of intermediates from the polymerization reaction catalyzed by a D302A mutant of class III polyhydroxyalkanoate (PHA) synthase. Biochem. 44:1495-1503. Tian, J., A. J. Sinskey, and J. Stubbe. 2005b. Class III polyhydroxybutyrate synthase: involvement in chain termination and reinitiation. Biochem. 2005 44:8369-8877. Timm, A., and A. Steinbüchel. 1990. Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl. Environ. Microbiol. 56:3360-3367. Timm, A., and A. Steinbüchel. 1992. Cloning and molecular analysis of the poly(3-hydroxyalkanoic acid) gene locus of Pseudomonas aeruginosa PAO1. Eur. J. Biochem. 209:15–30. Tsuge, T., T. Hisano, S. Taguchi, and Y. Doi. 2003a. Alteration of chain length substrate specificity of Aeromonas caviae R-enantiomer-specific enoyl-coenzyme A hydratase through site-directed mutagenesis. Appl. Environ. Microbiol. 69:4830–4836. Tsuge, T., K. Taguchi, T. Seiichi, and Y. Doi. 2003b. Molecular characterization and properties of (R)-specific enoyl-CoA hydratases from Pseudomonas aeruginosa: metabolic tools for synthesis of polyhydroxyalkanoates via fatty acid beta-oxidation. Int J. Biol. Macromol. 31:195-205. Uchino, K., and T. Saito. 2006. Thiolysis of poly(3-hydroxybutyrate) with polyhydroxyalkanoate synthase from Ralstonia eutropha. J. Biochem. 139:615-621. Uchino, K., T. Saito, B. Gebauer, and D. Jendrossek. 2007. Isolated poly(3-hydroxybutyrate) (PHB) granules are complex bacterial organelles catalyzing formation of PHB from acetyl coenzyme A (CoA) and degradation of PHB to acetyl-CoA. J. Bacteriol. 189:8250-8256. Valappil, S. P., S. K. Misra, A. R. Boccaccini, and I. Roy. 2006. Biomedical applications of polyhydroxyalkanoates: an overview of animal testing and in vivo responses. Expert. Rev. Med. Devices. 3:853-868. Valentin, H. E., and Steinbüchel. A. 1994. Appilication of enzymatically synthesized short-chain-length hydroxyl fatty acid coenzyme A thioesters for assay of polyhydroxyalkanoic acid synthases. Appl. Microbiol. Biotechnol. 40: 699–709. Valentin, H. E., E. S. Stuart, R. C. Fuller, R. W. Lenz, and D. Dennis. 1998. Investigation of the function of proteins associated to polyhydroxyalkanoate inclusions in Pseudomonas putida BMO1. J. Biotechnol. 64: 145–157. Waters, E., M. J. Hohn, I. Ahel, D. E. Graham, M. D. Adams, M. Barnstead, K. Y. Beeson, L. Bibbs, R. Bolanos, M. Keller, K. Kretz, X. Lin, E. Mathur, J. Ni, M. Podar, T. Richardson, G. G. Sutton, M. Simon, D. Soll, K. O. Stetter, J. M. Short, and M. Noordewier. 2003. The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc. Natl. Acad. Sci. USA 100:12984- 12988. Wieczorek, R., A. Pries, A. Steinbüchel, and F. Mayer. 1995. Analysis of a 24-kilodalton protein associated with the polyhydroxyalkanoic acid granules in Alcaligenes eutrophus. J. Bacteriol. 177:2425-2435. Wilfinger, W. W., K. Mackey, and P. Chomczynski. 1997. Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity. Biotechniques. 22:474-476, 478-481. Woese, C. R., O. Kandler, and M. L. Wheelis. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. U S A. 87:4576-4579. Yang, S. Y., X. Y. He Yang, G. Healy-Louie, H. Schulz, and M. Elzinga. 1991. Nucleotide sequence of the fadA gene. Primary structure of 3-ketoacyl-coenzyme A thiolase from Escherichia coli and the structural organization of the fadAB operon. J. Biol. Chem. 266:16255. Yamada, M., K. Yamashita, A. Wakuda, K. Ichimura, A. Maehara, M. Maeda, and S. Taguchi. 2007. Autoregulator protein PhaR for biosynthesis of polyhydroxybutyrate [P(3HB)] possibly has two separate domains that bind to the target DNA and P(3HB): Functional mapping of amino acid residues responsible for DNA binding. J. Bacteriol. 189:1118-1127. York, G.M., J. Stubbe, and A. J. Sinskey. 2002. The Ralstonia eutropha Phzh_TW
dc.identifier.urihttp://hdl.handle.net/11455/22794-
dc.description.abstract許多細菌及少數太古生物生長於營養不平衡的狀態下會將胞內多餘的碳源以聚羥基烷酯(Polyhydroxyalkanoate, PHA)的型式於細胞內累積。PHA具有好的生物相容性與生物降解性,所以在醫學與工業上的應用性。極端高鹽太古生物Haloterrigena sp. H13於低磷高糖誘導下能大量累積極端高鹽太古生物型聚酯顆粒 (hPHA),其單體組成為-[-O-CH(C≡CH)-CH(C2H5)-CHO-]n-,此新型的hPHA具有特殊的不飽和乙炔基(C≡C)。經細胞毒性與貼附性測試,發現hPHA為無毒性,相容性高,細胞貼附性強,顯示hPHA是高潛力的生醫材料。利用已知Haloarcula sp. HLR2 PHA合成酶的基因序列,phaCHLR2當作探針以南方墨漬法偵測Haloterrigena sp. H13中的PHA合成酶基因,從基因體中篩選出一限制酶酵素NotI切割的片段,全長為4599 bp,將序列與基因庫資料分析推測功能與命名,基因組成為maoC、phaR、phaT、phaD、phaC 和phaB。MaoC為enoyl-CoA hydratase,PhaBH13 為NADP-depenent acetoacetyl-CoA reductase,兩者皆是PHA生合成的上游途徑蛋白。PhaRH13 為AbrB-like蛋白質,為轉錄調控蛋白質。PhaCH13為PHA 合成酶,經由序列比對結果,與細菌的第三型PHA 合成酶相似度較高,phaCH13上游為phaDH13,與phaCH13有4 bp的重疊,且只在phaDH13上游有發現推測為啟動子的區域。而第三型或第四型的PHA 合成酶是需要由phaEC或phaRC基因組成分別encode 出的酵素為hetero-subunits PHA 合成酶,所以初步判斷PhaDH13是扮演PhaE或PhaR角色。分析PhaC H13胺基酸序列發現具有PHA合成酶進行聚合反應須具備的胺基酸殘基(Cys-151)-(Asp-306)-(His-335)所組成的活化中心。以北方墨漬法分析發現,phaC與phaD是共轉錄表現。而phaR與phaT也是共轉錄表現。比較營養豐富或不平衡(低磷高醣)的環境下,這些基因的轉錄量,配合PHA合成酶活性測試,分析發現在營養豐富或不平衡的環境下,phaDC的轉錄都會持續表現,轉錄量差異不大,可是在營養不平衡的環境,測試PHA合成酶的活性,比較營養豐富的環境下,PHA合成酶活性卻會大大的提升3倍。而maoC、phaRT和phaB在營養不平衡環境基因轉錄量均會提升0.5~2倍。結果顯示在Haloterrigena sp. H13 PHA生合成受基因轉錄與蛋白質活性的調控,亦可能受PHA合成酶受質的影響。利用大腸桿菌異源表現出PhaDCH13蛋白質與純化,利用3-Hydroxybutyryl-CoA為受質,進行PhaDCH13PHA合成酶特性分析,結果發現只有PhaD H13和PhaC H13同時存在才有活性,PhaDC H13比活性約為5 U/mg。不同溫度測試,PhaDCH13在45℃為最適反應溫度,在熱穩定測試,發現PhaDCH13經過75℃處理5分鐘,依然保有50%的酵素活性。不同離子濃度測試,發現PhaDCH13在1~4M的鉀離子或鈉離子存在下,都有保有活性,在4 M的鉀離子濃度下,有最高的酵素活性。在高鹽環境下經過長時間(三週)的保存,PhaDCH13仍保有90%的活性。綜合上述結果顯示自Haloterrigena sp. H13的PHA生合成酶具有耐高鹽蛋白質的特性,可適應高離子濃度等低水活性的環境,且對熱也有良好的穩定性,適合工業與胞外生產應用,所以對將來在PHA生產與開發上有很好的應用性。zh_TW
dc.description.abstractPolyhydroxyalkanoates (PHAs) are a class of biodegradable polyesters of (R)-hydroxyalkanoates. These biopolymers are accumulated by a wide variety of bacteria and haloarchaea when the carbon source is available in excess but other nutrients are growth limiting. PHAs can be used as biodegradable thermoplastics for a wide range of industrial and medical applications. The extremely halophilic Haloterrigena sp. H13 is capable of accumulating large amounts of hPHA under conditions of nitrogen limitation and abundant carbon source. The monomer of hPHA as -[-O-CH(C≡CH)-CH(C2H5)-CHO-]n- is a novel PHA with C≡C bonding. In this study, Southern blot was performed and a 4.6-kb NotI restriction fragment contained PHA biosynthetic gene cluster was cloned from genomic DNA of Haloterrigena sp. H13. This PHA biosynthetic gene cluster included six open reading frames encoding enoyl-CoA hydratase (MaoCH13), AbrB protein (PhaRH13), transducer protein (PhaTH13), polyhydroxyalkanoate synthase subunit (PhaDH13), polyhydroxyalkanoate synthase (PhaCH13), NADPH-dependent acetoacetyl coenzyme A reductase (PhaBH13) and two putative promoter regions. PhaC H13 and PhaD H13 were composed of 538 and 182 amino acid residues respectively and showed low amino acid identity with other class III type PHA synthases. There were 4 bp overlapping of phaDH13 and phaCH13 and a putative promoter regions located upstream of phaDH13. Result of Northern blot hybridization also demonstrated that phaCH13 and phaDH13 were co-transcribed. The amino acids of (Cys-151)-(Asp-306)-(His-335) were proposed as the catalytic nucleoplile for PHA polymerization at PhaCH13. The PHA biosynthetic gene cluster we identified from Haloterrigena sp. H13 should broaden our knowledge in archaeal PHA biosynthesis.en_US
dc.description.tableofcontents中文摘要 i 英文摘要 iii 目錄 iv 表目錄 vii 圖目錄 viii 壹、 前言 1 貳、 前人研究 4 一、 極端高鹽太古生物 4 二、 極端高鹽太古生物之分類 5 三、 聚羥基烷酯 (Polyhydroxyalkanoate, PHA) 6 (一) 聚羥基烷酯簡介 6 (二) 化學結構 7 (三) 物理特性 8 (四) 生物降解性 8 (五) 應用 9 四、PHA生合成途徑與蛋白質 9 (一) 短碳鏈型 PHA的生合成途徑 9 (二) 中碳鏈型(MCL) PHA的生合成途徑 11 五、PHA生合成酵素 12 (一) PHA生合成基因群組 12 (二) PHA生合成酵素 12 (三) α/β hydrolase superfamily 13 (四) PHA生合成酵素催化機制 14 六、PHA 顆粒組成蛋白與形成機制 15 七、PHA降解酵素 17 八、PHA生合成調控 18 (一) 酵素層次的調控機制 18 (二) 轉錄層次的調控機制 19 (三) PHA降解作用的調控機制 20 九、遺傳工程於PHA生合成上的應用 21 十、極端高鹽太古生物PHA研究 23 參、 材料與方法 27 一、 菌種 27 二、 引子與質體 27 三、 極端高鹽太古生物培養基組成及製備 27 (一) 25% NaCl NHB 液體培養基及NHA固體培養基 27 (二) 25% NaCl A/C及B/C液體培養基 27 四、 極端高鹽太古生物之接種、培養與保存 27 (一) 極端高鹽太古生物的接種及培養 27 (二) 二階段培養誘導生產太古生物型聚酯hPHA 28 (三) 極端高鹽太古生物菌種保存 28 五、 大腸桿菌培養基組成及製備 28 六、 大腸桿菌之培養與保存 29 七、 PHA的的檢測回收 29 八、 核酸膠體電泳分析與紀錄 30 九、 極端高鹽太古生物染色體DNA的萃取 30 十、 聚合酶鏈連鎖反應 31 十一、PCR產物回收與純化 31 十二、DNA黏合反應 32 十三、勝任細胞的製備及質體的轉形作用 32 (一) 製備勝任細胞 32 (二) 質體轉形作用 32 十四、質體的抽取與純化 33 十五、核酸序列定序 33 十六、核酸與胺基酸序列分析 34 十七、南方墨漬分析法 34 (一) 探針的標定 34 (二) 探針標定效率的測定 35 (三) 雜合樣品製備 35 (四) DNA雜合( Hybridization ) 36 十八、北方墨漬分析法 37 十九、蛋白質表現載體的構築 37 二十、全細胞蛋白質之製備 38 二十一、蛋白質電泳分析 38 二十二、西方墨漬法(Western blotting) 39 (一) 轉印前處理 39 (二) 啟動轉印裝置及收集轉印樣品 40 (三) 西方墨漬法 (Western blotting) 40 二十三、蛋白質的大量表現與純化 41 二十四、PHA 聚合酵素活性分析 41 肆、 結果與討論 43 一、 PHA生合成基因的搜尋 43 二、 PHA生合成基因序列分析 47 (一) PhaC&PhaD 47 (二) MaoC 49 (三) PhaR 51 (四) PhaT 52 (五) PhaB 53 (六) PhaA1&PhaA2 54 三、 PhaC與phaD轉錄表現分析 55 四、 異源表現PHA 生合成蛋白質分析 55 五、 PHA生合成酵素活性測試 56 (一) 活性測試的建立 56 (二) 溫度與熱穩定性測試 57 (三) 酵素抑制測試 57 (四) 離子濃度測試 58 (五) 長時間保存活性測試 58 六、營養環境改變對於PHA生合成基因轉錄表現差異分析 59 七、異源表現PHA的大腸桿菌株構築 60 八、PHA的累積與測定 60 九、PHA生合成基因於極端高鹽太古生物間搜尋 61 伍、結論與未來展望 62 一、極端高鹽太古生物PHA生合成基因群組與代謝途徑 62 二、PHA生合成基因的異源表現與PHA的累積 63 陸、表與圖 65 柒、參考文獻 117zh_TW
dc.language.isoen_USzh_TW
dc.publisher生命科學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2907200817554800en_US
dc.subjectPolyhydroxyalkanoateen_US
dc.subject極端高鹽太古生物zh_TW
dc.subjectHaloterrigenaen_US
dc.subject聚羥基烷酯zh_TW
dc.title極端高鹽太古生物聚羥基烷酯生合成基因群組的選殖與特性分析zh_TW
dc.titleIdentification and Analysis of Polyhydroxyalkanoate Biosynthesis Gene Clusters in the Extreme Halophilic Archaeon Haloterrigena sp. H13en_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:生命科學系所
文件中的檔案:

取得全文請前往華藝線上圖書館

Show simple item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.