Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22859
標題: 建立瘤胃功能性微生物族群以利用木質纖維素生產生質能源
Establishment of lignocellulose digestion system with functional rumen bacterial consortia for biofuel production
作者: 林嘉仁
Lin, Jia-Jen
關鍵字: rumen
瘤胃
biofuel
Clostridium xylanolyticum
Clostridium puniceum
napiergrass
cellulose
hemicellulose
lignin
lignocellulose
生質能
Clostridium xlanolytiucm
Clostridium puniceum
狼尾草
纖維素
半纖維素
木質纖維素
出版社: 生命科學系所
引用: 1. 吳耿東,李宏台。2007。全球生質能源應用現況與未來展望,林業研究專訊,30卷3期。 2. 吳耿東,2008。認識生質能源,物理雙月刊,30卷4期。 3. 成游貴,2006。狼尾草育種與多元化利用科學發展月刊407卷,24-29頁。 4. 楊价民,1997。瘤胃生態系統與反芻動物對養分的利用。藝軒圖書出版社,台北,中華民國。 5. 韓如暘,陳美慈,閔航,趙宇華,馬曉航, 1999,嗜熱厭氧細菌Clostridium sp. EVA4菌株直接轉化纖維素產乙醇的研究,應用與環境生物學報,第5卷。 6. 吳秋芬,2008,嗜熱厭氧狼尾草分解菌之產醇特性研究,大葉大學環境工程學系碩士班,碩士論文。 7. 王馨儀,2006,以牛糞堆肥中嗜熱厭氧菌群分解纖維素產乙醇之研究,東海大學環境科學與工程研究所,碩士論文。 8. Carpita N C and McCann M. 2000. The cell wall. In Biochemistry and Molecular Biology of Plants, Rockville, MD, pp. 52–108. 9. Taiz and Zeiger. 2002. Plant Physiology. 3rd ed. 10. Akin DE, Borneman WS, Rigsby LL, Martin SA. 1993. p-Coumaryl and feruloyl arabinoxylans from plant cell walls as substrates for ruminal bacteria. Appl Environ Microbiol 59:644-647 11. Bayer EA, Kenig R, Lamed R. 1983. Adherence of Clostridium thermocellum to cellulose. J Bacteriol 156(2):818-27. 12. Bayer EA, Shimon LJ, Shoham Y, Lamed R. 1998. Cellulosomes-structure and ultrastructure. J Struct Biol 124(2-3):221-34. 13. Beguin, P., and M. Lemaire. 1996. The cellulosome: An exocellular, multiprotein complex specialized in cellulose degradation. Crit. Rev. Biochem. Mol. Biol. 31: 201-236 14. Blair BG, Anderson KL. 1999. Regulation of cellulose-inducible structures of Clostridium cellulovorans. Can J Microbiol 45(3):242-9. 15. Brett, C. T., and Waldron, K. W. (1996) Physiology and Biochemistry of Plant Cell Walls, 2nd ed. Chapman and Hall, London. 16. Breznak JA, Brune A. 1994. Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39:453–487 17. Bryant MP, Small N, Bouma AC, Robinson IM. 1958. Characteristics of ruminal anaerobic cellulolytic Cocci and Cillobacterium cellulosolvens n. sp. J Bacteriol 76(5): 529–537. 18. Cavedon K, Leschine SB, Canale-Parola E. 1990. Characterization of the extracellular cellulase from a mesophilic clostridium (strain C7). J Bacteriol. 172(8):4231-7. 19. Chang JJ, Chen WE, Shih SY, Yu SJ, Lay JJ, Wen FS, Huang CC. 2006. Molecular detection of the clostridia in an anaerobic biohydrogen fermentation system by hydrogenase mRNA-targeted reverse transcription-PCR. Appl Microbiol Biotechnol 70(5):598-604. 20. Chang JJ, Chou CH, Hsu PC, Yu SJ, Chen WE, Lay JJ, et al. 2007. Flow-FISH analysis and isolation of clostridial strains in an anaerobic semi-solid bio-hydrogen producing system by hydrogenase gene target. Appl Microbiol Biotechnol 74(5):1126–34. 21. Chang JJ, J. H. Wu, F. S. Wen, K. Y. Hung, C. L. Hsiao, C. Y. Lin, and C. C Huang 2008. Molecular monitoring of microbes in a continuous hydrogen-producing system with different hydraulic retention time. Int. J. Hydrogen Energy 33: 1579-1585. 22. Chesson, A., and C. W. Forsberg. 1997. Polysaccharide degradation by rumen microbiology. In: P. N. Hobson and C. S. Stewart (eds.) The Rumen Microbial Ecosystem. pp 329-381. Blackie Academic & Professional, London, UK. 23. Christov LP, Prior BA. 1993. Esterases of xylan-degrading microorganisms:production, properties, and significance. Enzyme Microb Technol 15:460-474 24. Claasen PAM, van Lier JB, Lopez Contreras AM, van Niel EWJ, Sijtsma L, Stams AJM, de Vries SS, Weusthuis RA (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52:741–755 25. Claassen PAM, van Lier JB, Lopez Contreras AM, van Niel EWJ, Sijtsma L, Stams AJM, de Vries SS, Weusthuis RA. 1999. Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52(6):741–755 26. Cottrell MT, Yu L, Kirchman DL. 2005. Sequence and expression analyses of Cytophaga-like hydrolases in a Western arctic metagenomic library and the Sargasso Sea. Appl Environ Microbiol 71(12):8506-13. 27. Coughlan MP, Mayer F. 1992. The cellulose-decomposing bacteria and their enzyme systems. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes: a handbook on the biology of bacteria, 2nd edn. Springer, Berlin Heidelberg New York., p460–516 28. Doi RH, Kosugi A. 2004. Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol 2(7):541-51. 29. Edward A. Bayer, Yuval Shoham and Raphael Lamed. 2006. Cellulose-decomposing Bacteria and Their Enzyme Systems. Prokaryotes 2:578–617 30. Endo, K., Y. Hakamada, S. Takizawa, H. Kubota, N. Sumitomo, T. Kobayashi, and S. Ito. 2001.A novel alkaline endoglucanase from an alkaliphilic Bacillus isolate: enzymatic propertie s, and nucleotide and deduced amino acid sequences. Appl Microbiol Biotechnol 57:109-16. 31. Flint. 2000. Three multidomain esterases from the cellulolytic rumen anaerobe Ruminococcus flavefaciens 17 that carry divergent dockerin sequences. Microbiology 146:1391–1397. 32. Goering, H. K.. and P. J. Van Soest. 1970. Forage fiber analyses (apparatus, reagents, procedures, and some applications). Agric. Handbook No. 379. ARSUSDA, Washington, DC. 33. Harchand, R. K., and S. Singh. 1997. Extracellular cellulase system of a thermotolerant streptomycete: Streptomyces albaduncus. Acta Microbiol Immunol Hung 44:229-39. 34. Holt RA, Cairns AJ, Morris JG. 1988. Production of butanol by Clostridium puniceum in batch and continuous culture. Appl Microbiol Biotechnol 27:319-324 35. Iannotti EL, Kafkewitz D, Wolin MJ, Bryant MP. 1973. Glucose fermentation products in Ruminococcus albus grown in continuous culture with Vibrio succinogenes: changes caused by interspecies transfer of H 2 J Bacteriol 114(3):1231-40. 36. Ito, S. 1997. Alkaline cellulases from alkaliphilic Bacillus: enzymatic properties, genetics, and application to detergents. Extremophiles 1:61-6. 37. Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y. 2008. Network relationships of bacteria in a stable mixed culture. Microb Ecol 56(3):403-11. 38. Koukiekolo R, Cho HY, Kosugi A, Inui M, Yukawa H, Doi RH. 2005. Degradation of corn fiber by Clostridium cellulovorans cellulases and hemicellulases and contribution of scaffolding protein CbpA. Appl Environ Microbiol. 71(7):3504-11 39. Lamed R, Naimark J, Morgenstern E, Bayer EA. 1987. Specialized cell surface structures in cellulolytic bacteria. J Bacteriol 169(8):3792-800. 40. Lamed R, Setter E, Bayer EA. 1983. Characterization of a cellulosebinding, cellulase-containing complex in Clostridium thermocellum. J. Bacteriol 156:828–836 41. Lay, J. J. 2000. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol Bioeng 68:269-78. 42. Lee J. 1997. Biological conversion of lignocellulosic biomass to ethanol. Journal of Biotechnology 56: 1-24 43. Leschine, S. B. 1995. Cellulose degradation in anaerobic environments. Annu Rev Microbiol 49:399-426. 44. Levin DB, Islamc R, Cicekc N, and Sparlingd R. 2006. Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. Int J Hydrogen Energy. 31: 1496-1503. 45. Levin L and Forchiassin F. 2001. Ligninolytic enzymes of the white rot basidiomycete Trametes trogii. Acta Biotechnol. 21: 179-186 46. LiesackW, Schnell S, Revsbech NP. 2000. Microbiology of flooded ricepaddies. FEMS Microbiol Rev 24:625–45. 47. Lund BM, Brocklehurst TF, Wyatt GM. 1981. Characterization of Strains of Clostridium puniceum sp.no v., a Pink-pigmented, Pectolytic Bacterium. J Gen Microbiol 122:117-120 48. Mayer F, Coughlan MP, Mori Y, Ljungdahl LG. 1987. Macromolecular organization of the cellulolytic enzyme complex of Clostridium thermocellum as revealed by electron microscopy. Appl. Environ. Microbiol. 53:2785–2792. 49. McCann MC, Wells B, Roberts K. 1990. Direct visualization of cross-links in the primary plant cell wall. J Cell Sci. 96:323-334. 50. McDougall EI. 1948. The composition and output of sheep''s saliva.Biochem J. 43(1):99-109. 51. McSweeney CS, Dulieu A, Bunch R. 1998. Butyrivibrio spp. and other xylanolytic microorganisms from the rumen have cinnamoyl esterase activity. Anaerobe 4:57-65 52. McSweeney CS, Dulieu A, Webb RI, Del Dot T, Blackall LL. 1999. Isolation and characterization of a Clostridium sp. with cinnamoyl esterase activity and unusual cell envelope ultrastructure. Arch Microbiol 172(3):139-49 53. Miller TL, Wolin MJ. 1973. Formation of hydrogen and formate by Ruminococcus albus. J Bacteriol. Nov. 116(2):836-46. 54. Murashima K, Kosugi A, Doi RH. 2003. Synergistic effects of cellulosomal xylanase and cellulases from Clostridium cellulovorans on plant cell wall degradation. J Bacteriol 185(5):1518-24. 55. Murray WD, Khan AW, van den Berg L. 1982. Clostvidium saccharolyticurn sp. nov., a Saccharolytic Species from Sewage Sludge. J Gen Appl Microbiol 32(1):132-135 56. Murray WD. 1986. Symbiotic Relationship of Bacteroides cellulosolvens and Clostridium saccharolyticum in Cellulose Fermentationt. J Gen Appl Microbiol 51(4):710-714 57. Muyzer Gerard and Smalla Kornelia. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 73: 127–141, 1998.. Nandi R, Sengupta S. 1998. Microbial production of hydrogen: an overview. Crit Rev Microbiol 24(1):61-84. 58. Nielsen AT, Liu WT, Filipe C, Grady L, Molin S, Stahl DA. 1999. Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor. Appl Environ Microbiol 65:1251–1258 59. Nocek, J. E. and J. B. Russell. 1988. Protein and energy as an integrated system. Relationship of ruminal protein and carbohydrate availability to microbial synthesis and milk production. J. Dairy Sci 71:2070-2107. 60. Novaes RFV. 1986. Microbiology of anaerobic digestion. Water Sci Technol 18: 1–14. 61. Ohara, H., J. Noguchi, S. Karita, T. Kimura, K. Sakka, and K. Ohmiya. 2000. Sequence of egV and properties of EgV, a Ruminococcus albus endoglucanase containing a dockerin domain. Biosci Biotechnol Biochem 64:80-8. 62. Ohara, H., J. Noguchi, S. Karita, T. Kimura, K. Sakka, and K. Ohmiya. 2000. Sequence of egV and properties of EgV, a Ruminococcus albus endoglucanase containing a dockerin domain. Biosci. Biotechnol. Biochem. 64:80–88. 63. Ozcan, N., C. Cunningham, and W. J. Harris. 1996. Cloning of a cellulase gene from the rumen anaerobe Fibrobacter succinogenes SD35 and partial characterization of the gene product. Lett Appl Microbiol 22:85-9. 64. Pohlschröder M, Leschine SB, Canale-Parola E. 1994. Multicomplex cellulase-xylanase system of Clostridium papyrosolvens C7. J Bacteriol 176(1):70-6. 65. Rani KS, Swamy MV, Seenayya G. 1998. Production of ethanol from various pure and nature cellulosic biomass by Clostridium thermocellum Strains SS21 and SS22. Process Biochemistry 33: 435-440. 66. Rogers GM and Baecker AAW. 1991. Clostridium xylanolyticum sp. nov. an Anaerobic Xylanolytic Bacterium from Decayed Pinus patula Wood Chips. J Gen Appl Microbiol 41(1):140-143 67. Rogers GM, Baecker AAW. 1991. Clostridium xylanolyticum sp. nov., an Anaerobic Xylanolytic Bacterium from Decayed Pinus patula Wood Chips. Int J Syst Bacteriol 41:140-143 68. Rogers P, Gottschalk G (1993) Biochemistry and regulation of acid and solvent production in clostridia. In: Woods DR (eds) The clostridia and biotechnology. Butterworth- Heinemann, Stoneham, pp 25–50 69. Russell JB, Muck RE, Weimer PJ. 2009. Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen. FEMS Microbiol Ecol 67(2):183-97. Review. 70. Russell JB, Rychlik JL. 2001. Factors that alter rumen microbial ecology. Science 292(5519):1119-22. Review. 71. Schwarz, W.H. 2001. The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56: 634-649. streptomycete: Streptomyces albaduncus. Acta Microbiol Immunol Hung 44:229-39. 72. Tamburini E, LeonAG, PeritoB, Mastromei G. 2003. Characterization of bacterial pectino lytic strains involvedin the water retting process. EnvironMicrobiol 5:730-6. 73. Tardy F, Nasser W, Robert-Baudouy J, Hugouvieux Cotte Pattat N. 1997. Comparative analysis of the five major Erwinia chrysanthemi pectate lyases: enzyme characteristics and potential inhibitors. J Bacteriol 179: 2503-2511. 74. Udén P, Rounsaville TR, Wiggans GR, Van Soest PJ. 1982..Links The measurement of liquid and solid digesta retention in ruminants, equines and rabbits given timothy (Phleum pratense) hay. Br J Nutr 48(2):329-39 75. Ulbrik TYL. 1991. Cellulolytic fermentation by Clostridium thermocellum, Smartech. Gatech. Edu. Bayer EA., Shoham Y, Lamed R. 2001. Cellulose-decomposing bac-teria and their enzyme systems. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, and E. Stackebrandt (ed.), The prokaryotes: an evolving electronic resource for the microbiological community, 3rd ed. [Online.] Springer-Verlag, New York, N.Y. 76. van Solingen, P., D. Meijer, W. A. van der Kleij, C. Barnett, R. Bolle, S. D. Power, and B. E. Jones. 2001. Cloning and expression of an endocellulase gene from a novel streptomycete isolated from an East African soda lake. Extremophiles 5:333-41. 77. Walker E, Warren FL. 1938. Decomposition of cellulose by Cytophaga. I. Biochem J. 32(1):31-43 78. Woods DR (1995) The genetic engineering of microbial solvent production. Trends Biotechnol 13:259–264 79. Xie G, Bruce DC, Challacombe JF, Chertkov O, Detter JC, Gilna P, Han CS et al. 2007. Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii. Appl Environ Microbiol. 73(11):3536-46.
摘要: 生質能源的生產技術常以生物精練(bio-refinery)的概念,將生物料原透過物理化學或生物的轉換方式,自生物質提煉更多樣化的燃料,將這些燃料轉換成電或熱等可利用能源,如乙醇、丁醇、氫氣等,可轉換成電熱等可利用能源,為一種環保且可永續經營的能量來源,其中以木質纖維素生產生質能極具有發展潛力。植物細胞壁主要由纖維素、半纖維素、木質素組成,纖維素周圍環繞半纖維素與果膠,形成複雜網絡支鏈與木質素鍵結強化結構。本實驗的研究目標為利用狼尾草作為木質纖維素來源,將反芻動物瘤胃液作為植種源,藉由連續批次培養建立穩定的瘤胃功能性微生物族群簡稱FRBC,解析微生物群族中的優勢微生物主要包含Clostridium xylanolyticum 98%、Clostridium puniceum 98%、Clostridium papyrosolvens 98%、Ruminococcus sp. 98%、Clostridium beijerinckii 98%等,當狼尾草基質的濃度為50 g/L,可生產氫氣86.9 mL、乙醇1250 mg/L;發現FRBC於分解狼尾草,其胞外酵素表現模式為先表現木聚醣分解酵素,再表現纖維素分解酵素;狼尾草基質的濃度為13 g/L有較佳纖維素利用率,可分解26 %半纖維素及6 %纖維素。由FRBC中篩選出主要的優勢微生物C.puniceum Ru6及C. xylanolyticum Ru15,C. punieceum Ru6具有木聚醣分解能力,以PYG作培養可產生乙醇、丁醇、氫氣等,其最適生長溫度37℃、pH 6.0~8.0,狼尾草基質的濃度為50 g/L,可生產氫氣87.8 mL、乙醇72 mg/L、丁醇1.4 mg/L;C. xylanolyticum Ru15具有纖維素、木聚醣分解能力,以PYG作培養可產生乙醇、氫氣,其最適生長溫度30~37℃、pH 8.0,狼尾草基質的濃度為50 g/L,可發酵產生氫氣65.7 mL、乙醇1626 mg/L。未來將針對C. puniceum Ru6、C. xylanolyticum Ru15共培養之條件進一步探討,將可運用於聯合生物加工法(consolidated bioprocessing, CBP)來生產生質能源。
Biofuel production is integrated biomass conversion processes to produce fuels, power, and value-added chemicals from biomass in a biorefinery concept, for example, bio-hydrogen, ethanol, and butanol could generate electricity and process heat. It is a renewable energy source based on the carbon cycle. Lignocellulose is the most abundant renewable feedstock to produce biofuel. Lignocellulose is composed of cellulose, hemicelluloses, lignin. Cellulose is surrounded by hemicellulose, lignin, and pectin. This study was aimed to establish a functional rumen bacterial consortia as a lignocellulose digestion system for biofuel production through serial repeated batch culture. The major bacterial composition of batch culture was monitored and the result showed that a stable consortia constituted by ruminal microflora designated FRBC was formed, included Clostridium xylanolyticum 98%、Clostridium puniceum 98%、Clostridium papyrosolvens 98%、Ruminococcus sp. 98%、Clostridium beijerinckii 98%. On an eight day incubation period, the functional consortia could produce 86.9 mL H2 and ethanol 1250 mg/L, and degrade an average of 26% hemicellulose and 6% cellulose from napiergrass biomass. Time course profile for extracellular enzymes showed that the hydrolysis of complex lignocellulosic material may occur through the ordered actions of xylanase and cellulase activities. Two strains, Ru6 and Ru15 were isolated from FRBC and phylogenetic analysis based on 16S rDNA and indicated that the bacteria were closely related to Clostridium puniceum and Clostridium xylanolyticum, respectively. Clostridium puniceum Ru6 has xylanase, pectinase activity and hydrogen producing ability. The fermentation end products from PYG are ethanol, butanol, acetic, and butyric acid. The optimum condition for growth is 37℃ and pH 6.0~8.0. Ru6 could produce 87.8 mL H2, ethanol 72 mg/L, butanol 1.4 mg/L under lignocellulosic substrate concentrations of 50 g/L. Clostridium xylanolyticum Ru15 has endoglucanase, xylanase, pectinase activity and hydrogen producing ability. The fermentation end products from PYG are ethanol, butanol, and acetic acid. The optimum condition for growth is 30~37℃ and pH 8.0. Ru15 could produce 65.7 mL H2, ethanol 1626 mg/L under lignocellulosic substrate concentrations of 50 g/L. The co-culture condition of Ru6 and Ru15 is further studied to carry out the consolidated bioprocessing CBP for biofuel production.
URI: http://hdl.handle.net/11455/22859
其他識別: U0005-0708200919024800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0708200919024800
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.