Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22866
標題: 台灣產厚蟹類(厚蟹/張口蟹屬複合群)的熱耐受性與地理分布之探討
Study on the thermal tolerance and biogeography of the mudflat crabs (Helice/Chasmagnathus complex) from Taiwan
作者: 徐元傑
Hsu, Yuan-Chieh
關鍵字: 厚蟹類
mudflat crabs
胃含物
胃磨
分布
粒徑
招潮蟹類
熱耐受性
夜行性
垂直生物分區
競爭。
stomach contents
gastric mills
mudflat crabs
distributions
grain size
fiddler crabs
thermal tolerance
nocturnal
vertical zonation
competition
出版社: 生命科學系所
引用: 王興強、馬生生、董雙林, 2005。蝦蟹類生物能量學研究進展。海洋科學 29: 65–69 史金燾、呂光洋、王嘉祥, 1991。淡水紅樹林沼澤區蟹類相及十種蟹類的活動週期。台灣省立博物館年刊 34: 121–140 吳忠信, 1992。新竹市海山罟紅樹林生物相之研究調查。師大生物學報 27: 97–111 李榮祥, 2001。台灣賞蟹情報。大樹文化事業公司, 台北市 金剛, 2003。蟹類生態學研究進展。深圳知識技術學院學報 1: 28-34 施宜汝, 1997。不同海拔盤古蟾蜍蝌蚪喜好溫度、發育與代謝之比較。國立成功大學生物學研究所碩士論文, 台南 施習德, 1994。招潮蟹。國立海洋生物博物館, 屏東高雄 施習德, 1997。屬於福爾摩莎的 「台灣招潮」, 何去何從? 記台灣特有種招潮蟹的現況。台灣博物 54: 68–80 施習德, 1998。高美灘地的蟹類。黃朝洲編著, 高美溼地生態之美。清水鎮牛罵頭文化協進會, 台中。57–82 頁 施習德, 2006。東亞厚蟹屬與張口蟹屬之地理分布。新竹市海岸溼地生物多樣性研討會。 施習德, 2007。厚蟹類的自然史。台灣溼地 64: 6–26 張麗文, 2002。不同海拔盤古蟾蜍蝌蚪高溫耐受與其可塑性之比較。國立成功大學生物學研究所碩士論文, 高雄 張寶琳、相建海、吳耀泉, 1991。長江口海區三疣梭子蟹和細點圓趾蟹食性生態學的研究。海洋科學 15: 60–64 彭李卓林, 2007。新竹新庄子紅樹林保護區似方厚蟹生活史研究。國立新竹教育大學應用科學系碩士論文, 新竹 黃良民、林秋艷、袁文彬、陳清潮, 1991。急升溫對十種甲殼動物存活率的影響。水產學報 15: 155–160 黃勃、堵南山、賴偉、陳立橋、趙云龍、王群, 2000。河口區甲殼類動物對溫度、鹽度及溶解氧適應能力的研究進度。海洋科學 24: 21–22 楊思諒, 1986。胃磨結構在蟹類分類研究上的意義 (甲殼綱: 短尾派)。動物分類學報 11: 151–159 劉明光, 1984。中國自然地理圖集。中國地圖出版社, 北京 鄭明修, 1987。墾丁國家公園海域及陸域甲殼十足類生物相調查 (第二年) –海域甲殼十足類族群之調查研究。內政部墾丁國家公園管理處, 屏東 謝蕙蓮、黃守忠、李坤瑄、陳章波, 1993。潮間帶底棲生態調查法。生物科學 36: 71–80 蘇宏仁、呂光洋, 1984。淡水紅樹林沼澤區螃蟹種類分布之調查。師大生物學報 19: 61–70 Allardyce, B. J. & Linton, S. M., 2009. Functional morphology of the gastric mills of carnivorous, omnivorous, and herbivorous land crabs. Journal of Morphology 271: 61–72 Barnwell, F. H., 1968. Comparative aspects of the chromatophoric responses to light and temperature in fiddler crabs of the genus Uca. The Biological Bulletin 134: 221–234 Baer, C. F. & Travis, J., 2000. Direct and correlated responses to artificial selection on acute thermal stress tolerance in a livebearing fish. Evolution 54: 238–244 Bezerra, L. E. A., Dias, C. B., Santana, G. X. & Matthews-Cascon, C., 2006. Spatial distribution of fiddler crabs (genus Uca) in a tropical mangrove of northeast Brazil. Scientia Marina 70: 759–766 Boutet, I., Jollivet, D., Shillito, B., Moraga, D. & Tanguy, A., 2009. Molecular identification of differentially regulated genes in the hydrothermal-vent species Bathymodiolus thermophilus and Paralvinella pandorae in response to temperature. BMC Genomics 10: 222 Brice, P. H., Grigg, G. C., Beard, L. A. & Donovan, J. A., 2002. Heat tolerance of short-beaked echidnas (Tachyglossus aculeatus) in the field. Journal of Thermal Biology 27: 449–457 Castilho, P. C, Martins, I. A. & Bianchini, A., 2001. Gill Na+, K+-ATPase and osmoregulation in the estuarine crab, Chasmagnathus granulata Dana, 1851 (Decapoda, Grapsidae). Journal of Experimental Marine Biology and Ecology 256: 215–227 César, I. I., Armendáriz, L. C. & Becerra, R. V., 2005. Bioecology of the fiddler crab Uca uruguayensis and the burrowing crab Chasmagnathus granulatus (Decapoda, Brachyura) in the Refugio de Vida Silvestre Bahía Samborombón, Argentina. Hydrobiologia 545:237–248 Chande, A. I. & Mgaya, Y. D., 2004. Food habits of the blue swimming crab Portunus pelagicus along the coast of Dar es Salaam, Tanzania. Western Indian Ocean Journal of Marine Science 3: 37–42 Charmantier, G., Giménez, L., Charmantier-Daures, M. & Anger, K., 2002. Ontogeny of osmoregulation, physiological plasticity and larval export strategy in the grapsid crab Chasmagnathus granulata (Crustacea, Decapoda). Marine Ecology Progress Series 229: 185–194 Choy, S. C., 1986. Natural diet and feeding habits of the crabs Liocarcinus puber and L. holsatus (Decapoda, Brachyura, Portunidae) Marine Ecology Progress Series 31: 87–99 Cowles, R. B. & Bogert, C. M., 1944. A preliminary study of the thermal requirements of desert reptiles. Bulletin of the American Museum of Natural History 83: 265–296. Crane J. 1975. Fiddler crabs of the world (Ocypodidae: genus Uca). Princeton University Press, Princeton, New Jersey. Defeo, O. & Cardoso, R. S., 2004. Latitudinal patterns in abundance and life-history traits of the mole crab Emerita brasiliensis on South American sandy beaches. Diversity and Distributions 10: 89–98 Defur, P. L., 1988. Systemic respiratory adaptations to air exposure in intertidal decapod crustaceans. American Society of Zoologists 28: 115–124 Diwen, A. D. & Nagabhushanam, R., 1976. Studies on the heat tolerance in the freshwater crab, Barytelphusa cunicularis (Wetwood, 1836). Hydrobiologia 50: 65–70 Edney, E. B., 1961. The water and heat relations of fiddler crabs (Uca spp.). Transactions of The Royal Society of South Africa 36: 71–91 Egonmwan, R. I., 2007. Thermal tolerance and evaporative water loss of the mangrove prosobranch Tympanotonus fuscatus var. radula L. (Cerithiacea: Potamididae). Pakistan Journal of Biological Sciences 10: 163–166 Fielder, D. R. & Jones, M. B., 1978. Observations of feeding behaviour in two New Zealand mud crabs (Helice crassa and Macrophthalmus hirtipes). Mauri Ora 6: 41–46 Frederich, M. & Pörtner, H. O., 2000. Oxygen limitation of thermal tolerance defined by cardiac and ventilatory performance in spider crab, Maja squinado. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 279: 1531–1538 Frith, D. W. & Brunenmeister, S., 1980. Ecological and population studies of fiddler crabs (Ocypodidae, genus Uca) on a mangrove shore at Phuket Island, western Peninsular Thailand. Crustaceana 39: 157–184. Gordo, T., Lubián1, L. M. & Cañavate, J.P., 1994. Influence of temperature on growth, reproduction and longevity of Moina salina Daday, 1888 (Cladocera, Moinidae). Journal of Plankton Research 16: 1513–1523 Hammer, Ø., Harper, D. A. T. & Ryan, P. D., 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 1–9 Hawkins, A. J. S. & Jones, M. B., 1982. Gill area and ventilation in two mud crabs, Helice crassa Dana (Grapsidae) and Macrophthalmus hirtipes (Jacquinot) (Ocypodidae), in relation to habitat. Journal of Experimental Marine Biology and Ecology 60: 103–118 Henmi, Y. & Murai, M., 1999. Decalcification of vulvar operculum and mating in the ocypodid crab Ilyoplax pusilla. Journal of Zoology 247: 133–137 Henry, R. P., 1994. Morphological, behavioral, and physiological characterization of bimodal breathing crustaceans. American Zoologist 34: 205–215 Hochachka, P. W. & Somero, G. N., 2002. Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, New York. Huang, S.-P. & Tu, M.-C., 2008. Heat tolerance and altitudinal distribution of a mountainous lizard, Takydromus hsuehshanensis, in Taiwan. Journal of Thermal Biology 33: 48–56 Irawan, B. & Kijima, A., 1994. Difference of salinity requirements among the three estuarine crab species, Chiromantes dehaani, Helice tridens and H. japonica (Brachyura: Grapsidae). Tohoku Journal of Agricultural Research 44: 1–4 Jensen, G. C., McDonald, P. S. & Armstrong, D. A., 2002. East meets west: competitive interactions between green crab Carcinus maenas, and native and introduced shore crab Hemigrapsus spp. Marine Ecology Progress Series 225: 251–262 Jones, M. B. & Simons, M. J., 1982. Habitat preferences of two estuarine burrowing crabs Helice crassa Dana (Grapsidae) and Macrophthalmus hirtipes (Jacquinot) (Ocypodidae). Journal of Experimental Marine Biology and Ecology 56: 49–62 Jones, D. S. & Morton, B., 1994. The fiddler crabs (Ocypodidae: Uca) of Hong Kong . Asian Marine biology 11: 9–40 Koh, C. H. & Shin, H. C., 1988. Environmental characteristics and distribution of macrobenthos in a mudflat of the west coast of Korea (Yellow Sea). Netherlands Journal of Sea Research 22: 279–290 Kurihara, Y., Sekimoto, K. & Miyata, M., 1988. Wandering behaviour of the mud-crab Helice tridens related to evasion to cannibalism. Marine Ecology Progress Series 49: 41–50 Kurihara, Y., Hosoda, T. & Takeda, S., 1989. Factors affecting the burrowing behaviour of Helice tridens (Grapsidae) and Macrophthalmus japonicus (Ocypodidae) in an estuary of northern Japan. Marine Biology: 153–157 Kuroda, M., Wada, K. & Kamada, M., 2005. Factors influencing coexistence of two brachyuran crabs, Helice tridens and Parasesarma plicatum, in an estuarine salt marsh, Japan. Journal of Crustacean Biology 25: 146-153 Lapointe, S. L., 2000. Thermal requirements for development of Diaprepes abbreviatus (Coleoptera: Curculionidae). Environmental Entomology 29: 150–156 Laughlin, R., 1983. The effects of temperature and salinity on larval growth of the horseshoe crab Limulus polyphemus. The Biological Bulletin 164: 93–103 Lewis, D. H. & Roer, R. D., 1988. Thermal preference in distribution of blue crabs, Callinectes sapidus, in a power plant cooling pond. Journal of Crustacean Biology 8: 283–289 Liao, S.-W., Chang, W.-L. & Lin, S.-W., 2008. Status and habitat preferences for endemic inhabitants of fiddler crab Uca formosensis in Hsiang-Shan wetland, Taiwan. Environmental Monitoring and Assessment 143: 203–214 Lin, H.-C., Su, Y.-C. & Su, S.-H., 2002. A comparative study of osmoregulation in four fiddler crabs (Ocypodidae: Uca). Zoological Science 19: 643–650 Lowe, C. H., & Vance, V. J., 1955. Acclimation of the critical thermal maximum of the reptile Urosaurus ornatus. Science 122: 73–74 Luppi, T. A., Spivak, E. D. & Anger, K., 2001. Experimental studies on predation and cannibalism of the settlers of Chasmagnathus granulata and Cyrtograpsus angulatus (Brachyura: Grapsidae). Journal of Experimental Marine Biology and Ecology 265: 29–48 Luquet, C. M., Rosa, G. A., Ferrari, C. C., Genovese, G. & Pellerano, G. N., 2000. Gill morphology of the intertidal estuarine crab Chasmagnathus granulatus Dana, 1851 (Decapoda, Grapsidae) in relation to habitat and respiratory habits. Crustaceana 73: 53–67 Manis, M. L. & Claussen, D. L., 1986. Environmental and genetic influences on the thermal physiology of Rana sylvatica. Journal of Thermal Biology 11: 31–36. Mcgaw, I. J., 2003. Behavioral thermoregulation in Hemigrapsus nudus, the amphibious purple shore crab. The Biological Bulletin 204: 38–49 Mcgaw, I. J., Reiber, C. L. & Guadagnoli, J. A., 1999. Behavioral physiology of four crab species in low salinity. The Biological Bulletin 196: 163–176 Mchenga, I. S. S. & Tsuchiya, M., 2008. Nutrient dynamics in mangrove crab burrow sediments subjected to anthropogenic input. Journal of Sea Research 59: 103–113 Mchenga, I. S. S., Mfilinge, P. L. & Tsuchiya, M., 2007. Bioturbation activity by the grapsid crab Helice formosensis and its effects on mangrove sedimentary organic matter. Estuarine, Coastal and Shelf Science 73: 316–324 Mfilinge, P. L. & Tsuchiya, M., 2008. Effect of temperature on leaf litter consumption by grapsid crabs in a subtropical mangrove (Okinawa, Japan). Journal of Sea Research 59: 94–102 Mia, M. Y. & Shokita, S., 1996. A description of larval and juvenile stages of the grapsid crab, Helice leachi Hess (Brachyura: Grapsidae) reared under laboratory conditions. Crustacean Research 25: 104–120 Mia, M. Y. & Shokita, S., 1997a. Larval development of a grapsid crab, Helice formosensis Rathbun (Crustacea: Brachyura), reared in the laboratory. Species Diversity 2: 7–23 Mia, M. Y. & Shokita, S., 1997b. Optimal salinity required for the larval development of two grapsid crabs, Helice leachi Hess and H. formosensis Rathbun. Crustacean Research 26: 70–74 Mia, M. Y., Shokita, S. & Shikatani, N., 2001a. Early life history of estuarine grapsid crab, Helice tridens latimera. Pakistan Journal of Biological Sciences 4: 1437–1439 Mia, M. Y., Shokita, S. & Watanabe, S., 2001b. Stomach contents of two grapsid crabs, Helice formosensis and Helice leachi. Fishes Science 67: 173–175 Miller, C. D. & Vernberg, F. J., 1968. Some thermal requirements of fiddler crabs of the temperate and tropical zones and their influence on geographic distribution. American Zoologist 8: 459–469 Minagawa, M., 1990. Influence of temperature on survival, feeding and development of larvae of the red frog crab, Ranina ranina (Crustacea, Decapoda, Raninidae). The Japanese Society of Fisheries Science 56:755–760 Miyasaka, H., Genkai-Kato, M., Goda, Y. & Omori, K., 2007. Length-weight relationships of two varunid crab species, Helice tridens and Chasmagnathus convexus, in Japan. Limnology 8: 81–83 Moreira, G. S., Jillett, J. B., Vernberg, W. B. & Weinrich, M., 1982. The combined effects of temperature and salinity on the survival of Euterpina acutifrons (Dana) (Copepoda, Harpacticoida) from the New Zealand and Brazilian coasts. Journal of Plankton Research 4: 85–91 Murphy, J., Rossolimo, T. & Adl, S., 2008. Cold-hardiness in the wolf spider Pardosa groenlandica (Thorell) with respect to thermal limits and dehydration. The Journal of Arachnology 36: 213–215 Nakasone, Y., Ono, Y. & Goshima, S., 1983. Daily activity and food consumption of the sesarmid crab Chasmagnathus convexus (Decapoda, Brachyura). Bulletin of College of Education, University of the Ryukyus 26: 37–53 Nara, Y., Kitaura, J. & Wada, K., 2006. Comparison of social behaviors among six grapsoid species (Brachyura) of different habitat conditions. Crustacean Research 35: 56–66 Ng, P. K. L., Guinot, D. & Davie, P. J. F, 2008. Systema brachyurorum: part I. an annotated checklist of extant brachyuran crabs of the world. The Raffles Bulletin of Zoology 17: 1–286 Ng, P. K. L., Wang, C.-H., Ho, P.-H. & Shih, H.-T., 2001. An annotated checklist of brachyuran crabs from Taiwan (Crustacea: Decapoda). National Taiwan Museum Special Publication Series 11: 1–86 Omori, K., Shiraishi, K. & Hara, M., 1997. Life histories of sympatric mud-flat crabs, Helice japonica and H. tridens (Decapoda: Grapsidae), in a Japanese estuary. Journal of Crustacean Biology 17: 279–288 Omori, K., Irawan, B. & Kikutani, Y., 1998. Studies on the salinity and desiccation tolerances of Helice tridens and Helice japonica (Decapoda: Grapsidae). Hydrobiologia 386: 27–36 Omori, K., Kikutani, Y., Irawan, B. & Goda, Y., 2006. Size-dependent intraguild reciprocal predation between Helice tridens De Haan and H. japonica Sakai and Yatsuzuka (Decapoda: Grapsidae) as analyzed in field experiments. Journal of Crustacean Biology 26: 148–153 Orr, P. R., 1955. Heat death. I. time-temperature relationships in marine animals. Physiological Zoology 28: 290–294 Pörtner, H. O., 2001. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88: 137–146 Pörtner, H. O., 2002. Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 132:739–761 Ragland, G. J. & Kingsolver, J. G., 2008. Evolution of thermotolerance in seasonal environments: the effects of annual temperature variation and life-history timing in Wyeomyia smithii. Evolution 62: 1345–1357 Re, A. D., Díaz, F., Sierra, E., Rodrriguez, J. & Perez, E., 2005. Effect of salinity and temperature on thermal tolerance of brown shrimp Farfantepenaeus aztecus (Ives) (Crustacea, Penaeidae). Journal of Thermal Biology 30: 618–622. Ringold, P., 1979. Burrowing, root mat density, and the distribution of fiddler crabs in the eastern united states. Journal of Experimental Marine Biology and Ecology 36: 11–21 Saba, M., 1974. On the larval development of Chasmagnathus convexus De Haan (Grapsinae). Researches on Crustacea 6: 71–85 (in Japanese) Sakai, K. & Yatsuzuka, K., 1980. Notes on some Japanese and Chinese Helice with Helice (Helicana) n. subgen., including Helice (Helicana) japonica n. sp. (Crustacea: Decapoda). Senckenbergiana Biologica 60: 393–411 Sakai, K., Türkay, M. & Yang, S. L., 2006. Revision of the Helice/Chasmagnathus complex (Crustacea: Brachyura: Varunidae). Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 563: 1–76 Samson, S. A., Yokota, M., Strüssmann, C. A. & Watanabe, S., 2007. Natural diet of grapsoid crab Plagusia dentipes De Haan (Decapoda: Brachyura: Plagusiidae) in Tateyama Bay, Japan. Fisheries Science 73: 171–177 Sanford, E., Holzman, S. B., Haney, R. A., Rand, D. M. & Bertness, M. D., 2006. Larval tolerance, gene flow, and the northern geographic range limit of fiddler crabs. Ecology 87: 2882–2894 Schmalhofer, V. R., 1999. Thermal tolerances and preferences of the crab spiders Misumenops asperatus and Misumenoides formosipes (Araneae, Thomisidae). The Journal of Arachnology 27: 470–480 Shih, H.-T. & Suzuki, H., 2008. Taxonomy, phylogeny, and biogeography of the endemic mudflat crab Helice/Chasmagnathus complex (Crustacea: Brachyura: Varunidae) from East Asia. Zoological Studies 47: 114–125 Shih, H.-T., Mok, H.-K. & Chang, H.-W., 2005. Chimney building by male Uca formosensis Rathbun, 1921 (Crustacea: Decapoda: Ocypodidae) after pairing: a new hypothesis for chimney function. Zoological Studies 44: 242–251 Somero, G. N., 2002. Thermal physiology and vertical zonation of intertidal animals: optima, limits, and costs of living. Integrative and Comparative Biology: 42:780–789 Somero, G. N., 2005. Linking biogeography to physiology: Evolutionary and acclimatory adjustments of thermal limits. Frontiers in Zoology 2: 1–9 Spoor, W. A., 1955. Loss and gain of heat-tolerance by the crayfish. The Biological Bulletin 108: 77–87 Stillman, J. H., 2000. Evolutionary history and adaptive significance of respiratory structures on the legs of intertidal porcelain crabs, genus Petrolisthes. Physiological and Biochemical Zoology 73: 86–96 Stillman, J. H., 2002. Causes and consequences of thermal tolerance limits in rocky intertidal porcelain crabs, genus Petrolisthes. Integrative and Comparative Biology 42: 790–796 Stillman, J. H. & Somero, G. N., 1996. Adaptation to temperature stress and aerial exposure in congeneric species of intertidal porcelain crabs (genus Petrolisthes): correlation of physiology, biochemistry and morphology with vertical distribution. The Journal of Experimental Biology 199: 1845–1855 Stillman, J. H. & Somero, G. N., 2000. A comparative analysis of the upper thermal tolerance limits of eastern Pacific porcelain crabs, genus Petrolisthes: influences of latitude, vertical zonation, acclimation, and phylogeny. Physiological and Biochemical Zoology 73: 200–208 Takeda, S. & Kurihara, Y., 1987. The distribution and abundance of Helice tridens (De Haan) burrows and substratum conditions in a northeastern Japan salt marsh (Crustacea: Brachyura). Journal of Experiment Marine Biology and Ecology 107: 9–19 Teal, J. M., 1958. Distribution of fiddler crabs in Georgia salt marshes. Ecology 39: 186–193 Thurman, C. L., 1998. Evaporative water loss, corporal temperature and the distribution of sympatric fiddler crabs (Uca) from south Texas. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 119: 279–286 Todd, M. E. & Dehnel, P. A., 1960. Effect of temperature and salinity on heat tolerance in two grapsoid crabs, Hemigrapsus nudus and Hemigrapsus oregonensis. The Biological Bulletin 118: 150–172 Tsoi, K. H., Chiu, K. M. & Chu, K. H., 2005. Effects of temperature and salinity on survival and growth of the amphipod Hyale crassicornis (Gammaridea, Hyalidae). Journal of Natural History 39: 325–336 Vernberg, F. J., 1959a. Studies on the physiological variation between tropical and temperature zone fiddler crabs of the genus Uca. II. Oxygen consumption of whole organisms. The Biological Bulletin 117: 163–184 Vernberg, F. J., 1959b. Studies on the physiological variation between tropical and temperate zone fiddler crabs of the genus Uca. III. The influence of temperature acclimation on oxygen consumption of whole organisms. The Biological Bulletin 117: 582–593 Vernberg, F. J., 1969. Acclimation of intertidal crabs. American Zoologist 9: 333–341 Vernberg, F. J., 1984. Fiddler crabs: ecosystems-organisms-molecules. American Zoologist 24: 293–304 Vernberg, F. J. & Tashian, R. E., 1959. Studies on the physiological variation between tropical and temperature zone fiddler crabs of the genus Uca. I. thermal death limits. Ecology 40: 589–593 Vernberg, F. J. & Vernberg, W. B., 1967. Thermal lethal limits of southern hemisphere Uca crabs. IX. Studies on the physiological variation between tropical and temperature zone fiddler crabs of the genus Uca. Oikos 18: 118–123 Webb, J. B., Eckert, G. L., Shirley, T. C., & Tamone, S. L., 2007. Changes in embryonic development and hatching in Chionoecetes opilio (snow crab) with variation in incubation temperature. The Biological Bulletin 213: 67–75 Weinstein, R. B., 1998. Effects of temperature and water loss on terrestrial locomotor performance in land crabs: integrating laboratory and field studies. American Zoologist 38: 518–527 Welsh, J. H., 1932. Temperature and light as factors influencing the rate of swimming of larvae of the mussel crab, Pinnotheres maculatus Say. The Biological Bulletin 63: 310–326 Wilkens, J. L. & Fingerman, M., 1965. Heat tolerance and temperature relationships of the fiddler crab, Uca pugilator, with reference to body coloration. The Biological Bulletin 128: 133–141 Willason, S. W., 1981. Factors influencing the distribution and coexistence of Pachygrapsus crassipes and Hemigrapsus oregonensis (Decapoda: Grapsidae) in a California salt marsh. Marine Biology 64: 125–133 Wilson, R. R. & Krausman, P. R., 2008. Possibility of heat-related mortality in desert ungulates. Journal of the Arizona-Nevada Academy of Science 40: 12–15 Windsor, A., Crowe, M. & Bishop, J., 2005. Determination of temperature preference and the role of the enlarged cheliped in thermoregulation in male sand fiddler crabs, Uca pugilator. Journal of Thermal Biology 30: 37–41 Wu, R. S. S. & Shin, P. K. S., 1998. Food segregation in three species of portunid crabs. Hydrobiologia 362: 107–113 Yamaguchi, T., 2002. Survival rate and age estimation of the fiddler crab, Uca lactea (De Haan, 1835) (Decapoda, Brachyura, Ocypodidae). Crustaceana 75: 993–1014. Young, J. S., Peck, L. S. & Matheson, T., 2006. The effects of temperature on peripheral neuronal function in eurythermal and stenothermal crustaceans. The Journal of Experimental Biology 209: 1976–1987
摘要: 舊有的厚蟹屬與張口蟹屬目前分為六屬, 除假厚蟹屬 (Pseudohelice) 為廣泛分布於熱帶與亞熱帶外, 其餘屬僅分布在溫帶與亞熱帶。台灣產 Chasmagnathus convexus (De Haan, 1835)、Helice formosensis Rathbun, 1931、Helicana doerjesi Sakai, Türkay & Yang, 2006、Pseudohelice subquadrata (Dana, 1851) 四種。本研究比較台灣此四種蟹類的棲地環境、胃含物與胃磨結構, 以及熱耐受性, 並探討溫度是否為其地理分布的主要限制因子。生活環境上, H. formosensis 能夠適應鹽度的範圍最廣, 而 H. doerjesi 能夠適應的鹽度範圍最窄, 造成其分布上僅能限制在較低的潮位; 土壤特性上, 四種厚蟹在含水量並無差異, 但在土壤粒徑上有顯著差異, 分類上 C. convexus 與 H. formosensis 偏向極細砂, H. doerjesi 偏向粉泥, P. subquadrata 偏向細砂。胃含物顯示四種厚蟹類皆屬雜食性; 且胃磨中尾骨齒板的結構皆不同。熱耐受性實驗結果顯示: (1) 此四種蟹類與外群的四種招潮蟹中, 種內於不同性別間, 熱耐受性皆無顯著差異; (2)外群的四種招潮, Uca arcuata (De Haan, 1835)、U. crassipes (White, 1847)、U. formosensis Rathbun, 1921、U. lactea (De Haan, 1835) 的熱耐受性皆顯著高於四種厚蟹類; (3) 四個物種中以 C. convexus 熱耐受性最低, 而P. subquadrata 並未表現出較高的熱耐受性; (4) H. formosensis、H. doerjesi、P. subquadrata 中, 小個體蟹比大個體蟹有顯著較高的熱耐受性; (5) 在季節的差異上, 厚蟹類暖季的熱耐受性顯著高於冷季的熱耐受性表現; (6) 同種在不同族群的熱耐受性表現會有所差異。實驗結果顯示分布傾向於熱帶與亞熱帶的招潮蟹比厚蟹類具有較高的熱耐受性, 支持熱耐受性影響厚蟹類的分布假說; 可分布到較低緯度的 P. subquadrata, 並未有較高的熱耐受性, 可能與偏好遮蔭的棲地及夜行性有關; 熱耐受性低的 C. convexus 則棲息於多植被遮蔽的棲地, 同時也傾向於夜行性行為; 生活在較低潮線的 H. doerjesi, 其熱耐受性並未較低, 其不同潮位的分布可能與種間競爭能力有關。
The former genera Helice and Chasmagnathus of mudflat crabs are separated into 6 genera. Except Pseudohelice which is widely distributed over the tropical to subtropical zones, the others distribute in the temperate and the subtropical zones. There are 4 species of this group in Taiwan, Chasmagnathus convexus (De Haan, 1835), Helice formosensis Rathbun, 1931, Helicana doerjesi Sakai, Türkay & Yang, 2006, and Pseudohelice subquadrata (Dana, 1851). The habitats, stomach contents, gastric mills and thermal tolerance of the 4 Taiwanese species are compared to study whether the environmental temperature is the major factor limiting their distribution. H. formosensis can tolerate a wide range of temperature and water quality of environment, but H. doerjesi only restricts in lower tidal zone because it only tolerated the narrowest salinity range. The water content of soil has no difference among the 4 species, but there is significant difference in the grain size. C. convexus and H. formosensis prefer very fine sand, H. doerjesi prefers silt, and P. subquadrata always lives in fine sand habitat. The results of thermal tolerance experiment showed that: (1) there was no difference between sexes of the 4 mudflat crabs and 4 fiddler crabs [Uca arcuata (De Haan, 1835), U. crassipes (White, 1847), U. formosensis Rathbun, 1921, U. lactea (De Haan, 1835)]; (2) The thermal tolerances of 4 fiddler crabs were significantly higher than the 4 mudflat crabs; (3) C. convexus had the lowest thermal tolerance, and P. subquadrata did not appear higher tolerance; (4) Small individuals could tolerate much higher temperature of H. formosensis, H. doerjesi and P. subquadrata; (5) Mudflat crabs had significantly higher thermal tolerance in warm season than that in cool season; (6) Different populations showed different thermal tolerance. The evidence of fiddler crabs had higher thermal tolerance than mudflat crabs support the hypothesis of thermal tolerance can affect the distribution of mudflat crabs. Although P. subquadrata distributes in lower latitude but it did not have higher thermal tolerance which is explained by its sheltered habitat and nocturnal behavior. C. convexus had weak thermal tolerance and it always stays under heavy sheltered vegetation, and forages at night. H. doerjesi inhabits in lower intertidal zone, but did not show lower thermal tolerance. Different vertical zonation might be influenced by the interspecific competition.
URI: http://hdl.handle.net/11455/22866
其他識別: U0005-0802201015315900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0802201015315900
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.