Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22921
標題: 分析轉入反向atSKD1及功能缺失mcSKD1阿拉伯芥轉殖株之耐鹽生理特性及基因表現的改變
Analyses of salt tolerance and changes of gene expression in transgenic Arabidopsis carrying antisense atSKD1 or loss-of-function mcSKD1
作者: 何笠維
Ho, Li-Wei
關鍵字: atSKD1
鹽逆境
mcSKD1
salt stress
microarray
transgenic Arabidopsis
阿拉伯芥
微陣列生物晶片
耐鹽生理特性
出版社: 生命科學系所
引用: 周映孜 (2002) 鹽逆境下高等植物鉀鈉離子平衡及相關基因表現之分析。中興大學植物學研究所碩士論文。 林振祥 (2005) 利用基因轉殖策略探討耐鹽性相關基因mcSKD1功能。中興大學生命科學系學士論文。 謝賢書 (2005) 利用gene silencing方式探討atSKD1基因對阿拉伯芥容忍高鹽逆境之影響。中興大學生命科學系研究所碩士論文。 陳玉嬋 (2008) 具有E3 ligase活性之冰花mcCPN1基因表現和蛋白累積量的分析。中興大學生命科學系研究所碩士論文。 Adams P., Nelson D., Yamada S., Chmara W., Jensen R. G., Bohnert H. J. Griffiths H. (1998) Growth development of Mesembryanthemum crystallinum (Aizoaceae). New Phytol. 138: 171-190 Apse M. P., Aharon G. S., Snedden W. A., Blumwald E. (1999) Salt tolerance conferred by overexpression of a vaculor Na+/H+ antiport in Arabidopsis. Science 285: 1256-1258 Apse M.P., Blumwald E. (2002) Engineering salt tolerance in plants. Curr. Opin. Biotechnol. 13: 146-150 Babst M. (2005) A protein’s final ESCRT. Traffic 6: 2-9 Babst M., Katzmann D. J., Estepa-Sabal E. J., Meerloo T., Emr S. D. (2002a) ESCRTIII: an endosome-associated heterooligomeric protein complex required for MVB sorting. Dev. Cell 3: 271-282. Babst M., Katzmann D. J., Snyder W. B., Wendland B., Emr S. D. (2002b) Endosomeassociated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev. Cell 3: 283-289 Babst M., Wendland B., Estepa E. J., Emr S. D. (1998) The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J. 17: 2982-2993 Blumwald E. (2000) Sodium transport and salt tolerance in plants. Curr. Opin. Cell Biol. 12: 431–434. Bohner H. J., Nelson D. E., Jenson R. G. (1995) Adaptation to environment stresses. Plant Cell 7: 1099-1111 Chen H. W., Chen J. J., Tzeng C. R., Li H. N., Chang S. J., Cheng Y. F., Chang C. W., Wang R. S., Yang P. C., Lee Y. T. (2002) Global analysis of differentially expressed genes in early gestational decidua and chorionic villi using a 9600 human cDNA microarray. Mol. Hum. Reprod. 8: 475-484 Cho M., Lee S. H., Cho H. T. (2007) P-Glycoprotein4 Displays Auxin Efflux Transporter–Like Action in Arabidopsis Root Hair Cells and Tobacco Cells. Plant Cell 19: 3930-3943 D’Angelo C., Stefan Weinl S., Batistic O., Pandey G. K., Cheong Y. H., Schultke S., Albrecht V., Ehlert B., Schulz B., Harter K., Luan S., Bock R., Kudla J. (2006) Alternative complex formation of the Ca2+-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis. Plant J. 48: 857-872 Douglas U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 Drmanac R., Drmanac S., Strezoska Z., Paunesku T., Labat I., Zeremski M., Snoddy J., Funkhouser W. K., Koop B., Hood L., et al. (1993) DNA sequence determination by hybridization: a strategy for efficient large-scale sequencing. Science 260: 1649-1652 Erdmann R., Wiebel F. F., Flessau A., Rytka J., Beyer A., Fröhlich K. U., Kunau W. H. (1991) PAS1, a yeast gene required for peroxisome biogenesis, encodes a member of a novel family of putative ATPases. Cell 64: 499-510 Frickey T., Lupas A. N. (2003) Phylogenetic analysis of AAA proteins. J. Struct. Biol. 146: 2-10 Fujita M., Fujita Y., Maruyama K., Seki M., Hiratsu K., Ohme-Takagi M., Tran L. P., Yamaguchi-Shinozaki K., Shinozaki K. (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J. 39: 863-876 Krestine Greve K., La Cour T., Jensen M. K., Poulsen F. M., Skriver K. (2003) Interactions between plant RING-H2 and plant-specific NAC (NAM/ATAF1/2/CUC2) proteins : RING-H2 molecular specificity and cellular localization. Biochem. J. 1: 97-108 Haas, T. J., Sliwinski, M. K., Martínez, D. E., Preuss, M., Ebine, K., Ueda, T., Nielsen, E., Odorizzi, G., Otegui, M. S. (2007) The Arabidopsis AAA ATPase SKD1 is involved in multivesicular endosome function and interacts with its positive regulator LYST-INTERACTING PROTEIN5. Plant Cell 19:1295-1312 Hasegawa P. M., Bressan R. A., Zhu J. K., Bohnert H. J. (2000) Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 463–499. Hoffmann W. A., Poorter H. (2002) Avoiding bias in calculations of relative growth rate. Ann. Bot. 80: 37-42 Hunt R. (1982) Plant Growth Curves. London: Edward Arnold. Jain K. K. (2003) Lab-on-a-chip and microarrays: discovery and development. Pharmacogenomics 4: 123-125 Jawhar N. M. (2009) Tissue microarray: A rapidly evolving diagnostic and research tool. Ann. Saudi. Med. 29: 123-127 Jou Y., Chiang C. P., Jauh G. Y., Yen H. E. (2006) Functional characterization of ice plant SKD1, an AAA-type ATPase associated with the endoplasmic reticulum-Golgi network, and its role in adaptation to salt stress. Plant Physiol. 141: 1-12 Jou Y., Chou P. H., He M. G., Hung Y. H., Yen H. E. (2004) Tissue-specific expression and functional complementation of a yeast potassium-uptake mutant by a salt-induced ice plant gene mcSKD1. Plant Mol. Biol. 54: 881-893 Kant P., Gordon M., SURYA Kant S., Zolla G., Davydov O., Heimer Y. M., Chalifa-Caspi V., Shaked R., Barak S. (2008) Functional-genomics-based identification of genes that regulate Arabidopsis responses to multiple abiotic stresses. Plant Cell Environ. 31: 697-714 Katzmann D. J., Babst M., Emr S. D. (2001) Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106: 145-155. Kolukisaoglu U., Weinl S., Blazevic D., Batistic O., Kudla J. (2004) Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol. 134: 43-58 Lashkari D. A., DeRisi J. L., McCusker J. H., Namath A. F., Gentile C., Hwang S. Y., Brown P. O., Davis R. W. (1997) Yeast microarrays for genome wide parallel genetic and gene expression analysis. PNAS. U.S.A. 94: 13057-13062 Lausted C., Hu Z., Hood L. (2008) Quantitative serum proteomics from surface plasmon resonance imaging. Mol. Cell Proteomics 7: 2464-2474 Li Y., Zhu Y., Liu Y., Shu Y., Meng F., Lu Y., Bai X., Liu B., Guo D. (2008) Genome-wide identification of osmotic stress response gene in Arabidopsis thaliana. Genomics 92: 488–493 Liu J., Ishitani M., Halfter U., Kim C. S., Zhu J. K. (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. PNAS. U.S.A. 97: 3730–3734 Liu J., Zhu J. K. (1998) A calcium sensor homolog required for plant salt tolerance. Science 280: 1943–1945 Liu J. X., Srivastava R., Che P., Howel S. H. (2007) Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling. Plant J. 51: 897–909 Liu Y. G., Mistsukawa N., Oosumi T., Whittier R. F. (1995) Efficient isolaton and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8: 457-463 Lupas A. N., Martin J. (2002) AAA proteins. Curr. Opin. Struct. Bio. 12: 746-753 Ma S., Bohnert H. J. (2007) Integration of Arabidopsis thaliana stress-related transcript profiles, promoter structures, and cell-specific expression. Genome Biol. 6: 575-597 Mahajan S., Pandey G. K., Tuteja N. (2008) Calcium- and salt-stress signaling in plants: shedding light on SOS pathway. Arch. Biochem. Biophys. 471: 146-158 McKendry R., Zhang J., Arntz Y., Strunz T., Hegner M., Lang H. P., Baller M. K., Certa U., Meyer E., Güntherodt H. J., Gerber C. (2002) Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. PNAS. U.S.A. 99: 9783-9788 Mendoza I., Rubio F., Rodriguez-Navarro A., Pardo J. M. (1994) The protein phosphatase calcinuerin is essential for NaCl tolerance of Saccharomyces cerevisiae. J. Biol. Chem. 269: 8792–8796 Niu X., Bressan R. A., Hasegawa P. M., Pardo J. M. (1995) Ion homeostasis in NaCl stress environments. Plant Physiol. 109: 735-742 Nobrega, F. G., Nobrega, M. P., Tzagoloff, A. (1992). BCS1, a novel gene required for the expression of functional Rieske iron–sulfur protein in Saccharomyces cerevisiae. EMBO J. 11: 3821–3829. Obita1 T., Saksena S, Ghazi-Tabatabai1 S., Gill1 D. J., Perisic1 O., Emr S. D., Williams R. L. (2007) Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4. Nature 449: 735-739 Ogura T., Wilkinson A. J. (2001) AAA+ superfamily ATPase: common structure-diverse function. Gene Cells 6: 575-597 Olsen A. N., Ernst H. A., Leggio L. L., Skriver K. (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci. 10:79–87 Ooka H., Satoh K., Doi K., Nagata T., Otomo Y., Murakami K., Matsubara K., Osato N., Kawai J., Carninci P., Hayashizaki Y., Suzuki K., Kojima K., Takahara Y., Yamamoto K., Kikuchi S. (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res. 10: 239–247 Pease A. C., Solas D., Sullivan E. J., Cronin M. T., Holmes C. P., Fodor S. P. (1994) Light-generated oligonucleotide arrays for rapid DNA sequence analysis. PNAS. U.S.A. 91: 5022-5026 Perier F., Coulter K. L., Liang H., Radeke C. M., Gaber G. F., Vandenberg C. A. (1994) Identification of a novel mammalian member of the NSF/CDC48p/Pas1p/TBP-1 family through heterologus expression. FEBS. Lett. 351: 286-290 Pratelli R., Sutter J. U., Blatt M. R. (2004) A new catch in the SNARE. Trends Plant Sci. 9: 187-195 Raymond C. K., Howald-Stevenson I., Vater C. A., Stevens T. H. (1992) Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol. Biol. Cell 3: 1389-1402 Rieder S. E., Banta L. M., Köhrer K., McCaffery J. M., Emr S. D. (1996) Multilamellar endosome-like compartment accumulates in the yeast vps28 vacuolar protein sorting mutant. Mol. Biol. Cell 7: 985-999 Schena M., Shalon D., Davis R. W., Brown P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467-470 Scott A., Chung H. Y., Gonciarz-Swiatek M., Hill G. C., Whitby F. G., Gaspar J., Holton J. M., Viswanathan R., Ghaffarian S., Hill C. P., Sundquist W. I. (2005) Structural and mechanistic studies of VPS4 proteins. EMBO J. 24: 3658-3669 Shalon D., Smith S. J., Brown P. O. (1996) A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res. 6: 639-645 Shim, S., Kimpler, L. A., Hanson, P. I. (2007) Structure/function analysis of four core ESCRT-III proteins reveals common regulatory role for extreme C-terminal domain. Traffic. 8: 1068-1079 Shim S., Merrill S. A., Hanson P. I. (2008) Novel interactions of ESCRT-III with LIP5 and VPS4 and their implications for ESCRT-III disassembly. Mol. Biol. Cell 19: 2661-2672 Sottosanto J. B., Angie Gelli A., Blumwald E. (2004) DNA array analyses of Arabidopsis thaliana lacking a vacuolar Na+/H+ antiporter: impact of AtNHX1 on gene expression. Plant J. 40: 752-771 Sottosanto J. B., Saranga Y., Blumwald E. (2007) Impact of AtNHX1, a vacuolar Na+/H+ antiporter, upon gene expression during short- and long-term salt stress in Arabidopsis thaliana. BMC Plant Biol. 5: 7-18 Spitzer C., Reyes F. C., Buono R., Sliwinski M. K., Haas T. J., Otegui M. S. (2009) The ESCRT-related CHMP1A and B proteins mediate multivesicular body sorting of auxin carriers in arabidopsis and are required for plant development. Plant Cell 21: 749-766 Stuchell-Brereton M. D., Skalicky J. J., Kieffer C., Karren M. A., Ghaffarian S., Sundquist W. I. (2007) ESCRT-III recognition by VPS4 ATPases. Nature 449: 740-744 Taji T., Seki M., Yamaguchi-Shinozaki K., Kamada H., Giraudat J., Shinozaki K. (1999) Mapping of 25 drought-inducible genes, RD and ERD, in Arabidopsis thaliana. Plant Cell Physiol. 40: 119-123. Templin M. F., Stoll D., Schwenk J. M., Pötz O., Kramer S., Joos T. O. (2003) Protein microarrays: promising tools for proteomic research. Proteomics 3: 2155-2166 Tomoyasu T., Yuki T., Morimura S., Mori H., Yamanaka K., Niki H., Hiraga S., Ogura T. (1993) The Escherichia coli FtsH protein is a prokaryotic member of a protein family of putative ATPases involved in membrane functions, cell cycle control, and gene expression. J. Bacteriol. 175: 1344-1351 Vajjhala P. R., Wong J. S., To H. Y., Munn A. L. (2006) The beta domain is required for Vps4p oligomerization into a functionally active ATPase. FEBS. J. 273: 2357-2373. Wang Y., Li K., Li X. (2009) Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana. J. Plant Physiol. Epub ahead of print Wheeler D. B., Carpenter A. E., Sabatini D. M. (2005) Cell microarrays and RNA interference chip away at gene function. Nat. Genet. 37: S25-S30 White S. R., Lauring B. (2007) AAA+ ATPases: Achieving Diversity of Function with Conserved Machinery. Traffic. 8: 1657-1667 Wu S. J., Lei D., Zhu J. K. (1996) SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8: 617–627 Yen H. E., Wu S. M., Hung Y. H., Yen S. K. (2000) Isolation of three salt-induced low-abundance cDNAs from light-grown callus of Mesembryanthemum crystallinum by suppression subtractive hybridization. Plant Physiol. 110: 402-409 Yoshimori T., Yamagata F., Yamamoto A., Mizushima N., Kabeya Y., Nara A., Miwako I., Ohashi M., Ohsumi M., Ohsumi Y. (2000) The mouse SKD1, a homologue of yeast Vps4p, is required for normal endosome trafficking and morphology in mammalian cells. Mol. Biol. Cell 11: 747-763 Zhu J. K. (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol. 124: 941-948 Zhu JK, Liu J., Xiong L. (1998) Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell 10: 1181-1191
摘要: 阿拉伯芥AAA-type ATPase atSKD1 (suppressor of K+ transport growth defect 1)已知參與細胞中的蛋白質運輸,並發現當atSKD1基因完全不表現時為致死之突變,表示在阿拉伯芥中atSKD1為一必要基因,又因在耐鹽植物冰花中之mcSKD1與阿拉伯芥atSKD1具有相當高的相似度,且mcSKD1為一鹽誘導基因,推測mcSKD1與冰花耐鹽性相關。因此在本論文中藉由觀察轉入反向atSKD1以及轉入功能缺失之冰花mcSKD1阿拉伯芥轉殖株,了解當atSKD1的表現量改變時阿拉伯芥之鹽耐受性是否改變,以及利用whole-genome生物晶片觀察受atSKD1基因影響後整體基因表現的變化,以期對atSKD1的作用以及基因表現影響的層面能有更深入的了解。 轉入antisense atSKD1之T3子代(稱為4.1.7.7.1、4.1.7.7.2、4.1.7.7.3)轉殖株與mcSKD1K177A之T2子代(稱為K177.8.1、K177.8.2、K177.8.3)轉殖株外表型與野生型阿拉伯芥並無明顯差異,利用PCR擴增轉殖株中T-DNA片段及GUS染色法確認T-DNA的插入,並利用TAIL-PCR定位4.1.7.7系列T-DNA插入位置。確認有T-DNA插入後觀察各轉殖株中atSKD1基因表現量及蛋白累積情形,發現4.1.7.7系列atSKD1基因表現量與蛋白累積情形皆有下降情形,而在K177系列部分atSKD1基因表現量增加但蛋白累積與野生型表現沒有太大差異。進一步針對各轉殖株進行耐鹽性之生理分析,發現在高鹽情況下各轉殖株根生長情況都較野生型差,並且植株中之Na+/K+比値也都高於野生型阿拉伯芥,說明轉殖株調節離子平衡能力較差。因此推測當atSKD1表現量下降會使阿拉伯芥對鹽耐受性降低,而轉入功能缺失之冰花mcSKD1則可能影響正常atSKD1功能而影響調節離子平衡之能力降低。 利用阿拉伯芥whole-genome生物晶片ATH1進行4.1.7.7及K177.8的子代(分別為4.1.7.7.1及K177.8.3)基因表現變化之分析,其中4.1.7.7.1發現有106個、在K177.8.3則有205個與野生型相比基因表現有顯著差異的基因,並將表現有顯著差異之基因進行分群後觀察,發現此二轉殖株中有數個AAA-type ATPase基因皆為表現量上升,但由於這些AAA-type ATPase在AAA蛋白家族分類中都與atSKD1屬於不同clade,因此推測可能與atSKD1的功能並無互補。其中4.1.7.7.1有差異表現的AAA-type ATPase基因中有一At2g47000 (PGP4)為auxin efflux transporter基因,推測可能由於atSKD1表現量下降影響auxin運輸而使PGP4表現量提高。另外受滲透逆境誘導表現基因At4g27410 (RD26)及At3g17510 (CIPK1)也都觀察到表現量下降的情形,因此推測atSKD1表現量降低也會間接影響逆境相關基因,並可能影響阿拉伯芥對逆境之耐受能力。 綜合以上結果可知參與細胞內蛋白運輸的atSKD1,對於阿拉伯芥在正常生理條件及逆境下的生長發育過程和鈉鉀離子平衡途徑等均有正面之影響。
The Arabidopsis AAA-type ATPase atSKD1 (suppressor of K+ transport growth defect 1) involves in protein trafficking, and atSKD1 knockout mutants lead to a lethal phenotype indicating atSKD1 is an essential gene in Arabidopsis. The deduced amino acid sequence shows it has high homology to mcSKD1 found in halophyte Mesembryanthemum crystallinum L. (ice plant). Furthermore, mcSKD1 is a salt-induced gene, and it has been suggested to play a role in salt tolerance in ice plant. In this thesis, I used transgenic Arabidopsis transformed with antisense atSKD1 or loss-of-function mcSKD1 to observe the changes in salt tolerance of Arabidopsis. The Arabidopsis whole-genome microarray biochip was used for analyzing the changes in gene expression to reveal functions of atSKD1. Under normal growth conditions, the appearances of antisense atSKD1 transgenic T3 generations (named 4.1.7.7 .1, 4.1.7.7.2, and 4.1.7.7.3), and mcSKD1K177A transgenic T2 generations (named K177.8.1, K177.8.2, and K177.8.3) were similar to that of wild-type Arabidopsis. PCR amplification of T-DNA and GUS staining were used to confirm the insertion of T-DNA into chromosome. The exact T-DNA insertion site of 4.1.7.7 lines was identified by TAIL-PCR. The gene expression and protein accumulation of atSKD1 were reduced in 4.1.7.7 lines, while the K177 lines showed increased atSKD1 expression but no difference in protein accumulation. Next, I analyzed the ability of salt tolerance in wild-type and these transgenic plants, and found the root lengths of transgenic plants were shorter than those of wild-type plants under high salinity condition. Furthermore, the ratio of Na+/K+ in transgenic plants were higher than that of wild-type indicating the failure of maintenance of ion homeostasis in transgenic plants. The results suggested that reducing atSKD1 expression decreased the salt tolerance in Arabidopsis, and the alteration of atSKD1 enzymatic activity might affect the ability of atSKD1 to regulate ion homeostasis. Changes in whole-genome gene expression in 4.1.7.7 and K177.8 lines (4.1.7.7.1 and K177.8.3) were analyzed by ATH1 microarray biochip. Compared with the gene expression of wild-type, the expression of 106 and 205 genes were significantly different in 4.1.7.7.1 and K177.8.3, respectively. After gene clustering, I found the gene expression of certain AAA-type ATPase genes were both up-regulated in 4.1.7.7.1 and K177.8.3, but none of them was classified in the same clade of AAA protein family with atSKD1. These AAA-type ATPase might not be functionally redundant to atSKD1. One of the significant difference AAA-type ATPase genes in 4.1.7.7.1, At2g47000 (PGP4), is an auxin efflux transporter gene suggesting that decrease of atSKD1 might affect auxin transport and as the result, elevate PGP4 gene expression. In addition, the expression of osmotic stress-induced genes, At4g27410 (RD26) and At3g17510 (CIPK1), were down-regulated. The results suggested that decrease in atSKD1 expression might indirectly affect stress-related genes and stress-tolerant ability in Arabidopsis. In conclusion, atSKD1 involves in protein trafficking and has positive effects on Arabidopsis growth, development, and the maintenance of ion homeostasis under normal and stress conditions.
URI: http://hdl.handle.net/11455/22921
其他識別: U0005-1808200917444600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1808200917444600
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.