Please use this identifier to cite or link to this item:
標題: 反玉米素合成蛋白質對土壤農桿菌virulence基因表現之功能分析
Functional studies of the Tzs protein in Agrobacterium tumefaciens virulence gene expressions
作者: 楊豐誌
Yang, Fong-Jhih
關鍵字: Agrobacterium tumefaciens
virulence gene
trans-zeatin synthesis protein
tzs gene
出版社: 生命科學系所
引用: 李宜霖. (2008). 反玉米素合成蛋白質對土壤農桿菌致病力及生長影響之功能分析. In 生命科學所 碩士論文 (台中: 國立中興大學). Taiz, L., and Zeiger, E. (2006). Plant physiology. (Sunderland, Mass.: Sinauer Associates). Tzfira, T., and Citovsky, V. (2008). Agrobacterium: From Biology to Biotechnology. (New York, NY: Springer Science+Business Media, LLC). Akiyoshi, D.E., Klee, H., Amasino, R.M., Nester, E.W., and Gordon, M.P. (1984). T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci U S A 81: 5994-5998. Akiyoshi, D.E., Regier, D.A., Jen, G., and Gordon, M.P. (1985). Cloning and nucleotide sequence of the tzs gene from Agrobacterium tumefaciens strain T37. Nucleic Acids Res 13: 2773-2788. Aly, K.A., Krall, L., Lottspeich, F., and Baron, C. (2008). The type IV secretion system component VirB5 binds to the trans-zeatin biosynthetic enzyme Tzs and enables its translocation to the cell surface of Agrobacterium tumefaciens. J Bacteriol 190: 1595-1604. Anand, A., Uppalapati, S.R., Ryu, C.M., Allen, S.N., Kang, L., Tang, Y., and Mysore, K.S. (2008). Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens. Plant Physiol 146: 703-715. Astot, C., Dolezal, K., Nordstrom, A., Wang, Q., Kunkel, T., Moritz, T., Chua, N.H., and Sandberg, G. (2000). An alternative cytokinin biosynthesis pathway. Proc Natl Acad Sci U S A 97: 14778-14783. Atmakuri, K., Cascales, E., Burton, O.T., Banta, L.M., and Christie, P.J. (2007). Agrobacterium ParA/MinD-like VirC1 spatially coordinates early conjugative DNA transfer reactions. EMBO J 26: 2540-2551. Ballas, N., and Citovsky, V. (1997). Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proc Natl Acad Sci U S A 94: 10723-10728. Barciszewski, J., Massino, F., and Clark, B.F. (2007). Kinetin--a multiactive molecule. Int J Biol Macromol 40: 182-192. Baron, C. (2006). VirB8: a conserved type IV secretion system assembly factor and drug target. Biochem Cell Biol 84: 890-899. Baron, C., Domke, N., Beinhofer, M., and Hapfelmeier, S. (2001). Elevated temperature differentially affects virulence, VirB protein accumulation, and T-pilus formation in different Agrobacterium tumefaciens and Agrobacterium vitis strains. J Bacteriol 183: 6852-6861. Beaty, J.S., Powell, G.K., Lica, L., Regier, D.A., MacDonald, E.M.S., Hommes, N.G., and Morris, R.O. (1986). Tzs, a nopaline Ti plasmid gene from Agrobacterium tumefaciens associated with trans-zeatin biosynthesis. Mol Gen Genet 203: 274-280. Bhattacharjee, S., Lee, L.Y., Oltmanns, H., Cao, H., Veena, Cuperus, J., and Gelvin, S.B. (2008). IMPa-4, an Arabidopsis importin alpha isoform, is preferentially involved in Agrobacterium-mediated plant transformation. Plant Cell 20: 2661-2680. Braun, A.C. (1947). Thermal studies on the factors responsible for tumor initiation in crown gall. Am J Bot 34: 234-240. Brencic, A., and Winans, S.C. (2005). Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev 69: 155-194. Caplan, A.B., Van Montagu, M., and Schell, J. (1985). Genetic analysis of integration mediated by single T-DNA borders. J Bacteriol 161: 655-664. Carlier, A., Chevrot, R., Dessaux, Y., and Faure, D. (2004). The assimilation of gamma-butyrolactone in Agrobacterium tumefaciens C58 interferes with the accumulation of the N-acyl-homoserine lactone signal. Mol Plant Microbe Interact 17: 951-957. Cascales, E., and Christie, P.J. (2004). Agrobacterium VirB10, an ATP energy sensor required for type IV secretion. Proc Natl Acad Sci U S A 101: 17228-17233. Chai, Y., Tsai, C.S., Cho, H., and Winans, S.C. (2007). Reconstitution of the biochemical activities of the AttJ repressor and the AttK, AttL, and AttM catabolic enzymes of Agrobacterium tumefaciens. J Bacteriol 189: 3674-3679. Chang, C.H., and Winans, S.C. (1992). Functional roles assigned to the periplasmic, linker, and receiver domains of the Agrobacterium tumefaciens VirA protein. J Bacteriol 174: 7033-7039. Chang, C.H., and Winans, S.C. (1996). Resection and mutagenesis of the acid pH-inducible P2 promoter of the Agrobacterium tumefaciens virG gene. J Bacteriol 178: 4717-4720. Chen, C.M., and Leisner, S.M. (1984). Modification of cytokinins by cauliflower microsomal enzymes. Plant Physiol 75: 442-446. Chevrot, R., Rosen, R., Haudecoeur, E., Cirou, A., Shelp, B.J., Ron, E., and Faure, D. (2006). GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 103: 7460-7464. Chilton, M.-D., Drummond, M.H., Merlo, D.J., Sciaky, D., Montoya, A.L., Gordon, M.P., and Nester, E.W. (1977). Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11: 263-271. Christie, P.J. (2001). Type IV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugation machines. Mol Microbiol 40: 294-305. Christie, P.J., Ward, J.E., Jr., Gordon, M.P., and Nester, E.W. (1989). A gene required for transfer of T-DNA to plants encodes an ATPase with autophosphorylating activity. Proc Natl Acad Sci U S A 86: 9677-9681. Christie, P.J., Atmakuri, K., Krishnamoorthy, V., Jakubowski, S., and Cascales, E. (2005). Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59: 451-485. Citovsky, V., Kozlovsky, S.V., Lacroix, B., Zaltsman, A., Dafny-Yelin, M., Vyas, S., Tovkach, A., and Tzfira, T. (2007). Biological systems of the host cell involved in Agrobacterium infection. Cell Microbiol 9: 9-20. Dafny-Yelin, M., Levy, A., and Tzfira, T. (2008). The ongoing saga of Agrobacterium-host interactions. Trends Plant Sci 13: 102-105. Djamei, A., Pitzschke, A., Nakagami, H., Rajh, I., and Hirt, H. (2007). Trojan horse strategy in Agrobacterium transformation: abusing MAPK defense signaling. Science 318: 453-456. Eberl, L., Winson, M.K., Sternberg, C., Stewart, G.S., Christiansen, G., Chhabra, S.R., Bycroft, B., Williams, P., Molin, S., and Givskov, M. (1996). Involvement of N-acyl-L-hormoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Mol Microbiol 20: 127-136. Eisenbrandt, R., Kalkum, M., Lai, E.M., Lurz, R., Kado, C.I., and Lanka, E. (1999). Conjugative pili of IncP plasmids, and the Ti plasmid T pilus are composed of cyclic subunits. J Biol Chem 274: 22548-22555. Escobar, M.A., and Dandekar, A.M. (2003). Agrobacterium tumefaciens as an agent of disease. Trends Plant Sci 8: 380-386. Ferguson, B.J., Indrasumunar, A., Hayashi, S., Lin, M.H., Lin, Y.H., Reid, D.E., and Gresshoff, P.M. (2010). Molecular analysis of legume nodule development and autoregulation. J Integr Plant Biol 52: 61-76. Filichkin, S.A., and Gelvin, S.B. (1993). Formation of a putative relaxation intermediate during T-DNA processing directed by the Agrobacterium tumefaciens VirD1,D2 endonuclease. Mol Microbiol 8: 915-926. Gan, S., and Amasino, R.M. (1995). Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270: 1986-1988. Gao, R., and Lynn, D.G. (2005). Environmental pH sensing: resolving the VirA/VirG two-component system inputs for Agrobacterium pathogenesis. J Bacteriol 187: 2182-2189. Garfinkel, D.J., Simpson, R.B., Ream, L.W., White, F.F., Gordon, M.P., and Nester, E.W. (1981). Genetic analysis of crown gall: fine structure map of the T-DNA by site-directed mutagenesis. Cell 27: 143-153. Gelvin, S.B. (2003). Agrobacterium-mediated plant transformation: the biology behind the "gene-jockeying" tool. Microbiol Mol Biol Rev 67: 16-37, table of contents. Gelvin, S.B. (2006). Agrobacterium transformation of Arabidopsis thaliana roots: a quantitative assay. Methods Mol Biol 343: 105-113. Gelvin, S.B. (2010). Plant proteins Involved in Agrobacterium-mediated genetic transformation. Annu Rev Phytopathol 48: 3.1-3.24. Gomis-Ruth, F.X., Moncalian, G., Perez-Luque, R., Gonzalez, A., Cabezon, E., de la Cruz, F., and Coll, M. (2001). The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Nature 409: 637-641. Guyon, P., Chilton, M.D., Petit, A., and Tempe, J. (1980). Agropine in "null-type" crown gall tumors: Evidence for generality of the opine concept. Proc Natl Acad Sci U S A 77: 2693-2697. Hamilton, R.H., and Fall, M.Z. (1971). The loss of tumor-initiating ability in Agrobacterium tumefaciens by incubation at high temperature. Experientia 27: 229-230. Hapfelmeier, S., Domke, N., Zambryski, P.C., and Baron, C. (2000). VirB6 is required for stabilization of VirB5 and VirB3 and formation of VirB7 homodimers in Agrobacterium tumefaciens. J Bacteriol 182: 4505-4511. Haudecoeur, E., and Faure, D. (2010). A fine control of quorum-sensing communication in Agrobacterium tumefaciens. Commun Integr Biol 3: 84-88. Hensel, G., Kastner, C., Oleszczuk, S., Riechen, J., and Kumlehn, J. (2009). Agrobacterium-mediated gene transfer to cereal crop plants: current protocols for barley, wheat, triticale, and maize. Int J Plant Genomics 2009: 835608. Hepburn, A.G., White, J., Pearson, L., Maunders, M.J., Clarke, L.E., Prescott, A.G., and Blundy, K.S. (1985). The use of pNJ5000 as an intermediate vector for the genetic manipulation of Agrobacterium Ti-plasmids. J Gen Microbiol 131: 2961-2969. Hoekema, A., Hirsch, P.R., Hooykaas, P.J.J., and Schilperoort, R.A. (1983). A binary plant vector strategy based on separation of vir-region and T-Region of the Agrobacterium-Tumefaciens Ti-Plasmid. Nature 303: 179-180. Hood, E.E., Helmer, G.L., Fraley, R.T., and Chilton, M.D. (1986). The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168: 1291-1301. Hwang, H.-H., and Gelvin, S.B. (2004). Plant proteins that interact with VirB2, the Agrobacterium tumefaciens pilin protein, mediate plant transformation. Plant Cell 16: 3148-3167. Hwang, H.H., Mysore, K.S., and Gelvin, S.B. (2006). Transgenic Arabidopsis plants expressing Agrobacterium tumefaciens VirD2 protein are less susceptible to Agrobacterium transformation. Mol Plant Pathol 7: 473-484. Hwang, H.H., Wang, M.H., Lee, Y.L., Tsai, Y.L., Li, Y.H., Yang, F.J., Liao, Y.C., Lin, S.K., and Lai, E.M. (2010). Agrobacterium-produced and exogenous cytokinin-modulated Agrobacterium-mediated plant transformation. Mol Plant Pathol 11: 677-690. Hwang, I., Chen, H.C., and Sheen, J. (2002). Two-component signal transduction pathways in Arabidopsis. Plant Physiol 129: 500-515. Igari, K., Endo, S., Hibara, K., Aida, M., Sakakibara, H., Kawasaki, T., and Tasaka, M. (2008). Constitutive activation of a CC-NB-LRR protein alters morphogenesis through the cytokinin pathway in Arabidopsis. Plant J 55: 14-27. Jakubowski, S.J., Krishnamoorthy, V., and Christie, P.J. (2003). Agrobacterium tumefaciens VirB6 protein participates in formation of VirB7 and VirB9 complexes required for type IV secretion. J Bacteriol 185: 2867-2878. Jarchow, E., Grimsley, N.H., and Hohn, B. (1991). virF, the host-range-determining virulence gene of Agrobacterium tumefaciens, affects T-DNA transfer to Zea mays. Proc Natl Acad Sci U S A 88: 10426-10430. Jasinski, S., Piazza, P., Craft, J., Hay, A., Woolley, L., Rieu, I., Phillips, A., Hedden, P., and Tsiantis, M. (2005). KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol 15: 1560-1565. Jin, S., Roitsch, T., Ankenbauer, R.G., Gordon, M.P., and Nester, E.W. (1990a). The VirA protein of Agrobacterium tumefaciens is autophosphorylated and is essential for vir gene regulation. J Bacteriol 172: 525-530. Jin, S.G., Prusti, R.K., Roitsch, T., Ankenbauer, R.G., and Nester, E.W. (1990b). Phosphorylation of the VirG protein of Agrobacterium tumefaciens by the autophosphorylated VirA protein: essential role in biological activity of VirG. J Bacteriol 172: 4945-4950. John, M.C., and Amasino, R.M. (1988). Expression of an Agrobacterium Ti plasmid gene involved in cytokinin biosynthesis is regulated by virulence loci and induced by plant phenolic compounds. J Bacteriol 170: 790-795. Jones, A.L., Shirasu, K., and Kado, C.I. (1994). The product of the virB4 gene of Agrobacterium tumefaciens promotes accumulation of VirB3 protein. J Bacteriol 176: 5255-5261. Kado, C.I. (2000). The role of the T-pilus in horizontal gene transfer and tumorigenesis. Curr Opin Microbiol 3: 643-648. Kamada-Nobusada, T., and Sakakibara, H. (2009). Molecular basis for cytokinin biosynthesis. Phytochemistry 70: 444-449. Kao, J.C., Perry, K.L., and Kado, C.I. (1982). Indoleacetic acid complementation and its relation to host range specifying genes on the Ti plasmid of Agrobacterium tumefaciens. Mol Gen Genet 188: 425-432. Kerr, A. (1971). Acquisition of virulence by non-pathogenic isolates of Agrobacterium radiobacter. Physiol. Plant Path. 1: 241-246. Kim, H.J., Ryu, H., Hong, S.H., Woo, H.R., Lim, P.O., Lee, I.C., Sheen, J., Nam, H.G., and Hwang, I. (2006). Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. Proc Natl Acad Sci U S A 103: 814-819. Kim, S.I., Veena, and Gelvin, S.B. (2007). Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. Plant J 51: 779-791. Klee, H., Montoya, A., Horodyski, F., Lichtenstein, C., Garfinkel, D., Fuller, S., Flores, C., Peschon, J., Nester, E., and Gordon, M. (1984). Nucleotide sequence of the tms genes of the pTiA6NC octopine Ti plasmid: two gene products involved in plant tumorigenesis. Proc Natl Acad Sci U S A 81: 1728-1732. Klusener, S., Hacker, S., Tsai, Y.L., Bandow, J.E., Gust, R., Lai, E.M., and Narberhaus, F. (2010). Proteomic and transcriptomic characterization of a virulence-deficient phosphatidylcholine-negative Agrobacterium tumefaciens mutant. Mol Genet Genomics 283: 575-589. Kovacs, L.G., and Pueppke, S.G. (1994). Mapping and genetic organization of pTiChry5, a novel Ti plasmid from a highly virulent Agrobacterium tumefaciens strain. Mol Gen Genet 242: 327-336. Krall, L., Raschke, M., Zenk, M.H., and Baron, C. (2002). The Tzs protein from Agrobacterium tumefaciens C58 produces zeatin riboside 5''-phosphate from 4-hydroxy-3-methyl-2-(E)-butenyl diphosphate and AMP. FEBS Lett 527: 315-318. Krause, S., Pansegrau, W., Lurz, R., de la Cruz, F., and Lanka, E. (2000a). Enzymology of type IV macromolecule secretion systems: the conjugative transfer regions of plasmids RP4 and R388 and the cag pathogenicity island of Helicobacter pylori encode structurally and functionally related nucleoside triphosphate hydrolases. J Bacteriol 182: 2761-2770. Krause, S., Barcena, M., Pansegrau, W., Lurz, R., Carazo, J.M., and Lanka, E. (2000b). Sequence-related protein export NTPases encoded by the conjugative transfer region of RP4 and by the cag pathogenicity island of Helicobacter pylori share similar hexameric ring structures. Proc Natl Acad Sci U S A 97: 3067-3072. Kudo, T., Kiba, T., and Sakakibara, H. (2010). Metabolism and long-distance translocation of cytokinins. J Integr Plant Biol 52: 53-60. Kurakawa, T., Ueda, N., Maekawa, M., Kobayashi, K., Kojima, M., Nagato, Y., Sakakibara, H., and Kyozuka, J. (2007). Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445: 652-655. Lai, E.M., Chesnokova, O., Banta, L.M., and Kado, C.I. (2000). Genetic and environmental factors affecting T-pilin export and T-pilus biogenesis in relation to flagellation of Agrobacterium tumefaciens. J Bacteriol 182: 3705-3716. Lai, E.M., Eisenbrandt, R., Kalkum, M., Lanka, E., and Kado, C.I. (2002). Biogenesis of T pili in Agrobacterium tumefaciens requires precise VirB2 propilin cleavage and cyclization. J Bacteriol 184: 327-330. Lai, E.M., and Kado, C.I. (1998). Processed VirB2 is the major subunit of the promiscuous pilus of Agrobacterium tumefaciens. J Bacteriol 180: 2711-2717. Lai, E.M., Shih, H.W., Wen, S.R., Cheng, M.W., Hwang, H.H., and Chiu, S.H. (2006). Proteomic analysis of Agrobacterium tumefaciens response to the vir gene inducer acetosyringone. Proteomics 6: 4130-4136. Leibfried, A., To, J.P., Busch, W., Stehling, S., Kehle, A., Demar, M., Kieber, J.J., and Lohmann, J.U. (2005). WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438: 1172-1175. Letham, D.S. (1973). Cytokinins from Zea mays. Phytochemistry 12: 2445-2455. Li, L., Jia, Y., Hou, Q., Charles, T.C., Nester, E.W., and Pan, S.Q. (2002). A global pH sensor: Agrobacterium sensor protein ChvG regulates acid-inducible genes on its two chromosomes and Ti plasmid. Proc Natl Acad Sci U S A 99: 12369-12374. Lichtenstein, C., Klee, H., Montoya, A., Garfinkel, D., Fuller, S., Flores, C., Nester, E., and Gordon, M. (1984). Nucleotide sequence and transcript mapping of the tmr gene of the pTiA6NC octopine Ti-plasmid: a bacterial gene involved in plant tumorigenesis. J Mol Appl Genet 2: 354-362. Lichtenthaler, H.K. (1999). The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50: 47-65. Lin, Y.H., Gao, R., Binns, A.N., and Lynn, D.G. (2008). Capturing the VirA/VirG TCS of Agrobacterium tumefaciens. Adv Exp Med Biol 631: 161-177. Liu, A.C., Shih, H.W., Hsu, T., and Lai, E.M. (2008). A citrate-inducible gene, encoding a putative tricarboxylate transporter, is downregulated by the organic solvent DMSO in Agrobacterium tumefaciens. J Appl Microbiol 105: 1372-1383. Liu, P., and Nester, E.W. (2006). Indoleacetic acid, a product of transferred DNA, inhibits vir gene expression and growth of Agrobacterium tumefaciens C58. Proc Natl Acad Sci U S A 103: 4658-4662. Lu, J., den Dulk-Ras, A., Hooykaas, P.J., and Glover, J.N. (2009). Agrobacterium tumefaciens VirC2 enhances T-DNA transfer and virulence through its C-terminal ribbon-helix-helix DNA-binding fold. Proc Natl Acad Sci U S A 106: 9643-9648. Mansouri, H., Petit, A., Oger, P., and Dessaux, Y. (2002). Engineered rhizosphere: the trophic bias generated by opine-producing plants is independent of the opine type, the soil origin, and the plant species. Appl Environ Microbiol 68: 2562-2566. McCullen, C.A., and Binns, A.N. (2006). Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol 22: 101-127. Melchers, L.S., Regensburg-Tuink, T.J., Bourret, R.B., Sedee, N.J., Schilperoort, R.A., and Hooykaas, P.J. (1989). Membrane topology and functional analysis of the sensory protein VirA of Agrobacterium tumefaciens. EMBO J 8: 1919-1925. Middleton, R., Sjolander, K., Krishnamurthy, N., Foley, J., and Zambryski, P. (2005). Predicted hexameric structure of the Agrobacterium VirB4 C terminus suggests VirB4 acts as a docking site during type IV secretion. Proc Natl Acad Sci U S A 102: 1685-1690. Miller, C.O., Skoog, F., Von Saltza, M.H., and Strong, F.M. (1955). Kinetin, a cell division factor from deoxyribonucleic acid1. J Am Chem Soc 77: 1392-1392. Miranda, A., Janssen, G., Hodges, L., Peralta, E.G., and Ream, W. (1992). Agrobacterium tumefaciens transfers extremely long T-DNAs by a unidirectional mechanism. J Bacteriol 174: 2288-2297. Miyawaki, K., Matsumoto-Kitano, M., and Kakimoto, T. (2004). Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J 37: 128-138. Miyawaki, K., Tarkowski, P., Matsumoto-Kitano, M., Kato, T., Sato, S., Tarkowska, D., Tabata, S., Sandberg, G., and Kakimoto, T. (2006). Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc Natl Acad Sci U S A 103: 16598-16603. Mok, D.W., and Mok, M.C. (2001). Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Mol Biol 52: 89-118. Montoya, A.L., Moore, L.W., Gordon, M.P., and Nester, E.W. (1978). Multiple genes coding for octopine-degrading enzymes in Agrobacterium. J Bacteriol 136: 909-915. Moore, L.W. (1988). Use of Agrobacterium radiobacter in agricultural ecosystems. Microbiol Sci 5: 92-95. Moore, L.W., Chilton, W.S., and Canfield, M.L. (1997). Diversity of opines and opine-catabolizing bacteria isolated from naturally occurring crown gall tumors. Appl Environ Microbiol 63: 201-207. Ortiz-Castro, R., Contreras-Cornejo, H.A., Macias-Rodriguez, L., and Lopez-Bucio, J. (2009). The role of microbial signals in plant growth and development. Plant Signal Behav 4: 701-712. Peralta, E.G., and Ream, L.W. (1985). T-DNA border sequences required for crown gall tumorigenesis. Proc Natl Acad Sci U S A 82: 5112-5116. Perilli, S., Moubayidin, L., and Sabatini, S. (2010). The molecular basis of cytokinin function. Curr Opin Plant Biol 13: 21-26. Piper, K.R., and Farrand, S.K. (2000). Quorum sensing but not autoinduction of Ti plasmid conjugal transfer requires control by the opine regulon and the antiactivator TraM. J Bacteriol 182: 1080-1088. Piper, K.R., Beck Von Bodman, S., Hwang, I., and Farrand, S.K. (1999). Hierarchical gene regulatory systems arising from fortuitous gene associations: controlling quorum sensing by the opine regulon in Agrobacterium. Mol Microbiol 32: 1077-1089. Powell, G.K., and Morris, R.O. (1986). Nucleotide sequence and expression of a Pseudomonas savastanoi cytokinin biosynthetic gene: homology with Agrobacterium tumefaciens tmr and tzs loci. Nucleic Acids Res 14: 2555-2565. Powell, G.K., Hommes, N.G., Kuo, J., Castle, L.A., and Morris, R.O. (1988). Inducible expression of cytokinin biosynthesis in Agrobacterium tumefaciens by plant phenolics. Mol Plant Microbe Interact 1: 235-242. Regensburg-Tuink, A.J., and Hooykaas, P.J. (1993). Transgenic N. glauca plants expressing bacterial virulence gene virF are converted into hosts for nopaline strains of A. tumefaciens. Nature 363: 69-71. Regier, D.A., and Morris, R.O. (1982). Secretion of trans-zeatin by Agrobacterium tumefaciens: a function determined by the nopaline Ti plasmid. Biochem Biophys Res Commun 104: 1560-1566. Rogowsky, P.M., Close, T.J., Chimera, J.A., Shaw, J.J., and Kado, C.I. (1987). Regulation of the vir genes of Agrobacterium tumefaciens plasmid pTiC58. J Bacteriol 169: 5101-5112. Rohmer, M. (1999). The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16: 565-574. Sachs, T., and Thimann, K.V. (1967). The role of auxins and cytokinins in the release of buds from dominance Am J Bot 52: 136-144. Sakakibara, H., Kasahara, H., Ueda, N., Kojima, M., Takei, K., Hishiyama, S., Asami, T., Okada, K., Kamiya, Y., Yamaya, T., and Yamaguchi, S. (2005). Agrobacterium tumefaciens increases cytokinin production in plastids by modifying the biosynthetic pathway in the host plant. Proc Natl Acad Sci U S A 102: 9972-9977. Salomon, F., Deblaere, R., Leemans, J., Hernalsteens, J.P., Van Montagu, M., and Schell, J. (1984). Genetic identification of functions of TR-DNA transcripts in octopine crown galls. EMBO J 3: 141-146. Schrammeijer, B., Hemelaar, J., and Hooykaas, P.J. (1998). The presence and characterization of a virF gene on Agrobacterium vitis Ti plasmids. Mol Plant Microbe Interact 11: 429-433. Sciaky, D., Montoya, A.L., and Chilton, M.D. (1978). Fingerprints of Agrobacterium Ti plasmids. Plasmid 1: 238-253. Shani, E., Yanai, O., and Ori, N. (2006). The role of hormones in shoot apical meristem function. Curr Opin Plant Biol 9: 484-489. Shimizu-Sato, S., Tanaka, M., and Mori, H. (2009). Auxin-cytokinin interactions in the control of shoot branching. Plant Mol Biol 69: 429-435. Shimoda, N., Toyoda-Yamamoto, A., Aoki, S., and Machida, Y. (1993). Genetic evidence for an interaction between the VirA sensor protein and the ChvE sugar-binding protein of Agrobacterium. J Biol Chem 268: 26552-26558. Shirasu, K., and Kado, C.I. (1993). Membrane location of the Ti plasmid VirB proteins involved in the biosynthesis of a pilin-like conjugative structure on Agrobacterium tumefaciens. FEMS Microbiol Lett 111: 287-294. Simon, R., Priefer, U., and Puhler, A. (1983). A broad host range mobilization system for in vivo genetic-engineering - transposon mutagenesis in gram-negative bacteria. Bio-Technol 1: 784-791. Smith, E.F., and Townsend, C.O. (1907). A plant-tumor of bacterial origin. Science 25: 671-673. Takei, K., Takahashi, T., Sugiyama, T., Yamaya, T., and Sakakibara, H. (2002). Multiple routes communicating nitrogen availability from roots to shoots: a signal transduction pathway mediated by cytokinin. J Exp Bot 53: 971-977. Takei, K., Yamaya, T., and Sakakibara, H. (2004a). Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-zeatin. J Biol Chem 279: 41866-41872. Takei, K., Ueda, N., Aoki, K., Kuromori, T., Hirayama, T., Shinozaki, K., Yamaya, T., and Sakakibara, H. (2004b). AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis. Plant Cell Physiol 45: 1053-1062. Tanaka, M., Takei, K., Kojima, M., Sakakibara, H., and Mori, H. (2006). Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J 45: 1028-1036. Tato, I., Zunzunegui, S., de la Cruz, F., and Cabezon, E. (2005). TrwB, the coupling protein involved in DNA transport during bacterial conjugation, is a DNA-dependent ATPase. Proc Natl Acad Sci U S A 102: 8156-8161. Thorstenson, Y.R., Kuldau, G.A., and Zambryski, P.C. (1993). Subcellular localization of seven VirB proteins of Agrobacterium tumefaciens: implications for the formation of a T-DNA transport structure. J Bacteriol 175: 5233-5241. To, J.P., and Kieber, J.J. (2008). cytokinin signaling: two-components and more. Trends Plant Sci 13: 85-92. Toro, N., Datta, A., Carmi, O.A., Young, C., Prusti, R.K., and Nester, E.W. (1989). The Agrobacterium tumefaciens virC1 gene product binds to overdrive, a T-DNA transfer enhancer. J Bacteriol 171: 6845-6849. Tsai, Y.L., Wang, M.H., Gao, C., Klusener, S., Baron, C., Narberhaus, F., and Lai, E.M. (2009). Small heat-shock protein HspL is induced by VirB protein(s) and promotes VirB/D4-mediated DNA transfer in Agrobacterium tumefaciens. Microbiology 155: 3270-3280. Turk, S.C., van Lange, R.P., Regensburg-Tuink, T.J., and Hooykaas, P.J. (1994). Localization of the VirA domain involved in acetosyringone-mediated vir gene induction in Agrobacterium tumefaciens. Plant Mol Biol 25: 899-907. Tzfira, T., and Citovsky, V. (2006). Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 17: 147-154. Tzfira, T., Vaidya, M., and Citovsky, V. (2001). VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J 20: 3596-3607. Tzfira, T., Rhee, Y., Chen, M.H., Kunik, T., and Citovsky, V. (2000). Nucleic acid transport in plant-microbe interactions: the molecules that walk through the walls. Annu Rev Microbiol 54: 187-219. van Attikum, H., Bundock, P., and Hooykaas, P.J. (2001). Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration. EMBO J 20: 6550-6558. Vergunst, A.C., van Lier, M.C., den Dulk-Ras, A., Stuve, T.A., Ouwehand, A., and Hooykaas, P.J. (2005). Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proc Natl Acad Sci U S A 102: 832-837. Wang, K., Herrera-Estrella, A., and Van Montagu, M. (1990). Overexpression of virD1 and virD2 genes in Agrobacterium tumefaciens enhances T-complex formation and plant transformation. J Bacteriol 172: 4432-4440. Wang, K., Herrera-Estrella, L., Van Montagu, M., and Zambryski, P. (1984). Right 25 bp terminus sequence of the nopaline T-DNA is essential for and determines direction of DNA transfer from Agrobacterium to the plant genome. Cell 38: 455-462. Wang, K., Stachel, S.E., Timmerman, B., M, V.A.N.M., and Zambryski, P.C. (1987). Site-specific nick in the T-DNA border sequence as a result of Agrobacterium vir gene expression. Science 235: 587-591. Ward, E.R., and Barnes, W.M. (1988). VirD2 protein of Agrobacterium tumefaciens very tightly linked to the 5'' end of T-strand DNA. Science 242: 927-930. Werner, T., and Schmulling, T. (2009). Cytokinin action in plant development. Curr Opin Plant Biol 12: 527-538. White, C.E., and Winans, S.C. (2007). Cell-cell communication in the plant pathogen Agrobacterium tumefaciens. Philos Trans R Soc Lond B Biol Sci 362: 1135-1148. Winans, S.C. (1990). Transcriptional induction of an Agrobacterium regulatory gene at tandem promoters by plant-released phenolic compounds, phosphate starvation, and acidic growth media. J Bacteriol 172: 2433-2438. Winans, S.C., Kerstetter, R.A., and Nester, E.W. (1988). Transcriptional regulation of the virA and virG genes of Agrobacterium tumefaciens. J Bacteriol 170: 4047-4054. Wu, H.Y., Chung, P.C., Shih, H.W., Wen, S.R., and Lai, E.M. (2008). Secretome analysis uncovers an Hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens. J Bacteriol 190: 2841-2850. Yanai, O., Shani, E., Dolezal, K., Tarkowski, P., Sablowski, R., Sandberg, G., Samach, A., and Ori, N. (2005). Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr Biol 15: 1566-1571. Yanofsky, M.F., Porter, S.G., Young, C., Albright, L.M., Gordon, M.P., and Nester, E.W. (1986). The virD operon of Agrobacterium tumefaciens encodes a site-specific endonuclease. Cell 47: 471-477. Yeo, H.J., Savvides, S.N., Herr, A.B., Lanka, E., and Waksman, G. (2000). Crystal structure of the hexameric traffic ATPase of the Helicobacter pylori type IV secretion system. Mol Cell 6: 1461-1472. Yuan, Z.C., Edlind, M.P., Liu, P., Saenkham, P., Banta, L.M., Wise, A.A., Ronzone, E., Binns, A.N., Kerr, K., and Nester, E.W. (2007). The plant signal salicylic acid shuts down expression of the vir regulon and activates quormone-quenching genes in Agrobacterium. Proc Natl Acad Sci U S A 104: 11790-11795. Zaenen, I., Van Larebeke, N., Van Montagu, M., and Schell, J. (1974). Supercoiled circular DNA in crown-gall inducing Agrobacterium strains. J Mol Biol 86: 109-127. Zambryski, P., Joos, H., Genetello, C., Leemans, J., Montagu, M.V., and Schell, J. (1983). Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J 2: 2143-2150. Zhan, X.C., Jones, D.A., and Kerr, A. (1990). The pTiC58 tzs gene promotes high-efficiency root induction by agropine strain 1855 of Agrobacterium rhizogenes. Plant Mol Biol 14: 785-792. Zhang, L., Murphy, P.J., Kerr, A., and Tate, M.E. (1993). Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones. Nature 362: 446-448. Zhu, J., Oger, P.M., Schrammeijer, B., Hooykaas, P.J., Farrand, S.K., and Winans, S.C. (2000). The bases of crown gall tumorigenesis. J Bacteriol 182: 3885-3895. Zhu, Y.M., Nam, J., Humara, J.M., Mysore, K.S., Lee, L.Y., Cao, H.B., Valentine, L., Li, J.L., Kaiser, A.D., Kopecky, A.L., Hwang, H.H., Bhattacharjee, S., Rao, P.K., Tzfira, T., Rajagopal, J., Yi, H.C., Veena, Yadav, B.S., Crane, Y.M., Lin, K., Larcher, Y., Gelvin, M.J.K., Knue, M., Ramos, C., Zhao, X.W., Davis, S.J., Kim, S.I., Ranjith-Kumar, C.T., Choi, Y.J., Hallan, V.K., Chattopadhyay, S., Sui, X.Z., Ziemienowicz, A., Matthysse, A.G., Citovsky, V., Hohn, B., and Gelvin, S.B. (2003). Identification of Arabidopsis rat mutants. Plant Physiol 132: 494-505. Zupan, J., Muth, T.R., Draper, O., and Zambryski, P. (2000). The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J 23: 11-28.
摘要: 農桿菌(Agrobacterium tumefaciens)是一種植物病原菌,存在土壤當中可在感染植物根部後,造成感染部位形成冠癭狀腫瘤(crown gall tumor),進而影響植物正常的生長發育。農桿菌菌體內的T-DNA (transfer DNA)會經感染過程,而轉移到植物細胞中表現其上之基因。因T-DNA上具有植物生長素(auxin)及細胞分裂素(cytokinin)的生合成基因,故在T-DNA嵌入植物染色體後,這些基因會被表現,生合成植物賀爾蒙,進而影響植物體內生理平衡、使植物細胞不正常大量增生產生腫瘤。在農桿菌中具有vir基因(virulence gene),能幫助T-DNA產生、轉移及嵌入到植物染色體中表現。農桿菌藉由位在膜上的VirA/VirG two component系統,感受到植物分泌的單醣及酚類化合物等物質,再將這些vir基因大量誘導表現;其中VirB1-11及VirD4蛋白質構成的第四型分泌系統(Type IV secretion system,T4SS),則是幫助T-DNA及Vir蛋白質進入植物細胞的途徑。在nopaline品系之農桿菌的Ti質體上,含有與ipt基因序列相似的tzs基因,也會受到VirA/VirG two component系統的調控而大量表現。tzs基因能轉譯產生反玉米素生合成蛋白質(trans-zeatin synthesis protein,Tzs),可位在農桿菌的細胞膜上。且已知當tzs基因突變之後,會導致農桿菌分泌反玉米素的量下降,和感染植物的效率下降及細菌生長遲緩。當農桿菌感染植物時,外加細胞分裂素可增加tzs突變株短暫表現T-DNA的效率,故本研究進一步探討tzs基因及其產物,於農桿菌感染植物過程中所扮演的角色。本研究結果顯示在tzs突變株內,不管是細菌生長在19℃或25℃的酸性AB-MES液態培養基、或523液態培養基中,皆比野生株累積較多的Vir蛋白質。而藉由分析virB啟動子活性得知,可能因突變株內的virB啟動子活性提高,因而累積較多的Vir蛋白質,並且影響突變株之生長速率。此外,若將Tzs蛋白質大量表現在nopaline及octopine品系的野生種農桿菌中,則降低某些Vir蛋白質的累積量。而當外加細胞分裂素於酸性的AB-MES液態培養基或MS固態培養基中,則會降低nopaline品系之野生種農桿菌的virB啟動子活性及Vir蛋白質累積量。此外,若在不同品系之農桿菌感染阿拉伯芥的過程中加入細胞分裂素,會提高部分品系農桿菌短暫表現T-DNA的效率。故由本研究結果可知tzs基因和細胞分裂素可能會藉由參與vir基因表現的調控機制,而於農桿菌感染過程中扮演重要的角色。
Agrobacterium tumefaciens is a soil plant pathogen, which causes crown gall disease at plant wounded site and affects plant normal growth and development. The disease is resulted from the transfer, integration, and expression of the T-DNA from the Agrobacterium into plant cells. There are plant hormone biosynthesis genes on the wild-type T-DNA, including iaaM, iaaH, and ipt genes, which involve in auxin and cytokinin biosynthesis in infected plant cells. The high level productions of auxin and cyokinin will affect the internal balance and regulations of plant hormones and increase plant cell sizes and numbers abnormally, resulting in tumor growths. The vir genes, involving in T-DNA production, transfer and integration, are regulated by the VirA/VirG two component system in Agrobacterium. The vir gene expressions can be induced by chemical compounds secreted from plant wounded sites, such as sugar and phenolic compounds. The VirB1-11 and the VirD4 proteins are the structural components of the type IV secretion system (T4SS), which provide the conduit for T-DNA transfer from bacteria into plant cells. The tzs gene, showing sequence similarity with ipt gene, is only found on the nopaline type Ti plasmid and is also regulated by the VirA/VirG two component system. The tzs gene encodes for trans-zeatin synthesis (Tzs) protein, which locates on the cell membrane and causes trans-zeatin secretions. So far it is known that tzs mutants decrease trans-zeatin secretions, reduce infection abilities on plants and show growth defects during infections. When the exogenous cytokinin is added during infections, it can increase the transient transformation efficiencies of tzs mutants. Therefore, functional characterizations of possible roles of Tzs and its product, cytokinins, were further carried out in my study. Results from my study showed that Vir protein accumulations and virB promoter activities increased in the tzs mutants when grown in acidic AB-MES media, or in acidic or neutral 523 media with AS at 19℃ or 25℃. The increase of virB promoter activities may cause the higher level of Vir protein accumulations in the tzs mutants and may therefore affect bacterial growth rate of the tzs mutants. Additionally, when the tzs gene was over-expressed in the nopaline and octopine wild-type Agrobacterium strains, several Vir protein accumulations were affected. When the exogenous cytokinins were added under AS inductions, both Vir protein accumulations and virB promoter activities were decreased in the wild-type Agrobacterium strain. Similarly, additions of exogenous cytokinins during infections increased the transient transformation efficiencies of several wild-type Agrobacterium strains. Taken together, the data suggest that tzs gene and/or its product may be involved in the regulation of vir gene expressions and may play an important role during infection.
其他識別: U0005-0308201014512700
Appears in Collections:生命科學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.