Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/23024
標題: 外源性Wnt4對雞生殖腺的影響
Tho effects of the ectopic Wnt4 on chicken gonad development.
作者: 吳怡頻
Wu, Yi-Ping
關鍵字: Wnt4

chicken
development
生殖腺
發育
出版社: 生命科學系所
引用: 1. B. Capel, Mech Dev 92, 89 (Mar 15, 2000). 2. S. Gilbert, Sex determination. C. Wigg, Ed., Developmental biology (Andrew D. Sinauer, USA, 2003). 3. K. H. Albrecht, E. M. Eicher, Dev Biol 240, 92 (Dec 1, 2001). 4. O. S. Birk et al., Nature 403, 909 (Feb 24, 2000). 5. J. H. Shen, H. A. Ingraham, Mol Endocrinol 16, 529 (Mar, 2002). 6. M. Bullejos, J. Bowles, P. Koopman, Dev Dyn 225, 95 (Sep, 2002). 7. J. S. Jorgensen, L. Gao, Gene Expr Patterns 5, 756 (Aug, 2005). 8. M. Fernandez-Teran, M. E. Piedra, B. K. Simandl, J. F. Fallon, M. A. Ros, Dev Biol 189, 246 (Sep 15, 1997). 9. E. Rodemer-Lenz, Anat Embryol (Berl) 179, 237 (1989). 10. C. A. Smith, A. H. Sinclair, Bioessays 26, 120 (Feb, 2004). 11. C. Tilmann, B. Capel, Development 126, 2883 (Jul, 1999). 12. V. Bruggeman, P. Van As, E. Decuypere, Comp Biochem Physiol A Mol Integr Physiol 131, 839 (Apr, 2002). 13. E. S. Rodemer, A. Ihmer, H. Wartenberg, J Embryol Exp Morphol 98, 269 (Nov, 1986). 14. J. Brennan, J. Karl, B. Capel, Dev Biol 244, 418 (Apr 15, 2002). 15. J. R. McCarrey, U. K. Abbott, J Embryol Exp Morphol 68, 161 (Apr, 1982). 16. A. McLaren, Bioessays 13, 151 (Apr, 1991). 17. H. H. Yao, C. Tilmann, G. Q. Zhao, B. Capel, Novartis Found Symp 244, 187 (2002). 18. A. Elbrecht, R. G. Smith, Science 255, 467 (Jan 24, 1992). 19. S. Vaillant, M. Dorizzi, C. Pieau, N. Richard-Mercier, J Exp Zool 290, 727 (Dec 1, 2001). 20. C. A. Smith, M. Katz, A. H. Sinclair, Biol Reprod 68, 560 (Feb, 2003). 21. O. Nakabayashi, H. Kikuchi, T. Kikuchi, S. Mizuno, J Mol Endocrinol 20, 193 (Apr, 1998). 22. H. Nishikimi et al., Mol Reprod Dev 55, 20 (Jan, 2000). 23. J. Kent, S. C. Wheatley, J. E. Andrews, A. H. Sinclair, P. Koopman, Development 122, 2813 (Sep, 1996). 24. P. S. Western, J. L. Harry, J. A. Graves, A. H. Sinclair, Dev Dyn 214, 171 (Mar, 1999). 25. K. M. Cadigan, R. Nusse, Genes Dev 11, 3286 (Dec 15, 1997). 26. F. H. Brembeck, M. Rosario, W. Birchmeier, Curr Opin Genet Dev 16, 51 (Feb, 2006). 27. B. Lustig, J. Behrens, J Cancer Res Clin Oncol 129, 199 (Apr, 2003). 28. C. J. Gottardi, B. M. Gumbiner, J Cell Biol 167, 339 (Oct 25, 2004). 29. M. Kuhl, L. C. Sheldahl, M. Park, J. R. Miller, R. T. Moon, Trends Genet 16, 279 (Jul, 2000). 30. M. T. Veeman, J. D. Axelrod, R. T. Moon, Dev Cell 5, 367 (Sep, 2003). 31. L. Topol et al., J Cell Biol 162, 899 (Sep 1, 2003). 32. Y. Cai et al., J Biol Chem 277, 1217 (Jan 11, 2002). 33. D. Maurus, C. Heligon, A. Burger-Schwarzler, A. W. Brandli, M. Kuhl, EMBO J 24, 1181 (Mar 23, 2005). 34. K. Osafune, M. Takasato, A. Kispert, M. Asashima, R. Nishinakamura, Development 133, 151 (Jan, 2006). 35. J. P. Lyons et al., Exp Cell Res 298, 369 (Aug 15, 2004). 36. Y. Terada et al., J Am Soc Nephrol 14, 1223 (May, 2003). 37. W. J. Nelson, R. Nusse, Science 303, 1483 (Mar 5, 2004). 38. A. Boyer et al., FASEB J 24, 3010 (Aug, 2010). 39. M. Hollyday, J. A. McMahon, A. P. McMahon, Mech Dev 52, 9 (Jul, 1995). 40. A. R. Ungar, G. M. Kelly, R. T. Moon, Mech Dev 52, 153 (Aug, 1995). 41. K. Stark, S. Vainio, G. Vassileva, A. P. McMahon, Nature 372, 679 (Dec 15, 1994). 42. S. Vainio, M. Heikkila, A. Kispert, N. Chin, A. P. McMahon, Nature 397, 405 (Feb 4, 1999). 43. A. Biason-Lauber, D. Konrad, F. Navratil, E. J. Schoenle, N Engl J Med 351, 792 (Aug 19, 2004). 44. B. K. Jordan, J. H. Shen, R. Olaso, H. A. Ingraham, E. Vilain, Proc Natl Acad Sci U S A 100, 10866 (Sep 16, 2003). 45. A. J. Cousineau et al., Ann Hum Genet 45, 337 (Oct, 1981). 46. B. R. Elejalde et al., Am J Med Genet 17, 723 (Apr, 1984). 47. F. M. Mohammed et al., Am J Med Genet 32, 353 (Mar, 1989). 48. P. Wieacker, D. Missbach, S. Jakubiczka, S. Borgmann, N. Albers, Clin Genet 49, 271 (May, 1996). 49. M. Heikkila et al., Endocrinology 143, 4358 (Nov, 2002). 50. M. Heikkila et al., Endocrinology 146, 4016 (Sep, 2005). 51. F. Barrionuevo et al., Biol Reprod 74, 195 (Jan, 2006). 52. R. Sekido, I. Bar, V. Narvaez, G. Penny, R. Lovell-Badge, Dev Biol 274, 271 (Oct 15, 2004). 53. M. C. Chaboissier et al., Development 131, 1891 (May, 2004). 54. J. W. Foster et al., Nature 372, 525 (Dec 8, 1994). 55. T. Wagner et al., Cell 79, 1111 (Dec 16, 1994). 56. B. Huang, S. Wang, Y. Ning, A. N. Lamb, J. Bartley, Am J Med Genet 87, 349 (Dec 3, 1999). 57. Y. Qin, C. E. Bishop, Hum Mol Genet 14, 1221 (May 1, 2005). 58. V. P. Vidal, M. C. Chaboissier, D. G. de Rooij, A. Schedl, Nat Genet 28, 216 (Jul, 2001). 59. D. M. Maatouk et al., Hum Mol Genet 17, 2949 (Oct 1, 2008). 60. S. H. Hughes, Folia Biol (Praha) 50, 107 (2004). 61. M. J. Federspiel, P. Bates, J. A. Young, H. E. Varmus, S. H. Hughes, Proc Natl Acad Sci U S A 91, 11241 (Nov 8, 1994). 62. P. Bates, J. A. Young, H. E. Varmus, Cell 74, 1043 (Sep 24, 1993). 63. H. B. Adkins, J. Brojatsch, J. A. Young, J Virol 74, 3572 (Apr, 2000). 64. I. Givol, D. Givol, S. H. Hughes, Oncogene 16, 3115 (Jun 18, 1998). 65. M. D. Ryan, A. M. King, G. P. Thomas, J Gen Virol 72 ( Pt 11), 2727 (Nov, 1991). 66. M. D. Ryan, J. Drew, EMBO J 13, 928 (Feb 15, 1994). 67. M. L. Donnelly et al., J Gen Virol 82, 1013 (May, 2001). 68. P. de Felipe, M. D. Ryan, Traffic 5, 616 (Aug, 2004). 69. M. D. Potter, C. V. Nicchitta, J Biol Chem 277, 23314 (Jun 28, 2002). 70. M. D. Potter, R. M. Seiser, C. V. Nicchitta, Trends Cell Biol 11, 112 (Mar, 2001). 71. C. V. Nicchitta, Curr Opin Cell Biol 14, 412 (Aug, 2002). 72. J. F. Menetret et al., Mol Cell 6, 1219 (Nov, 2000). 73. D. G. Morgan, J. F. Menetret, A. Neuhof, T. A. Rapoport, C. W. Akey, J Mol Biol 324, 871 (Dec 6, 2002). 74. D. C. Prasher, V. K. Eckenrode, W. W. Ward, F. G. Prendergast, M. J. Cormier, Gene 111, 229 (Feb 15, 1992). 75. M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, D. C. Prasher, Science 263, 802 (Feb 11, 1994). 76. O. Shimomura, Methods Biochem Anal 47, 1 (2006). 77. V. Hamburger, H. L. Hamilton, Dev Dyn 195, 231 (Dec, 1992). 78. T. Kanda, K. F. Sullivan, G. M. Wahl, Curr Biol 8, 377 (Mar 26, 1998). 79. L. Topol, W. Chen, H. Song, T. F. Day, Y. Yang, J Biol Chem 284, 3323 (Jan 30, 2009). 80. D. Spater, T. P. Hill, M. Gruber, C. Hartmann, Eur Cell Mater 12, 71 (2006). 81. R. Griffiths, S. Daan, C. Dijkstra, Proc Biol Sci 263, 1251 (Sep 22, 1996). 82. A. A. Chassot et al., Hum Mol Genet 17, 1264 (May 1, 2008). 83. M. Jaaskelainen et al., Mol Cell Endocrinol 317, 106 (Apr 12, 2010). 84. C. A. Smith, K. N. Roeszler, J. Bowles, P. Koopman, A. H. Sinclair, BMC Dev Biol 8, 85 (2008). 85. F. Naillat et al., Hum Mol Genet 19, 1539 (Apr 15, 2010). 86. G. Hamer et al., Biol Reprod 68, 628 (Feb, 2003). 87. L. E. Urven, C. A. Erickson, U. K. Abbott, J. R. McCarrey, Development 103, 299 (Jun, 1988). 88. D. M. Eisenmann, WormBook, (2005). 89. 林欣穎, 1 (Jan 1, 2009). 90. S. H. Hughes, J. J. Greenhouse, C. J. Petropoulos, P. Sutrave, J Virol 61, 3004 (Oct, 1987).
摘要: 性別決定系統是決定個體兩性間差別性發育的機制。一般來說生物體的性別決定是由染色體所決定的,但有少數會因環境或社交變化而改變性別。鳥類性別如同哺乳動物一樣是由染色體所決定的(ZZ雄性和ZW雌性),但性染色體及其機制各不相同。在哺乳動物模式中,性別決定機制已有一定程度的了解,雄性方面由於Y染色體上有Sry這個基因,使得個體走向雄性,分子機制上則是有Sox9、SF-1等重要基因在影響雄性發育,雌性的分子機制上有Wnt4、BMP2和DAX1等基因影響雌性發育,其中Wnt4被認為可能是性別決定的主要後補基因之一,之後的研究也指出Wnt4在性別決定上的重要性,但是在鳥類中還沒有針對wnt4對性別影響的研究,因此我們在這裡嘗試用不同方法將帶有Wnt4的質體DNA或病毒送入胚胎生殖腺裡,探討Wnt4在性別決定上的功能。 鳥類反轉錄病毒(avian replication-competent retroviruses;RCAS)會感染正在增生中的細胞並且穩定插入宿主的染色體,我們利用這RCAS系統來將Wnt4導入發育中的生殖腺。首先以RCAS-H2B-GFP對胚胎施行顯微注射,發現螢光蛋白表現不佳,此法無法讓轉殖基因在生殖腺裡大量表現。為了方便觀察追蹤Wnt4表現,構築數種接有GFP報導基因的質體DNA,利用電穿孔的方法將質體DNA送入胚胎的生殖腺裡,但死亡率高以及轉殖率並不理想,因此在這裡將以感染病毒的細胞移植入胚胎裡,企圖讓外源性Wnt4在生殖腺裡表現,觀察Wnt4對生殖腺的影響。 外源性Wnt4在雄性生殖腺裡表現,在生殖腺外觀及內部組織結構沒有因為受到Wnt4作用而有所變異,且無female marker : aromatase的表現,顯示Wnt4無法誘發aromatase出現,之後我們透過male marker : SOX9偵測雄性細胞的表現情形,發現在有Wnt4表現的情況下,SOX9仍然表現在雄性生殖腺裡,表示Wnt4無法有效抑制SOX9的作用。從我們的結果顯示Wnt4在雄性雞生殖腺裡無法改變的染色體既定的性別發育。
Sex determination is a special system that decides dimorphic sex characteristic development in male and female. The difference between the two sexes involves gene expression, karyotype, gonad morphology, hormone expression, psychology and social behavior. The sex determination of birds is chromosomally based, as in mammals, but the sex chromosomes are different and the mechanism of avian sex determination remains poorly understood. In the chicken and all other birds, the male carries two Z sex chromosomes, and the female carries one Z and one W sex chromosome. In the mammal's model, the mechanism of testis formation is now comparably well understood, but understanding of the molecular pathways specifying gonadal differentiation in female is still incomplete. The differentiation of the bipotential genital ridge into a testis requires the Y-encoded gene Sry. Sox9 and Sf1 have been shown to play a role during testis differentiation as candidates. Wnt4 and DAX1 were involved in female fate determination and Wnt4 were proposed as a candidate of female sex determining genes in 1999. The later studies indicate the importance that Wnt4 be in sex determination. Because of the avian transegene technique is not mature, the function of some sex determinate genes in gonad are not complete known. We want to study the influence of Wnt4 in chicken gonad, so we try to use different methods to provide ectopic Wnt4 in chicken gonad, and to observe gonad development. Our result indicate Wnt4 can't change male gonad morphological structure and there‘s no aromatase expression in the male gonad. We use Sox9 as a male somatic cell marker and found SOX9 still could be detected in the Sertoli and Leydig cells of the male gonad. This analysis means that Wnt4 can't suppress SOX9 in chicken male gonad. These are suggested that the ectopic Wnt4 expression in the chicken male gonad is not sufficient to induce sex reversal.
URI: http://hdl.handle.net/11455/23024
其他識別: U0005-0702201117053600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0702201117053600
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.