Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2308
標題: 以3D奈米基材提昇二氧化鈦光觸媒之效能
Performance improvement of the TiO2 catalyst by a 3D nano-structure substrate
作者: 周世瑋
Zhou, Shi-Wei
關鍵字: Nano Devices and Systems
光觸媒
陽極氧化鋁膜版
電泳沉積
出版社: 機械工程學系所
引用: 1. A. Fujishima, K. Honda, Nature 238, 37, (1972) 2. B. O’Regan, M. Gräztzel, Nature 353, 737-740, (1991) 3. M. Grätzel, J. Photochem. & Photobiol. C:Photochem. Rev., 4, 145-153, (2003) 4. 劉慈薇, 陳慧英, “ 二氧化鈦光電極之製備及其在光電化學法產氫之應用, ” 國立成功大學化學工程學系碩士學位論文, 民 97。 5. J. H. Park, S. Kim, A. J. Bard*, Nano Letters, 6:1, 24-28, (2006) 6. A. Sclafani, M. N. Mozzanega, J. M. Herrmann, J. Catal., 168, 117-120, (1997) 7. 陳逸宏, 王國禎, “ 氫離子濃度梯度驅動之太陽光電池之性能提升, ” 國立中興大學機械工程研究所碩士學位論文, 民 96。 8. 余敏昌, 王國禎, “ 金屬-溶液-場效電晶體技術研究, ” 國立中興大學機械工程研究所碩士學位論文, 民 97。 9. A. P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele, J Appl. Phys 84, 6023, (1998) 10. H. Asoh et al., J. Electrochem. Soc. 148, B152, (2001) 11. H. Masuda, F. Hasegwa, S. Ono, J. Electrochem. Soc. 144, Vol 127, (1997) 12. W. E. Alley and B. J. Alder, Phy. Rev. Lett. 43, Vol 653, (1979) 13. R. Wang,K. Hashimoto,A. Fujwashima, Nature 388, 431, (1997) 14. Y. Ohko, T. Tatsuma, T. Fuzii, K. Naoi, C. Niwa, Y. Kubota, A. Fujwashima,Nature Mat. 2, 29, (2002) 15. G.P. Burn,J. Appl. Phys. 65, 2095, (1989) 16. M. Kaneko, I. Okura, eds., Photocatalysis, Springer Verlag, (2003) 17. A. Fujishima, T. N. Rao, D. A. Tryk, J. Photochem. Photobiol. C:Photochem. Rev. 1, 1, (2000) 18. O. Khaselev, J. A. Turner, Science 280, 425, (1998) 19. Blake, D. M., P. C. Maness, Z. Huang, E. J. Wolfrum, J. Huang (1999) 20. Davis, A. P., Huang, C. P., Wat. Sci. Technol. 21, 455-464, (1989) 21. Kawaguchi, H. EnViron. Technol. Lett. 5, 471, (1984) 22. Augugliaro, V. Palmisano, L. Sclafani, A. Minero, C. Pelizzetti, E. Toxicol. EnViron. Chem. 16, 89, (1988) 23. Okamoto, K. Yamamoto, Y. Tanaka, H. Tanaka, M. Itaya, A. Bull, Chem. Soc. Jpn 24. Matthews, R. W., J. Catal. 97, 56, (1986) 25. A. Sclafani, L. Palmisano, M. Schiavello, J. Phys. Chem. 94, 892, (1990) 26. A. Sclafani, J. M. Herrmann, J. Phys. Chem. 100, 13655, (1996) 27. Phase Diagrams for Ceramists Figure , The American Ceramic Society, Inc. 76, 4150, (1975) 28. Jillian F. Banfield, Brian L. Bischoff and Marc A. Anderson, Chemical Geology. 110, 211, (1993) 29. M.S.Ahmed & Y.A.Attia , J.Non-crystalline Solids 186, 402, (1995) 30. S.D.Richardson , A.D.Thruston , T.M.Collette , K.S.Patterson , B.W.Lykins , J.C. Ireland , Environ.Sci.Technol. 30, 3327, (1996) 31. Nosaka Y. , Fox M. A. , J. Phys. Chem. 92, 1983, (1988) 32. M.Anpo , Studies in surface Science and Catalysis 130, 157, (2000) 33. K.Wilke , H.D.Breuer , J.Photochem.Photobiol.A:Chem 121, 49, (1999) 34. J.A.Navio , G.Colon , M.Macias , C.Real , M.I.Litter , Appl.Catal.A:General 177, 111, (1999) 35. W.Choi , A.Termin , M.R.Hoffmann , J.Phys.Chem. 98, 13669, (1994) 36. V.Brezova , A.Blazkova , L.Karpinsky , J.Groskova , B.Havlinova , V.Jorik , M.Ceppan , J.Photochem.Photobiol.A:Chem. 109, 177, (1997) 37. A. Hagfeldt, M. Grätzel, Acc. Chem. Res 33, 269, (2000) 38. K. Kalyanasundaram, M. Grätzel, Coordin. Chem. Rev. 177, 347, (1998) 39. B. H. Kim, J. H. Ahn, J. H. Jeong, Y. S. Jeon, O. K. Jeon, K. S. Kwan, Ceram. Int. 32, 223, (2006) 40. K. H. Ahn, Y. B. ParK, D. W. Park, Surface & Coatings Technology, 171, 198-204, (2003) 41. Q. Cai, M. Paulose, O. K. Varghese, C. A. Grimes, J. Master. Res. 20(1), 230, (2005) 42. N. Martin, A. M. E. Sanfo, R. Sanjines, F. Levy, Surface & Coatings Technology 138, 77-83, (2001) 43. P. SarKar, P. S. Nicholson, J. Am. Ceram. Soc. 79, 1987-2002, (1996) 44. K. Kamada, K. Maehara, M. Mukai, S. Ida, Y. Matsumoto, J. Master. Res. 18, 2826-2831, (2003) 45. A. T. Kukn (ed.), Industrial Electrochemical Processes; P. 128. Elsevier, Amsterdam, The Netherlands, (1971) 46. A Formeto, L. Montanaro, M. V. Swain, J. Am. Ceram. Soc. 82, 3251-3528, (1999) 47. T. Uchikoshi, K. Ozawa, B. D. Hatton, Y. Sakka, J. Master. Res. 16, 321-324, (2001) 48. O. O. Van der Biest, L. J. Vandeperre, Annu. Rev. Master. Sci. 29, 327-352, (1999) 49. J. A. Lewis, J. Am. Ceram. Soc. 83, 2341-59, (2000) 50. I. Zhitomirsky, Advances in colloid and interface science, 97, 279-317, (2002) 51. H. Masuda, F. Hasegwa, S. Ono, J. Electrochem. Soc. 144, 127-130, (1997) 52. G.- E. Thompson, Thin Solid Film 297, 192-201, (1997). 53. G.- E. Thompson, R.- C. Furneaux, G.- C. Wood, J.- A. Richardson, Nature 272, 433-435, (1978) 54. G.- E. Thompson, Thin Solid Film 297, 192-201, (1997) 55. G.- E. Thompson, R.- C. Furneaux, G.- C. Wood, J.- A. Richardson, Nature 272, 433-435, (1978) 56. K. Shimizu, S. Kobayashi, G.- E. Thompson, G.- C. Wood, J. Appl. Electrochem. 15, 781-783, (1985) 57. A.- P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele, J Appl. Phys. 84 (11), 6023-6026, (1998) 58. H. Masuda, K. Fukuda, Science 268, 1466-1468, (1995) 59. H. Masuda, K. Yada, A. Osaka, Jpn. J. Appl. Phys. 37, 1340-1342, (1998) 60. C.- Y. Liu, A. Datta, and Y.- L. Wang, Appl. Phys. Lett. 78 (1), 120-122, (2001) 61. 劉佳玫, 洪敏雄, “ 奈米二氧化鈦電泳沉積及性質, ” 國立成功大學材料科學及工程學系碩士學位論文, 民 93。 62. J. Zhang, B. I. Lee, J. Am. Ceram. Soc. 83, 2417-2422, (2002) 63. 王元聰, 洪敏雄, “ 氧化鋁膜版輔助氧化鋅奈米陣列成長特性, ” 國立成功大學材料科學及工程學系博士學位論文, 民 93。 64. 李德龍, 李明威, “ 紫質衍生物-BPP染料於染敏太陽能電池之應用及其光學特性, ” 國立中興大學物理學研究所碩士學位論文, 民 96。 65. Z. Siwy, A. Fulinski, Phy. Rev, 198103-1(4), (2002) 66. S. R. Park, H. Peng, and X. S. Ling, submitted on Oct, 17, (2005)
摘要: 本研究提出以陽極氧化鋁膜(Anodic AluminaOxide, AAO)為基材,於陽極氧化鋁模板背面進行表面處理,產生半球形3D奈米結構之模版;接著以射頻(RF)濺鍍技術,於AAO 模版上濺鍍金作為電極,取代傳導之薄膜電極結構;再於3D奈米結構電極間以電泳沉積法填充TiO2,研發效率更高之奈米結構光觸媒;並以傳統溶膠凝膠法製備平板型二氧化鈦薄膜光觸媒,作為對照組。利用仿葉綠體機制太陽光電池為架構,用以量測不同光觸媒藉由吸收光能而產生電子─電洞對,進行水解之能力。 本研究所提出之新型3D結構光觸媒之效能提升源自於下列因素:(1)電力線在半球形奈米結構表面之勻分佈使得TiO2奈米顆粒得以藉由電泳沉積法均勻且密集沉積(2) 半球形奈米結構電極可提升單位面積奈米顆粒之吸附數量,染料分子吸附量也隨之增加(3)與平板二氧化鈦光觸媒相較,奈米顆粒有更大之光照面積。實驗結果驗證本研究提出之新型3D結構光觸媒確實可有效提升光觸媒之光電特性。與平板型TiO2薄膜光觸媒相比,本研究所提出之3D結構光觸媒之光電流增加超過10倍,而浸泡敏化染料後,光電流提升達到20倍,証實此光觸媒效能提升之效果。
In this research, a novel method to fabricate high efficiency titanium dioxide catalyst is presented. The RF magnetron sputtering was employed to grow 3D nano-structured Au thin film using the barrier-layer side of an anodic aluminum oxide (AAO) as the template. The template was prepared by immersing this side of an AAO film into a 30 wt% phosphoric acid solution to modify the surface of the barrier layer in such a manner that a contrasting surface was obtained. The electrophoretic deposition method was then implemented to uniformly deposit TiO2 nanoparticles on the 3D nano-structured Au electrode. The efficiency of the proposed catalyst in terms of the photolysis efficiency was measured using the proton-motive-force driving chloroplastmimic photovoltaics. (1) the uniformly propagated electric flux perpendicular to the hemispheric Au thin film electrode had pulled the TiO2 nanoparticles in the electrolyte so that they can be densely deposited onto the surface of the Au thin film electrode; (2) the 3D nanostructure of the Au electrode increased the binding surface of the TiO2 nanoparticles; (2) the exceptionally uniform distribution of the TiO2 nanoparticles increases the illumination area of the catalyst. Experiments demonstrated that the photolysis efficiency of the proposed 3D nano-structured TiO2 catalyst could be 10-fold of the Degussa P25 flat TiO2. The photolysis efficiency could be further increased when the N3 dye was deposited.
URI: http://hdl.handle.net/11455/2308
其他識別: U0005-2007200911565200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2007200911565200
Appears in Collections:機械工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.