Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/23097
標題: 水稻GDSL脂肪酶 OsGLP112之基因與重組酵素生化特性分析
Gene analysis of GDSL lipase OsGLP112 from rice (Oryza sativa) and the biochemical characterization of its recombinant enzyme
作者: 謝毓訓
Hsieh, Yu-Hsun
關鍵字: GDSL
脂肪酶重組酵素
rice
lipase
出版社: 生命科學系所
引用: 許嘉伊。2007。全球特用酵素市場分析。臺灣經濟研究院 生物科技產業研究中心 行政院農業委員會林務局 台灣的自然資源與生態資料庫 [農林漁牧] 2006年12月01日 王啟正。2000。農桿菌在植物基因轉殖上之原理及應用(上)。花蓮區農業專訊33:22-23 王啟正。2000。農桿菌在植物基因轉殖上之原理及應用(下)。花蓮區農業專訊34:20-22 張正賢譯,Yoshida Shoui Chi原著。1988。稻作學精要。國立編譯館 Akoh CC, Lee GC, Liaw YC, Huang TH, Shaw JF (2004) GDSL family of serine esterases/lipases. Prog Lipid Res 43: 534-552 Alsted TJ, Nybo L, Schweiger M, Fledelius C, Jacobsen P, Zimmermann R, Zechner R, Kiens B (2009) Adipose triglyceride lipase in human skeletal muscle is upregulated by exercise training. Am J Physiol Endocrinol Metab 296: E445-453 Arif SA, Hamilton RG, Yusof F, Chew NP, Loke YH, Nimkar S, Beintema JJ, Yeang HY (2004) Isolation and characterization of the early nodule-specific protein homologue (Hev b 13), an allergenic lipolytic esterase from Hevea brasiliensis latex. J Biol Chem 279: 23933-23941 Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343 Pt 1: 177-183 Bornscheuer UT (2002) Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev 26: 73-81 Brogue K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais CJ, Broglie R (1991) Transgenic Plants with Enhanced Resistance to the Fungal Pathogen Rhizoctonia solani. Science 254: 1194-1197 Brumlik MJ, Buckley JT (1996) Identification of the catalytic triad of the lipase/acyltransferase from Aeromonas hydrophila. J Bacteriol 178: 2060-2064 Brzozowski AM, Derewenda U, Derewenda ZS, Dodson GG, Lawson DM, Turkenburg JP, Bjorkling F, Huge-Jensen B, Patkar SA, Thim L (1991) A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature 351: 491-494 Cho H, Cronan JE, Jr. (1993) Escherichia coli thioesterase I, molecular cloning and sequencing of the structural gene and identification as a periplasmic enzyme. J Biol Chem 268: 9238-9245 Chuang HH, Lin HY, Lin FP (2008) Biochemical characteristics of C-terminal region of recombinant chitinase from Bacillus licheniformis: implication of necessity for enzyme properties. FEBS J 275: 2240-2254 Contreras JA, Karlsson M, Osterlund T, Laurell H, Svensson A, Holm C (1996) Hormone-sensitive lipase is structurally related to acetylcholinesterase, bile salt-stimulated lipase, and several fungal lipases. Building of a three-dimensional model for the catalytic domain of hormone-sensitive lipase. J Biol Chem 271: 31426-31430 Cruz H, Perez C, Wellington E, Castro C, Servin-Gonzalez L (1994) Sequence of the Streptomyces albus G lipase-encoding gene reveals the presence of a prokaryotic lipase family. Gene 144: 141-142 Dalrymple BP, Cybinski DH, Layton I, McSweeney CS, Xue GP, Swadling YJ, Lowry JB (1997) Three Neocallimastix patriciarum esterases associated with the degradation of complex polysaccharides are members of a new family of hydrolases. Microbiology 143 ( Pt 8): 2605-2614 Doi O, Nojima S (1975) Lysophospholipase of Escherichia coli. J Biol Chem 250: 5208-5214 Feller G, Thiry M, Arpigny JL, Gerday C (1991) Cloning and expression in Escherichia coli of three lipase-encoding genes from the psychrotrophic antarctic strain Moraxella TA144. Gene 102: 111-115 Galleni M, Lindberg F, Normark S, Cole S, Honore N, Joris B, Frere JM (1988) Sequence and comparative analysis of three Enterobacter cloacae ampC beta-lactamase genes and their products. Biochem J 250: 753-760 Gao AG, Hakimi SM, Mittanck CA, Wu Y, Woerner BM, Stark DM, Shah DM, Liang J, Rommens CM (2000) Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol 18: 1307-1310 Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296: 92-100 Gunasekaran K, Ma B, Nussinov R (2003) Triggering loops and enzyme function: identification of loops that trigger and modulate movements. J Mol Biol 332: 143-159 Hammes GG (2002) Multiple conformational changes in enzyme catalysis. Biochemistry 41: 8221-8228 Hohmann HP, Bozzaro S, Merkl R, Wallraff E, Yoshida M, Weinhart U, Gerisch G (1987) Post-translational glycosylation of the contact site A protein of Dictyostelium discoideum is important for stability but not for its function in cell adhesion. EMBO J 6: 3663-3671 Holmquist M (2000) Alpha/Beta-hydrolase fold enzymes: structures, functions and mechanisms. Curr Protein Pept Sci 1: 209-235 Hong JK, Choi HW, Hwang IS, Kim DS, Kim NH, Choi du S, Kim YJ, Hwang BK (2008) Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance. Planta 227: 539-558 Ho YS, Swenson L, Derewenda U, Serre L, Wei Y, Dauter Z, Hattori M, Adachi T, Aoki J, Arai H, Inoue K, Derewenda ZS (1997) Brain acetylhydrolase that inactivates platelet-activating factor is a G-protein-like trimer. Nature 385: 89-93 Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67: 169-181 Huang YT, Liaw YC, Gorbatyuk VY, Huang TH (2001) Backbone dynamics of Escherichia coli thioesterase/protease I: evidence of a flexible active-site environment for a serine protease. J Mol Biol 307: 1075-1090 Iwai M, Tsujisaka Y, Okamoto Y, Fukumoto J (1973) Lipid requirement for the lipase production by Geotrichum candidum link. Agricultural and Biological Chemistry 37: 929 Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13: 390-397 Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16: 396-403 Karasawa K, Yokoyama K, Setaka M, Nojima S (1999) The Escherichia coli pldC gene encoding lysophospholipase L(1) is identical to the apeA and tesA genes encoding protease I and thioesterase I, respectively. J Biochem 126: 445-448 Kim KJ, Lim JH, Kim MJ, Kim T, Chung HM, Paek KH (2008) GDSL-lipase1 (CaGL1) contributes to wound stress resistance by modulation of CaPR-4 expression in hot pepper. Biochem Biophys Res Commun 374: 693-698 Kim KK, Song HK, Shin DH, Hwang KY, Choe S, Yoo OJ, Suh SW (1997) Crystal structure of carboxylesterase from Pseudomonas fluorescens, an alpha/beta hydrolase with broad substrate specificity. Structure 5: 1571-1584 Kim YS, Lee HB, Choi KD, Park S, Yoo OJ (1994) Cloning of Pseudomonas fluorescens carboxylesterase gene and characterization of its product expressed in Escherichia coli. Biosci Biotechnol Biochem 58: 111-116 Koshland DE (1958) Application of a Theory of Enzyme Specificity to Protein Synthesis. Proc Natl Acad Sci U S A 44: 98-104 Laskowski MJ, Williams ME, Nusbaum HC, Sussex IM (1995) Formation of lateral root meristems is a two-stage process. Development 121: 3303-3310 Lee DS, Kim BK, Kwon SJ, Jin HC, Park OK (2009) Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling. Biochem Biophys Res Commun 379: 1038-1042 Lee GC, Lee LC, Sava V, Shaw JF (2002) Multiple mutagenesis of non-universal serine codons of the Candida rugosa LIP2 gene and biochemical characterization of purified recombinant LIP2 lipase overexpressed in Pichia pastoris. Biochem J 366: 603-611 Lee YL, Chen JC, Shaw JF (1997) The thioesterase I of Escherichia coli has arylesterase activity and shows stereospecificity for protease substrates. Biochem Biophys Res Commun 231: 452-456 Li J, Derewenda U, Dauter Z, Smith S, Derewenda ZS (2000) Crystal structure of the Escherichia coli thioesterase II, a homolog of the human Nef binding enzyme. Nat Struct Biol 7: 555-559 Lin TH, Chen C, Huang RF, Lee YL, Shaw JF, Huang TH (1998) Multinuclear NMR resonance assignments and the secondary structure of Escherichia coli thioesterase/protease I: a member of a new subclass of lipolytic enzymes. J Biomol NMR 11: 363-380 Ling H, Zhao J, Zuo K, Qiu C, Yao H, Qin J, Sun X, Tang K (2006) Isolation and expression analysis of a GDSL-like lipase gene from Brassica napus L. J Biochem Mol Biol 39: 297-303 Lo YC, Lin SC, Shaw JF, Liaw YC (2003) Crystal structure of Escherichia coli thioesterase I/protease I/lysophospholipase L1: consensus sequence blocks constitute the catalytic center of SGNH-hydrolases through a conserved hydrogen bond network. J Mol Biol 330: 539-551 Loveless BJ, Saier MH, Jr. (1997) A novel family of channel-forming, autotransporting, bacterial virulence factors. Mol Membr Biol 14: 113-123 Macrae AR (1981) Lipase-catalyzed interesterification of oils and fats. Journal of the American Oil Chemists'' Society 60: 291-294 Marchetti JM, Miguel VU, Errazu AF (2005) Possible methods for biodiesel production. Renewable and Sustainable Energy Reviews 11: 1300-1311 Masse L, Kennedy K.J., Chou S (2001) Testing of alkaline and enzymatic hydrolysis pretreatments for fat particles in slaughterhouse wastewater. Bioresource Technology 77: 145-155 Medinas DB, Gozzo FC, Santos LF, Iglesias AH, Augusto O (2010) A ditryptophan cross-link is responsible for the covalent dimerization of human superoxide dismutase 1 during its bicarbonate-dependent peroxidase activity. Free Radic Biol Med 49: 1046-1053 Meilleur C, Hupe JF, Juteau P, Shareck F (2009) Isolation and characterization of a new alkali-thermostable lipase cloned from a metagenomic library. J Ind Microbiol Biotechnol 36: 853-861 Molgaard A, Kauppinen S, Larsen S (2000) Rhamnogalacturonan acetylesterase elucidates the structure and function of a new family of hydrolases. Structure 8: 373-383 Monecke P, Friedemann R, Naumann S, Csuk R (1998) Molecular Modelling Studies on the Catalytic Mechanism of Candida Rugosa Lipase. J. Mol. Model 4: 395-404 Moore JC, Arnold FH (1996) Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nat Biotechnol 14: 458-467 Nishizawa M, Shimizu M, Ohkawa H, Kanaoka M (1995) Stereoselective production of (+)-trans-chrysanthemic acid by a microbial esterase: cloning, nucleotide sequence, and overexpression of the esterase gene of Arthrobacter globiformis in Escherichia coli. Appl Environ Microbiol 61: 3208-3215 Ohmido N, Kijima K, Akiyama Y, de Jong JH, Fukui K (2000) Quantification of total genomic DNA and selected repetitive sequences reveals concurrent changes in different DNA families in indica and japonica rice. Mol Gen Genet 263: 388-394 Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J, et al. (1992) The alpha/beta hydrolase fold. Protein Eng 5: 197-211 Petersen EI, Valinger G, Solkner B, Stubenrauch G, Schwab H (2001) A novel esterase from Burkholderia gladioli which shows high deacetylation activity on cephalosporins is related to beta-lactamases and DD-peptidases. J Biotechnol 89: 11-25 Prim N, Sanchez M, Ruiz C, Pastor FIJ, Diaz P (2003) Use of methylumbeliferyl-derivative substrates for lipase activity characterization. J Mol Catal B-Enzym 22: 339-346 Pringle D, Dickstein R (2004) Purification of ENOD8 proteins from Medicago sativa root nodules and their characterization as esterases. Plant Physiol Biochem 42: 73-79 Reis P, Holmberg K, Watzke H, Leser ME, Miller R (2009a) Lipases at interfaces: a review. Adv Colloid Interface Sci 147-148: 237-250 Reis P, Miller R, Leser M, Watzke H (2009b) Lipase-catalyzed reactions at interfaces of two-phase systems and microemulsions. Appl Biochem Biotechnol 158: 706-721 Schmidt-Dannert C, Rua ML, Atomi H, Schmid RD (1996) Thermoalkalophilic lipase of Bacillus thermocatenulatus. I. molecular cloning, nucleotide sequence, purification and some properties. Biochim Biophys Acta 1301: 105-114 Schrag JD, Li YG, Wu S, Cygler M (1991) Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum candidum. Nature 351: 761-764 Shaw JF, Chang RC, Chuang KH, Yen YT, Wang YJ, Wang FG (1994) Nucleotide sequence of a novel arylesterase gene from Vibro mimicus and characterization of the enzyme expressed in Escherichia coli. Biochem J 298 Pt 3: 675-680 Tyukhtenko SI, Litvinchuk AV, Chang CF, Lo YC, Lee SJ, Shaw JF, Liaw YC, Huang TH (2003) Sequential structural changes of Escherichia coli thioesterase/protease I in the serial formation of Michaelis and tetrahedral complexes with diethyl p-nitrophenyl phosphate. Biochemistry 42: 8289-8297 Upton C, Buckley JT (1995) A new family of lipolytic enzymes? Trends Biochem Sci 20: 178-179 Vadehra DV, Harmon LG (1969) Factors affecting production of Staphylococcal lipase. The Journal of Bacteriology 32: 147 Valentine L (2003) Agrobacterium tumefaciens and the plant: the David and Goliath of modern genetics. Plant Physiol 133: 948-955 Verger R, Mieras MC, de Haas GH (1973) Action of phospholipase A at interfaces. J Biol Chem 248: 4023-4034 Wei Y, Schottel JL, Derewenda U, Swenson L, Patkar S, Derewenda ZS (1995) A novel variant of the catalytic triad in the Streptomyces scabies esterase. Nat Struct Biol 2: 218-223 Wei Y, Swenson L, Castro C, Derewenda U, Minor W, Arai H, Aoki J, Inoue K, Servin-Gonzalez L, Derewenda ZS (1998) Structure of a microbial homologue of mammalian platelet-activating factor acetylhydrolases: Streptomyces exfoliatus lipase at 1.9 A resolution. Structure 6: 511-519 Willmitzer L (1988) The use of transgenic plants to study plant gene expression. Trends Genet 4: 13-18 Winkler FK, D''Arcy A, Hunziker W (1990) Structure of human pancreatic lipase. Nature 343: 771-774 Wolle J, Jansen H, Smith LC, Chan L (1993) Functional role of N-linked glycosylation in human hepatic lipase: asparagine-56 is important for both enzyme activity and secretion. J Lipid Res 34: 2169-2176 Yadwad VB, Ward OP, Noronha LC (1991) Application of lipase to concentrate the docosahexaenoic acid (DHA) fraction of fish oil. Biotechnol Bioeng 38: 956-959 Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Li J, Liu Z, Qi Q, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Zhao W, Li P, Chen W, Zhang Y, Hu J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Tao M, Zhu L, Yuan L, Yang H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296: 79-92 Zock J, Cantwell C, Swartling J, Hodges R, Pohl T, Sutton K, Rosteck P, Jr., McGilvray D, Queener S (1994) The Bacillus subtilis pnbA gene encoding p-nitrobenzyl esterase: cloning, sequence and high-level expression in Escherichia coli. Gene 151: 37-43
摘要: 脂肪酶之主要功能為催化酯質化合物的合成與分解,其中GDSL脂肪酶是一類多功能性的水解酵素,擁有廣泛的受質特異性,在結構上不同於一般的脂肪酶之活性中心GxSxG motif,而是獨特的GDSL motif,且具有五個序列保守區(I-V),四個參與催化反應的重要胺基酸:serine、glycine、asparagine、histidine分別位於block I、II、III、V,有別於一般典型脂肪酶之結構特性。 脂解酵素因其生化特性而廣泛的應用在工業中,而其中GDSL脂肪酶因具廣泛的受質特異性在工業上有不同的應用,然而目前少有關於植物GDSL脂肪酶之生化特性研究,開發新型植物GDSL脂肪酶更具擴展產業應用潛力價值;目前水稻的基因組已定序完成,根據生物資訊學分析發現水稻基因組中含有114個GDSL脂肪酶,其中OsGLP112基因位於水稻第11號染色體上,具有783bp的開放性閱讀框架編碼260個胺基酸。 為了解OsGLP112之生化特性,本實驗將OsGLP112之基因從水稻中選殖出來,並先後在Escherichia coli及Nicotiana tabacum等系統中表現其重組蛋白以分析其生化特性,目前已在E. coli表達系統證實重組蛋白OsGLP112為具有脂解活性之酵素;為了探討OsGLP112在水稻中所扮演之生理角色,收集不同生長期之水稻,分析OsGLP112之mRNA表現情形,由結果得知,OsGLP112在不同品系之水稻間有不同表現情形,且隨著生長期的改變,台中秈10號之OsGLP112之mRNA於營養生長期間之根部位以及最高分櫱期之莖部有表達,而台稉九號只於孕穗早期之莖部位偵測到OsGLP112之mRNA表現。
Lipases catalyze the hydrolysis and synthesis of various ester compounds. GDSL esterases/lipases are hydrolytic enzymes with multifunctional properties such as broad substrate specificity and regiospecificity. This new subclass of lipolytic enzymes possesses a distinct GDSL sequence motif different from the GxSxG motif found in classical lipases. There are five consensus sequence (I-V) in GDSL enzymes is four invariant important catalytic residues Ser, Gly, Asn, and His in blocks I, II, III, and V, respectively. Because of the multifunctional properties, GDSL esterases and lipases have potential for applications in the pharmaceutical, food, biochemical, and biological industries. GDSL esterases/lipases might play an important role in the regulation of plant development and morphogenesis. But the biological properties of GDSL lipase still need to do more studies. To find out more new members of GDSL family may have some new industrial value. The whole genome of rice has be sequenced. From the research of bioinformatics analysis, there are 114 GDSL lipases in the rice genome. The OsGLP112, with 783bp open fragment encoding 260 amino acid residudes, is on the 11th chromosome. In order to identify the biochemical functions of OsGLP112, the OsGLP112 gene was cloned and expressed in the Escherichia coli and Nicotiana tabacum system. The differential expressions of OsGLP112 during the developmental stages of different species of rice were analyzed for the physiological function of OsGLP112.
URI: http://hdl.handle.net/11455/23097
其他識別: U0005-2108201018472400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2108201018472400
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.